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A B S T R A C T   

COVID-19 has been disturbing human society with an intensity never seen since the Influenza epidemic (Spanish 
flu). COVID-19 and Influenza are both respiratory viruses and, in this study, we explore the relations of COVID- 
19 and Influenza with atmospheric variables and socio-economic conditions for tropical and subtropical climates 
in Brazil. Atmospheric variables, mobility, socio-economic conditions and population information were analyzed 
using a generalized additive model for daily COVID-19 cases from March 1st to May 15th, 2020, and for daily 
Influenza hospitalizations (2017–2019) in Brazilian states representing tropical and subtropical climates. Our 
results indicate that temperature combined with humidity are risk factors for COVID-19 and Influenza in both 
climate regimes, and the minimum temperature was also a risk factor for subtropical climate. Social distancing is 
a risk factor for COVID-19 in all regions. For Influenza and COVID-19, the highest Relative Risks (RR) generally 
occurred in 3 days (lag = 3). Altogether among the studied regions, the most important risk factor is the Human 
Development Index (HDI), with a mean RR of 1.2492 (95% CI: 1.0926–1.6706) for COVID-19, followed by the 
elderly fraction for both diseases. The risk factor associated with socio-economic inequalities for Influenza is 
probably smoothed by Influenza vaccination, which is offered free of charge to the entire Brazilian population. 
Finally, the findings of this study call attention to the influence of socio-economic inequalities on human health.   

1. Introduction 

The COVID-19 pandemic has been destructive to human lives, 
economy and social relations around the world. In just a few months, it 
quickly spread to all countries and killed more than 900,000 people, 
consuming tens of millions of jobs (Worldometer website). COVID-19 is 
caused by SARS-CoV-2, which can be transmitted by two main ways: 
Contact (surface contact, i.e. fomites and contact with a contaminated 
person) and by air, via droplets and aerosol (Kutter et al., 2018; Dor
emalen et al., 2020; Setti et al., 2020; Stadnytskyi et al., 2020; Tellier 
et al., 2019; World Health Organization, 2020). Influenza, another res
piratory virus, has also caused tens of thousands of deaths worldwide 
each year. The Influenza virus, which can also cause Severe Acute 
Respiratory Syndrome (SARS), has forms of transmission similar to 
COVID-19, although there is no consensus on the relevance of each 
mode (Brankston et al., 2007; Killingley and Nguyen-Van-Tam, 2013; 
Krammer et al., 2018; Kutter et al., 2018; Lee, 2007; Tellier, 2006). 

Therefore, the transmission of both is susceptible to climate conditions 
and, in the case of Influenza, seasonality is already described in the 
literature (Alonso et al., 2007; Carleton and Meng, 2020; Li et al., 2015; 
Moriyama et al., 2020; Petrova and Russell, 2018; Russell et al., 2008; 
Shaman and Kohn, 2009; Shimmei et al., 2020; Sobral et al., 2020). 

The world pandemic caused by COVID-19 has demanded a huge 
effort of the scientific community to identify the relevant factors and 
their associations with virus transmission. As the virus spreads to new 
areas, more studies are required to understand the disease under the 
socio-economic and climate conditions of different countries, especially 
those in Africa and South America (Belser, 2020; Marson and Ortega, 
2020; Wilder-Smith et al., 2020). Besides social distancing, the influence 
of climate variables on SARS-CoV-2 spread capacity has already been 
explored by some studies (Ma et al., 2020; Qi et al., 2020; Tobías and 
Molina, 2020; Wang et al., 2020a; Xie and Zhu, 2020), as well as other 
factors (Domingo and Rovira, 2020; Sarmadi et al., 2020; Urrutia-Per
eira et al., 2020). However, the relations of climate variables were based 
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only on subtropical regions, which makes the pandemic view somewhat 
early and narrow. 

