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ABSTRACT Neuronal ceroid lipofuscinosis (NCL) is one of the most prevalent neuro-
degenerative disorders of early life, Parkinson’s disease (PD) is the most common
neurodegenerative disorder of midlife, while Alzheimer’s disease (AD) is the most
common neurodegenerative disorder of late life. While they are phenotypically dis-
tinct, recent studies suggest that they share a biological pathway, retromer-
dependent endosomal trafficking. A retromer is a multimodular protein assembly
critical for sorting and trafficking cargo out of the endosome. As a lysosomal storage
disease, all 13 of NCL’s causative genes affect endolysosomal function, and at least
four have been directly linked to retromer. PD has several known causative genes,
with one directly linked to retromer and others causing endolysosomal dysfunction.
AD has over 25 causative genes/risk factors, with several of them linked to retromer
or endosomal trafficking dysfunction. In this article, we summarize the emerging evi-
dence on the association of genes causing NCL with retromer function and endo-
somal trafficking, review the recent evidence linking NCL genes to AD, and discuss
how NCL, AD, and PD converge on a shared molecular pathway. We also discuss this
pathway’s role in microglia and neurons, cell populations which are critical to proper
brain homeostasis and whose dysfunction plays a key role in neurodegeneration.

KEYWORDS Alzheimer’s disease (AD), endocytic pathway, endosomal trafficking,
genetic and cell biology findings on Alzheimer’s disease, microglia, NCL genes,
Parkinson’s disease, retromer defects, retromer proteins (Vps35, Vps26, Vos29),
retromer viral vectors for AD gene therapy

Alzheimer’s disease (AD) is a neurodegenerative disease that progressively destroys
memory and thinking skills and disrupts behavior, ultimately leading to complete

dependency and death. It is the most common type of dementia among individuals 65
or older (1). Currently, more than 5.5 million Americans are living with AD, and this
number is expected to triple by the year 2050 (2). While the majority of cases occur
beyond age 65, 5 to 10% of cases show an early-onset form, with clinical onset between
30 and 50 years of age (3). Key pathological hallmarks are extracellular diffuse and
neuritic amyloid plaques composed of abnormally folded A�40 and A�42 and intran-
euronal accumulation of neurofibrillary tangles (NFT) composed of hyperphosphory-
lated tau protein (p-tau), often accompanied by neuropil threads, dystrophic neurites,
associated astrogliosis, microglial activation, and cerebral amyloid angiopathy (4).
These changes commonly show a specific spatial/temporal profile initiating in entorhi-
nal cortex and then spreading to other areas of the brain (5).

Ten percent of these early-onset AD cases are explained by known mutations in the
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presinilin 1 (PSEN1), presinilin 2 (PSEN2), and amyloid precursor protein (APP) genes (3).
The apolipoprotein E gene (APOE) poses the strongest risk factor for the late-onset form
(6, 7). In addition, large-scale genomic studies conducted over the past 10 years have
identified over 25 genes modulating AD susceptibility (8, 9). Notably, these genes
cluster predominantly in specific molecular pathways, in particular lipid metabolism,
inflammation/immune response, endocytosis, and intracellular trafficking (8–10).

The second most prevalent neurodegenerative disease, Parkinson’s disease (PD),
affects 1% to 2% of the population and is characterized by resting tremor, rigidity, and
bradykinesia, along with memory impairments and other behavior changes (11, 12). PD
pathology, characterized in particular by progressive loss of dopaminergic (DA) neurons
in the substantia nigra, usually initiates in the basal ganglia, with involvement of
cerebellum thalamus, hypothalamus, and limbic system (13–16). Several genes have
been associated with PD (LRRK2, GBA, PRKN, SNCA, MAPT, EIF4G1, DNAJC13, CHCHD2,
PINK1, and PARK7). Notably, some of these have been implicated in endolysosomal
dysfunction (11–13, 17–21).

A master conductor of endosomal sorting and trafficking is the retromer complex
(22). Retromer recognizes specific transmembrane proteins and exports them to their
appropriate destinations within the cell. It facilitates this transport by forming tubules.
Protein cargo from the endosomes can be exported to three possible destinations:
retrograde transport to the trans-Golgi network (TGN), recycling to the plasma mem-
brane, and sorting to the lysosomes for degradation. The former two are controlled by
retromer (22–24). The retromer complex is composed of multiple modules, with the
two central components being the cargo recognition module (CRM) and the tubulation
module (SNX-BAR). The CRM consists of three largely globular proteins, VPS35, VPS26,
and VPS29, named after the vacuolar protein-sorting genes in yeast. The tubulation
module comprises heterodimers of the BAR domain-containing sorting nexins SNX1/
SNX2 and SNX5/SNX6 (23, 25–27).