Even for Influenza, only a few studies were conducted in tropical 
regions and a deep investigation of its relation with environmental 
variables is still needed (Alonso et al., 2007; Krammer et al., 2018). 
However, such previous studies can provide important insights on 
COVID-19. For COVID-19, some studies analyzed the influence of tem
perature, humidity and rainfall (Auler et al., 2020; Prata et al., 2020; 
Rodrigues et al., 2020; Tenório; Lansac-tôha, 2020) for some Brazilian 
cities. 

Some factors cannot be ignored to address the spread of respiratory 
viruses as SARS-CoV-2 and Influenza. For instance, the effects of popu
lation age, hygiene measures, social distancing, socio-economic condi
tions and climate. Therefore, in this study, we investigated the 
associations of COVID-19 cases and the number of hospital admissions 
by Influenza with atmospheric variables, social distancing and socio- 
economic conditions for different climate regions in Brazil. Besides, 
we compare the results of both diseases, aiming to establish a robust 
relation between Influenza and COVID-19. 

2. Methods 

2.1. Data and region 

Brazil is the unique huge country that extends from the Equator to 
the subtropics (5◦ 16′19’’ N and 3◦ 45′07’’ S, with an area of 8,516,000 
km2) and thus has different climate zones (Fig. 1). The socio-economic 
conditions also show wide variations inside the country; thus, it is a 
perfect area to study the influence of these factors on the dissemination 
of COVID-19 and Influenza, two respiratory viruses with similarities in 
the modes of transmission. In addition, the inherent bias associated with 
the data record can be minimized using the information of the same 
country, mainly for COVID-19, which is a new disease. Another 

important feature used was to choose regions that do not represent the 
main gates for people and goods entering the country. The only excep
tion was the state of Amazonas, the home of the Manaus Free Trade 
Zone. However, we kept the region in the study, since it is a very 
particular tropical area, where the main city of Manaus is surrounded by 
the largest tropical forest in the world. The Amazonas state has a low 
population density (2.23 inhabitants km− 2), but 51% of the population 
is living in the capital Manaus. 

Five Brazilian states representing different climate regimes were 
chosen (Fig. 1). The state of Amazonas (AM) has a tropical rainforest 
climate, with annual average temperature and rainfall of 27.4 ◦C and 
2145 mm, respectively. This type of climate is classified as Af (tropical 
without a dry season), following the Köppen climate classification 
(Alvares et al., 2013). Maranhão (MA) and Ceará (CE) have a tropical 
savanna climate, predominantly Aw (tropical with a dry winter) and As 
(tropical with a dry summer), respectively. They have a similar annual 
pattern of rainfall and temperature, with low-temperature variations 
during the year, but with well-defined seasonality for the monthly 
rainfalls. For both states, the rainy season occurs between February and 
May, while the driest period occurs between August and November. 
Espírito Santo (ES), located in Southeast Brazil, has also a tropical 
savanna climate (Aw) in most of its area, but with monthly rainfall not 
changing significantly over the year, as in MA and CE. There is no 
well-defined dry season and only a slightly rainy period from November 
to January. The state of Paraná (PR) has well-defined seasons (summer, 
fall, winter and spring), with humid subtropical (Cfa and Cfb) oceanic 
climates, without a dry season. Curitiba is the main city of the state, and 
the average temperature and monthly rainfall are 17.1 ◦C and 130 mm 
(climate-data website). 

The meteorological data were compiled from the National Institute 
of Meteorology stations (Instituto Nacional de Meteorologia - INMET, 
see supplementary material), which consisted of the average daily 
maximum and minimum temperature (◦C), rainfall (mm), relative 

Fig. 1. Geographical position of Brazilian states and meteorological stations.  
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humidity (%), wind speed (m s− 1) and insolation (hours), from January 
1st, 2017 to May 15th, 2020 (INMET website). As the wind speed is not 
available for all stations, it was not included in the final regression 
analysis. By the way, no statistical significance was found for this vari
able in our analysis. 