Retromer and endolysosomal dysfunction have been firmly established in the
etiology of both AD and PD (28–38). The first evidence for an association with AD came
from a model-guided microarray study showing a reduction of VPS26 and VPS35 in
brain regions affected by the disease (39), followed by the identification of SORL1 (a
retromer cargo receptor) (40) as a risk gene for AD and demonstrating that SORL1 is
critical for trafficking of APP away from amyloidogenic pathways and recycling it back
to the cell surface (41, 42). A series of subsequent genetic studies firmly confirmed
SORL1 in both early- and late-onset AD (41, 43–45) and have linked several additional
retromer core proteins to AD; among these are SNX1, SNX3, and rab7a (26, 46). In line
with this notion, there is evidence of endolysosomal dysfunction starting early in
entorhinal cortex and hippocampus in AD brains with enlargement of endosomes (39,
47–49). The strongest genetic risk factor for sporadic AD, APOE4, is also associated with
enlargement of endosomes and their dysfunction in an age-dependent manner (50–
53). In early-onset PD, mutations in PRKN (parkin) lead to autosomal recessive early-
onset PD (54), with loss of parkin function, increased formation of intraluminal vesicles
coupled with enhanced release of exosomes, decreased endosomal tubulation, and
membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1),
as well as decreased mannose 6 phosphate receptor (M6PR), in line with impairment of
retromer pathway in parkin-deficient cells. In addition, a rare mutation in the retromer
gene VPS35 (D620N) is associated with risk of PD (28–36), supporting a role of retromer-
dependent trafficking and endolysosomal function.

In addition to these AD-associated retromer genes and proteins, over the past few
years an additional set of genes has been linked to retromer function and AD. Among
these were a small number of experimental, cell biology, and animal studies reporting
genes implicated in neuronal ceroid lipofuscinosis (NCL) (55), a genetically determined
lysosomal storage disorder. It has been demonstrated that retromer is essential in the
delivery of certain hydrolytic enzymes to lysosomes, and its deficiency leads to the
accumulation of dysfunctional autolysosomes (56, 57).
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CLINICAL AND MORPHOLOGICAL CHARECTERISTICS OF NCL

NCL is morphologically characterized by cellular lipopigment inclusions, neuronal
loss, and progressive neurodegeneration (58). The childhood forms present clinically as
progressive mental and motor deterioration and loss of vision with shortened life
expectancy, while the rare adult-onset forms are dominated by dementia. To date, 13
genetically distinct forms of NCL have been identified (Table 1), all characterized by the
accumulation of abnormal lipofuscin-like material in the lysosomes of nerve cells,
associated with progressive and selective destruction of neurons, particularly in the
cerebral and cerebellar cortex and in the retina (58–61). Historically, NCL has been
classified into four distinctive forms, based on the clinical manifestation, morphologic
features, and age of onset: infantile (INCL), late-infantile (LINCL), juvenile (JNLC), and
adult type NCL (ANLC) (59).

NEURONAL CEROID LIPOFUSCINOSIS AND RETROMER

Of the 13 genes causing NCL, four have been linked to retromer function: CLN1,
CLN3, CLN5, and CLN10 (cathepsin D, or CTSD) (55, 61–66). These NCL variants cause
pathological changes that seem to share an endolysosomal dysfunctional pathway.
CLN10 disease presents as congenital or early infantile neuronal ceroid lipofuscinosis
disease and is caused by mutations in CTSD, encoding cathepsin D (67–69). Cathepsin
D is a lysosomal protease that is highly expressed in the brain (70). CTSD shows
pepsin-like activity and has an important role in protein turnover and activation of
hormones and growth factors through proteolysis. Retromer plays a vital role in CTSD
processing. Procathepsin D is transported by cation-independent mannose 6-phosphate
receptor (CI-M6PR) or sortilin to the endosome, where it is processed to the mature
cathepsin D (71–74). Retromer, in turn, mediates trafficking of sortilin and CI-M6PR out
of the endosomal-lysosomal system and prevents their degradation (72–75). Alterations
in CTSD protein and mRNA levels have been demonstrated in AD (71, 76–78), and CTSD
deficiency has been shown to promote tau neurotoxicity, likely through a mechanistic
defect in endosomal-lysosomal trafficking (76, 79–81).

Juvenile CLN3 disease is characterized by early vision loss at around 6 years of age
with cognitive decline followed by seizures, psychosis, and motor dysfunction (82–84).
The CLN3 gene encodes a palmitoyl-protein delta-9 desaturase protein, which also
modulates lysosomal transport and function (85, 86). CLN3 protein has been implicated
in retrograde transport of cargo from the endosome to the Golgi compartment by
modulating SNARE phosphorylation and assembly (87–89), and a recent investigation
by Yasa and Lefrancois established that CLN3 protein plays a key role in facilitating the
interaction between Rab7A, retromer, and sortilin (63). Rab7A belongs to the family of
Rab GTPases proteins that is active at endosomal membranes and has been involved in
endosome-to-TGN trafficking, retromer recruitment, autophagosome-lysosome fusion,
lysosomal positioning, and degradation of endocytic cargo (62, 78, 90–92). In the
absence of wild-type CLN3, CI-M6PR and sortilin receptors are degraded, which in turn
leads to impaired CTSD processing (63).

The CLN5 gene is implicated in late infantile NCL, a type of NCL that affects children
between ages 2 and 4 and has a very high mortality. In the mouse brain, CLN5 is
expressed in cortical neurons, hippocampal pyramidal neurons, hypothalamus, and
cerebellum (93); the highest levels, however, have been detected in microglial cells (55,
94). CLN5 protein undergoes posttranslational modifications that include glycosylation
and cleavage (95, 96). The depletion of CLN5 leads to lysosomal degradation of the
retromer receptors sortilin and CI-M6PR (62). In the absence of CLN5, Rab7 is not
activated, VPS26 is not recruited to endosomes, and sortilin and CI-M6PR receptors are
degraded in lysosomes (62). Glycosylation defects result in ER mislocalization of CLN5,
which results in a loss of function and ER stress (55, 97). CLN5 is usually localized to the
endolysosomal compartment, and it is also secreted into the extracellular space (55, 95,
98, 99).

Using whole-exome sequencing, we recently identified a rare missense variant of
CLN5 (rs199609750; c.A959G; population frequency, 7.418e�05) that segregates with
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AD in multiplex families. Employing a combination of molecular biology, biochemistry,
and immunofluorescence experiments, we validated that this CLN5 AD variant is
glycosylation deficient, which causes the expressed protein to be partially trapped in
the ER, reduces its normal delivery to the endolysosomal system, and reduces its
secretion. We also demonstrated that an effective deficiency in endosomal CLN5
caused by the missense variant results in a shift in the relative levels of procathepsin D,
an established phenotype of retromer dysfunction (29, 71, 78, 100), and a reduction in
the full-length APP. These studies further strengthen the findings from Mamo et al.,
who described the recruitment of retromer to the endosomal membrane by CLN5 and
degradation of retromer trafficked receptors in lysosomes in the setting of CLN5
depletion, establishing that CLN5 deficiency translates into retromer’s dysfunction (62).
Since CLN5 is heavily enriched in microglia (94, 101), a cell type linked to AD, we
postulate that the identified c.A959G missense mutant mediates its AD-associated
toxicity by affecting retromer function in microglia. Microglia are activated upon tissue
damage and are critical for brain homeostasis. The identification of CLN5 as a microglial
gene associated with AD is in line with the implication of the microglial gene TREM2 as
an AD susceptibility gene (102). Notably, retromer deficiency has been found in the
microglia of AD brains (103), but the mechanisms underlying this deficiency are still
unclear.

CLN1 disease primarily presents as infantile but has a broad age of onset, extending
all the way into adulthood (104). The CLN1 gene codes for palmitoyl-protein thioes-
terase 1 (PPT1), expressed in both neurons and microglia (105). PPT1 is a depalmitoy-
lation enzyme, and, as such, a disruption of the protein palmitoylation/depalmitoyla-
tion balance is associated with AD (106–108). PPT1 has been implicated in endosomal
trafficking (109, 110) and synaptic maintenance (110–112). In addition, PPT1 levels in
the cell potentially can be influenced by retromer activity, since there is evidence that
it is transported to lysosomes by the mannose 6-phosphate receptor (64–66). A study
employing a proteomic approach in an APPNL-F mouse model of AD found that PPT1 is
upregulated and colocalizes with A� in this model. The authors conclude that PPT1
might have a role in A� clearance in the early stages of the disease, indicating that the
upregulated expression of PPT1 is a compensatory mechanism resulting from elevated
A� levels in early AD (105).

RECENT DEVELOPMENTS

A series of recent observations from human, animal, and cell biological studies
provide additional evidence for an overlapping molecular etiology of AD and NCL.
While it remains to be established if and how some or all of these links converge on the
retromer pathway, the observed findings provide critical additional support for a shared
molecular etiology of both syndromes.

AD pathology is characterized by the presence of A� protein oligomers, amyloid
plaques (composed of insoluble fibrils), tau tangles, and neuroinflammation (113, 114).
A recent study reported that microglial TPP1 protein (encoded by the CLN2 gene) binds,
digests, and causes destabilization of A� fibrils in the lysosomes through multiple
proteolytic cleavages within the �-sheet domain (115).