The period of investigation is from March 1st to May 15th, 2020, for 
COVID-19. For Influenza, we analyzed daily data of hospital admissions 
from 2017 to 2019, in order to have a complete view of the seasonality 
and to provide insights for COVID-19 that do not yet have a complete 
annual cycle. Besides, we also performed a regression analysis for 
Influenza for the same period of the year used for COVID-19 during the 
years of 2017–2019 to support the comparison of both diseases. Daily 
data on the number of hospital admissions by Influenza reported in the 
International Classification of Diseases (ICD) as J09-J11 were compiled 
on May 05th and 25th, 2020 from the online public Single System of 
Health Department of Informatics (DATASUS website). Influenza is 
recorded as follows: code J09 to the avian influenza virus; code J10 to 
identified influenza virus and their subtypes, and code J11 to influenza 
cases with no identified virus. The daily COVID-19 cases and deaths 
were obtained from the Brazilian Ministry of Health for all states 
(Ministry of Health website). Daily data on 2020 hospitalizations by 
influenza is not available yet at DATASUS. 

Mobility restrictions imposed by COVID-19 were implemented at 
different levels of intensity and on different dates across Brazil. The poor 
governance of the pandemic was in part due to the polemic and 
controversial speeches of the Brazilian president. The president’s speech 
against the WHO recommendations (The Lancet, 2020) forced the Fed
eral Court of Justice to determine (on April 08) that the competence to 
adopt or to maintain measures during the COVID-19 pandemic should be 
shared between the three levels of government: federal, state and 
municipal administrations. However, only the last two moved to do 
something in their own way, without any coordination or effort from the 
Ministry of Health. As a measure of the recognized effect of social 
distancing on COVID-19 dissemination, we used the Community 
Mobility Reports trends, an indicator provided by Google (Google 
covid19 website). This mobility reports show the relative percentual 
changes in the averaged categorized places concerning baseline days 
(Jan 3rd – Feb 6th, 2020), named as mobility. These data present a good 
linear correlation with a similar product provided by Apple. 

As socio-economic indicators, we used: access to clean water supply, 
the elderly fraction (≥60 years old), and the Human Development Index 
(HDI) which, in summary, is a measure of three key dimensions related 
to development: income, education and health. The number of tests 
performed was also considered in the regression analysis. The indicators 
were obtained from the Brazilian Institute of Geography and Statistics 
and the Ministry of Regional Development (IBGE and SNIS websites). 
Table 1 shows the values of these variables for each state, besides in
formation concerning the population, Case Fatality Rate (CFR), and the 
number of Intensive Care Units (ICU) available for the studied states. 

2.2. Statistical analysis 

A descriptive analysis of atmospheric variables and health data was 
performed. A Generalized Additive Model for Location, Scale and Shape 

(GAMLSS), combined with the negative binomial distribution, a distri
bution belonging to the exponential family (Hastie and Robert, 1990; 
Wedderburn, 1974; Stasinopoulos et al., 2018), were used to investigate 
the potential influence of the atmospheric and socio-economic variables 
on COVID-19 cases and Influenza hospitalizations, as well to determine 
the most important variables among those analyzed. The model sys
tematic part is given by: 

g(μi)= α+
∑6

j=1
βj
(
xji
)
+ β7HDI+ β8water +β9elderly+β10test, i=1, …, n,

where, xji are the explanatory variables from j = 1, 2, …,6; and from 
time (day) from i = 1, …,n: maximum and minimum temperatures, 
relative humidity, rainfall frequency, insolation and social distancing 
measured by mobility (only for COVID-19). Rainfall was added to the 
model as a binary variable (0 without rain, 1 with rain), since the in
terest was to observe the effect of its occurrence and not of intensity. HDI 
is the Human Development Index, water corresponds to the percentage 
of homes with access to clean water supply in the state, elderly is the 
fraction of the population aged ≥60 years, and test is the number of tests 
done per 100,000 inhabitants. These variables allowed to observe the 
scenarios between each studied Brazilian state since the socio-economic 
and population characteristics are quite variable. 