The CLN11 gene (alias PGRN or GRN), encoding progranulin (PGRN), has been linked
to various neurodegenerative diseases, including NCL, frontotemporal lobar degener-
ation (FTLD), and AD (116, 117). Increased expression of PGRN has been documented in
AD. PGRN is associated with A� plaques, neurofibrillary tangles, tau phosphorylation,
and increased CSF tau levels (118–121). A microglial specific knockdown of PGRN
results in malfunctioning phagocytic activity (116). A recent comprehensive review on
PGRN discusses its role in lysosomal function in both neurons and microglia and argues
that mutations in PGRN modulate lysosomal activity in both of these cell types, which
in turn leads to AD pathology (122, 123). A global PGRN (i.e., CLN11) deletion can lead
to an increase in lysosomal size and numbers in microglia, cd68 positivity, complement
activation, and increased synaptic pruning (124). Microglial specific deletion of PGRN,
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however, does not result in neuroinflammation, indicative of the fact that normal levels
of neuronal PGRN play a significant role in preventing pathology in these mice (125).

Finally, CLN13 (or CTSF gene) encodes cathepsin F protein, a soluble lysosomal
cysteine protease (58). Mutations in the CTSF gene can cause Kufs disease type B, an
adult form of NCL (126), where patients commonly present with epileptic seizures,
ataxia, behavioral impairments, and dementia (127, 128). CTSF protein function has
been linked to endosomal regulation and lysosomal trafficking through lysosomal
integral membrane protein type 2 (LIMP-2) cleavage (129). Notably, an exome sequenc-
ing study in a consanguineous family with clinically diagnosed early-onset AD that
previously tested negative for PSEN1, PSEN2, APP, TAU, PGRN, and PRNP mutations
found an autosomal recessive CTSF gene variant (cG1243A:p Gly415Arg) (130). Vice
versa, in a separate report, four members of a family with clinically suspected Kufs
disease were shown to carry a novel PSEN1 mutation (p.Leu381Phe). Carriers in this
family developed dementia in their early 30s and showed neuropathological features of
both Kufs and AD (131). These findings support the notion that NCL and AD are linked
etiologically and clinically.

CONCLUSIONS

Several genes associated with NCL have now been linked to AD, and with PSEN1 and
PRGRN variants also being observed in families and individuals clinically presenting
with NCL, evidence is mounting that these two syndromes overlap both etiologically
and clinically.

The fact that at least 4 NCL genes have now been linked to endosomal trafficking,
and that the major genomic studies on AD clearly identified endosomal trafficking as
one of three major etiological pathways in AD (8–10, 22), strongly suggests a dysfunc-
tional endolysosomal trafficking system as the shared molecular hub on which both
disorders converge. Within the endolysosmal system, some of the molecular overlap
seems to converge on retromer, suggesting that improving efficacy of the retromer
trafficking pathway would decrease pathology in both syndromes. Additionally, brain
transcriptome sequencing (RNA-seq) studies from the laboratory of B. Barres show that
RNAs of most of the NCL-causing proteins discussed here are highly enriched in mouse
microglia/macrophages (101, 132), whereas in humans these RNAs are enriched in
mature astrocytes and microglia/macrophages, with the exception of CLN13, which has
a considerable presence in human neurons as well (101, 132). These data, coupled with
recent findings that retromer depletion in neurons leads to massive activation of
microglia and astrocytes in mouse brains and that the astrogliosis can be partially
rescued with retromer repletion using AAV (133), further support an interaction be-
tween NCL genes, endolysosomal trafficking, neurons, and glia. The fact that some of
the genes associated with PD also have been implicated in endolysosomal dysfunction
and retromer function (12, 13, 17, 20, 21, 28–36) further emphasizes the importance of
the endolysosomal system and retromer in neurodegenerative disease, and it suggests
that there is also at least a partial etiologic overlap with this disorder. Notably,
particularly in Alzheimer’s disease, the range of age of onset associated with disease-
associated variants functioning in the endolysosomal pathway, for example, SORL1 (44),
is significant, and enlargement of endosomes can be observed early in the disease
process long before the onset of clinical symptoms (10), indicating that endolysosomal
dysfunction in AD and PD can begin across a wide age range, likely even in early life.

Experimental, animal, and human studies are needed that comprehensively disen-
tangle the molecular etiologies of NCL and AD, delineate their clinical subtypes,
meticulously characterize their molecular and clinical overlap and association with
retromer function, and delineate their etiologic overlap with other neurodegenerative
disorders associated with retromer dysfunction, including PD. Studies on retromer
enhancing pharmacological chaperones and retromer gene therapies have demon-
strated that retromer function can be enhanced (133–136). While these studies have
focused on adult-onset neurodegeneration (AD and PD), they provide proof of principle
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and indicate that therapies targeting the retromer pathway also can benefit patients
with NCL subtypes associated with retromer dysfunction.
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