After contamination, there is a latency period of the virus in the 
organism. The incubation period for viruses is quite variable; in general, 
the interval between exposure and the onset of symptoms varies from 2 
to 7 days (Lauer et al., 2020; Lessler et al., 2009; O’Shea et al., 2019; 
Wang et al., 2020b). Therefore, for this study, lags from 0 to 7 days were 
considered. Exposure-response curves were also plotted at lag 3 (3 days 
of interval between exposure and the onset of symptoms and their 
notification in this study), using the Distributed Lag Non-linear Model 
(DLNM), with reference values centered on the median of the variable 
(Gasparrini, 2011). Finally, the values of Relative Risks (RR), at 95% 
confidence (CI), were calculated for each variable in the states. Statis
tical analyses were performed using the software R 3.6.1. 

3. Results and discussion 

3.1. Statistical analysis - COVID-19 

Fig. 2 shows the boxplot of continuous daily explanatory variables 
for the period of investigation, from March 1st to May 15th, 2020. 
Although AM recorded the two highest rainfall values, one of which over 
150 mm of rainfall, the highest average rainfall was observed in the state 
of MA. The highest temperatures were recorded in Northern and 
Northeastern states, which were also those with the highest percentage 
of relative humidity (mean above 75%). The state of PR, with the lowest 
temperatures and humidity, presented the most dispersed values for 
maximum and minimum temperatures. In terms of relative humidity, 
the greatest dispersion was observed for MA. Insolation was significantly 
higher for PR, around 8 h, which is almost the double of the average for 
the other states. 

The social distancing proposed by the local authorities reduced 

Table 1 
Variables used in the regression analysis: Socio-economic indicators (access to clean water supply, elderly fraction and HDI) and COVID-19 tests. Besides, Population; 
Case Fatality Rate (CFR) and Number of Intensive Care Units (ICU).  

States HDI Access to clean Water (%) Elderly ≥ 60 y (%) aTests/100,000 inhab. Population (2019) CFR (%) bICU/100,000 inhab. 

AM 0.733 81.1 7.3 852 4,240,210 7.2 10.6 
CE 0.735 59.0 12.0 707 9,178,363 6.6 10.9 
ES 0.772 81.2 14.1 625 4,138,657 4.2 19.4 
MA 0.687 56.4 9.4 320 7,121,156 4.6 9.6 
PR 0.792 94.4 15.1 172 11,538,518 5.6 21.2  

a State Health Secretariat reports (Brasil.io website). Note that, in general, the Health Secretariat is testing only when the patients have symptoms. 
b ICU number from public and private system (Ministry of Health website). 
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urban mobility by up to 50%, comparing with the baseline (Jan 3rd – 
Feb 6th, 2020). The reduction in mobility was not significant, but much 
worse for AM, where the adhesion to social distancing was lower and 
mobility was reduced by only 20% in the studied period. 

Although the regions are markedly different in their climates, atyp
ical weather conditions were observed in the short period of meteoro
logical data analyzed. Rainfall was above average across much of North 
and Northeastern Brazil (AM, MA, and CE). For example, Manaus had 
446.3 mm and São Luis 657.8 mm in March, which is respectively about 
50% and 80% higher than the expected rainfall for the month. On the 
other hand, the atmospheric conditions were drier and warmer across 
Southern Brazil. In the largest city of PR (Curitiba), the rainfall and 
minimum temperature in March were 13.8 mm and 16 ◦C, respectively, 
which is significantly different from expected mean values (125 mm and 
13.6 ◦C). These atypical meteorological conditions may have an influ
ence on the spread of COVID-19. 

Fig. 3 shows the curve of confirmed COVID-19 cases and deaths in 
the states. The first cases were registered in ES (March 03rd) and PR 
(March 12th), and MA was the last state to be reached by the virus on 
March 21st. A similar behavior was observed among states until around 
April 05th, with a clear change in the curve of PR from around this date. 
The curves of deaths also presented the same profile observed for the 
cases, except for ES at the first 10–12 days of the pandemic, probably 
due to. The CFR values presented in Table 1 are higher when compared 

to statistics reported to other countries (Banerjee et al., 2020; Verity 
et al., 2020). Despite the sub-notification, the number of infected people 
is lower in PR, which is the most populous of all analyzed states in this 
study. Also, PR is a neighbor of São Paulo, which is by far the state with 
the highest number of cases in Brazil (see supplementary material to 
have a complete view of data – Fig. S1). 

The RR calculated for COVID-19 cases is shown in Table 2. The 
variables that present risks to COVID-19 are in bold, as well as the most 
significant lags for the set of variables. Insolation and the rainfall fre
quency are not important variables in the set of all variables. The min
imum temperature is a risk factor only for PR, which has a subtropical 
climate. These results suggest that minimum and maximum tempera
tures in this type of climate are a risk factor for cases of COVID-19. 
Previous studies conducted in China pointed out that high tempera
ture and humidity reduce the transmission of COVID-19 (i.e., low tem
perature is a risk factor) (Ma et al., 2020; Wang et al., 2020a,b; Xie and 
Zhu, 2020). 

Unlike other studies (Mecenas et al., 2020; Sajadi et al., 2020; Wang 
et al., 2020a,b; Xie and Zhu, 2020), in Brazil, higher temperatures 
combined with humidity represented more risks for the spread of the 
virus. For Brazil, Prata et al. (2020) suggested that temperature had a 
negative linear relationship with the number of confirmed cases, while 
our results indicate an opposite relation. This means that higher tem
peratures, as observed in tropical regions, combined with high humidity, 

Fig. 2. Boxplot of atmospheric variables and mobility from March 1st to May 15th, 2020.  

Fig. 3. Prevalence of COVID-19 (number/100,000 inhabitants) cases (a) and deaths (b) for the Brazilian states.  
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can favor the transmission while, in subtropical regions, both minimum 
and maximum temperatures, together with humidity, are risk factors. 
Auler et al. (2020) found that higher mean temperatures influenced the 
COVID-19 transmission rate and intermediate relative humidity favored 
COVID-19 transmission, a result that is in agreement with this study. 
However, we analyzed a broader scope of meteorological and 
socio-economic variables. Other aspects that should be taken into 
consideration are the methods and the different periods of analysis. 

Social distancing, measured by mobility changes in this study, also 
presented a well-marked RR for all states, which corroborates the in
fluence of social distancing measures as recommended by the WHO and 
already observed for Brazil (Aquino et al., 2020; Tenório and Lan
sac-tôha, 2020; Valenti et al., 2020). The comparison of the 
exposure-response curves of mobility and RR at lag 3 is presented in 
Fig. 4. For CE, ES, MA and PR, exposure-response curves of mobility and 
RR present a similar behavior. Without any reduction in mobility (100% 
on the mobility axis of Fig. 4), the cases could be increased by 60% (RR 

1.5993, 95% CI: 1.2010–2.1551), 73% (RR 1.7301, 95% CI: 
1.2459–2.5872), 40% (RR 1.3996, 95% CI: 1.1109–1.6459), and 30% 
(RR 1.2993, 95% CI: 1.0904–1.6020), respectively, for CE, ES, MA, and 
PR. For AM, the curve shows an abrupt risk increase after 90% mobility, 
indicating the expressive importance of this variable in the number of 
cases in this state, and a potential risk increase of 140% (RR 2.4012, 95% 
CI: 1.3507–3.4819) without any reduction in mobility. In the supple
mentary material, we present the curves for each state (Fig. S2) with a CI 
of 95% that reflects the behavior of population in relation to social 
distancing in each state. 

In all states analyzed in this study, a one-week interval was observed 
between exposure and the onset of COVID-19 notifications, but shorter 
intervals, usually 3 days, were also observed. This time lag estimated 
here is in the set of variables and it is the interval between the exposure 
and the notification. The first symptoms after exposure to SARS-CoV-2 
normally occur after 2–7 days, but it can extend up to 14 days, which 
is considered the quarantine time for COVID-19 (Jiang et al., 2020; 
Lauer et al., 2020). 

Socio-economic conditions (HDI) proved to be the most important 
risk factor among the states. This suggests a difficulty for people to 
understand the importance of hygiene measures and social distancing on 
the spread of COVID-19. In addition, the index indirectly measures the 
difficulty that people have to keep social distancing due to the daily need 
to search for resources for their livelihood. Therefore, income and ed
ucation levels are the main relevant factors. 

The access to the health care system is another important factor 
related to socio-economic conditions that can also help explain the high 
number of deaths in AM, CE, and MA, the states with less ICU available 
by inhabitant (see Table 1). The fraction of elderly, one additional in
formation captured by the HDI, is also an important risk factor, as 
already noticed and documented by Health Systems around the world 
(Banerjee et al., 2020; Wang et al., 2020; Verity et al., 2020). The elderly 
are the most vulnerable group to COVID-19. 

3.2. Statistical analysis – influenza 

The statistical description of atmospheric variables from 2017 to 
2019 is presented in the supplementary material (Fig. S3). The preva
lence of Influenza hospitalizations (ICD J09-J11) is presented in Fig. 5. 
The state of MA presented the highest prevalence of Influenza. For MA 
and CE, a peak of prevalence is observed in March/April, which differs 
from PR and ES, with a peak in May/June, and AM, with a peak not 

Table 2 
Relative Risks (RR) and Confidence Interval (CI) at 95% for COVID-19 cases.   

AM 
RR (CI 95%) 

CE 
RR (CI 95%) 

ES 
RR (CI 95%) 

MA 
RR (CI 95%) 

PR 
RR (CI 95%) 

Rain 1.1376 (0.9619–1.2080) 0.9464 (0.9201–1.0688) 1.0326 (0.9668–1.0632) 0.9749 (0.9384–1.4619) 0.9803 (0.9523–1.5782) 
Tmin 0.9800 (0.9094–1.0561) 1.0244 (0.9371–1.1198) 0.9808 (0.96542–1.0000) 0.9857 (0.9151–1.0619) 1.0324 (1.0000–1.0949) 
Tmax 1.0918 (0.9121–1.3070) 1.1091 (1.0423–1.1803) 1.2192 (1.0973–1.3548) 1.1684 (1.0795–1.2645) 1.0155 (1.0120–1.0631) 
Inso 0.9564 (0.9723–1.2645) 0.9380 (0.9806–1.0911) 0.9849 (0.9771–1.0010) 0.9975 (0.9471–1.0507) 1.0742 (0.9868–1.1693) 
RH 1.0086 (1.0075–1.0313) 0.9668 (0.8874–1.0534) 1.0665 (1.0238–1.1109) 0.9760 (0.9583–0.9942) 1.0457 (1.0167–1.0756) 
Mob. 1.0221 (1.0013–1.0434) 1.0445 (1.0168–1.2264) 1.0320 (1.0111–1.0533) 1.0095 (1.0085–1.1911) 1.0357 (1.0141–1.0578) 
lag1 0.9941 (0.9927–0.9956) 0.9949 (0.9939–0.9959) 0.9944 (0.9934–0.9953) 0.9870 (0.9833–0.9908) 0.9796 (0.9698–0.9895) 
lag2 1.0005 (0.9995–1.0015) 0.9997 (0.9993–1.0000) 1.0005 (1.0000–1.0008) 1.0009 (0.9987–1.0029) 0.9979 (0.9883–1.0076) 
lag3 1.0015 (1.0007–1.0023) 1.0010 (1.0005–1.0013) 1.0007 (1.0005–1.0010) 1.0036 (1.0013–1.0060) 1.0067 (0.9951–1.0184) 
lag4 1.0017 (0.9999–1.0034) 1.0013 (1.0001–1.0026) 1.0003 (0.9993–1.0013) 1.0035 (1.0005–1.0066) 1.0119 (1.0002–1.0238) 
lag5 0.9992 (0.9982–1.0001) 0.9996 (0.9994–0.9999) 0.9997 (0.9995–1.0000) 0.9978 (0.9959–0.9997) 0.9820 (0.9725–0.9917) 
lag6 1.0018 (1.0007–1.0029) 1.0013 (1.0009–1.0017) 1.0012 (1.0009–1.0016) 1.0008 (0.9993–1.0023) 1.0162 (1.0047–1.0278) 
lag7 0.9979 (0.9965–0.9993) 0.9988 (0.9981–0.9996) 1.0004 (0.9997–1.0012) 0.9953 (0.9913–0.9993) 0.9888 (0.9785–0.9992)       

HDI 1.2492 (1.0926–1.6706) 
Elderly 1.0966 (1.0556–1.0788) 
Water 1.0151 (0.9597–1.0738) 
Tests 1.0044 (1.0030–1.0057) 

Rain = Rainfall frequency, Tmin = minimum temperature (oC); Tmax = Maximum temperature (oC); Inso. = insolation (h); RH = Relative Humidity (%); Mob = Mobility 
(%); HDI= Human Development Index; Elderly = fraction of the population aged ≥ 60 years old (%); Water = homes with access to clean water supply (%); Tests =
Number of tests performed per 100,000 inhabitants. 

Fig. 4. Exposure-response curves of mobility (%) and Relative Risks (RR) for 
states at lag 3. 
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clear. The prevalence of Influenza in Brazil is quite variable, and the 
fatality rate is 0.4/100,000 inhabitants (for 2019), according to the 
Brazilian Ministry of Health. This variation is dependent on several 
factors, including climate conditions, which show wide variations across 
Brazil. Influenza presents a well-defined seasonality (Fig. 5 and Fig. S4), 
as observed for other parts of the world. However, it is not possible to 
attribute the same association to climate, as observed in other parts of 
the world. 

Table 3 presents the Influenza RR and CI for the analyzed variables. 
As mentioned before, the wind speed was previously analyzed, and the 
results indicate that this variable is not significant. Maximum temper
ature and humidity are the main atmospheric risk factors for hospital 
admissions by influenza in all analyzed climate regimes. Besides, CE and 
ES also presented significant RR for minimum temperature and insola
tion (protective effect), while PR for rainfall frequency. 

The results do not indicate HDI as an important factor when 
comparing the states, although clean water supply is a risk factor, 
indicating that other socio-economic inequalities should be explored, 
besides those measured by HDI. An important aspect for all Brazilian 
states is the annual influenza vaccination program of the Brazilian 
Unified Health System (SUS, http://www.saude.gov.br/sistema-unico 
-de-saude), that provides free influenza vaccine for vulnerable groups 
(elderly > 60 years old, pregnant women, children under 5 years old, 
chronic patients, health workers and indigenous population). Therefore, 
the vaccine is a protective factor for the population, independently of 
income, which can explain this result for HDI. On the other hand, age is 
the most important risk factor for influenza, as demonstrated by an RR of 

1.7151 (95% CI: 1.6742–1.7574). 
The set of variables presented a pronounced RR at lag 3 for hospi

talization due to Influenza, which is in agreement with the latency time 
for the virus (Lessler et al., 2009; O’Shea et al., 2019). 

The regression analysis performed from March 1st to May 15th of 
years 2017–2019 for Influenza provide similar results of those obtained 
using the total daily data from 2017 to 2019 (Table 3), with the elderly 
as the most important factor, with significant RR for temperature and 
humidity, and no significant RR for HDI (see Table S2). The rainfall and 
minimum temperature were risk factors in AM, which is consistent with 
the year station and the annual prevalence of Influenza. 

3.3. COVID-19 versus influenza 

Comparing socio-economic characteristics, HDI showed statistical 
significance for COVID-19 and Influenza, and Amazonas was the state 
with the highest significance for this variable (see the p-value in 
Table S3). The percentage of elderly people was statistically more sig
nificant in MA for COVID-19 while, for influenza, it was PR. In the case 
of access to clean water supply, the highest statistical significance was 
observed in the state of CE for both influenza and COVID-19. The two 
states with the lowest number of tests per 100,000 inhabitants, MA and 
PR, showed higher significance (α = 0.001). 

HDI and the elderly are important factors for COVID-19 cases, while 
the elderly fraction is remarkably the main factor for Influenza in the set 
of variables and states. As previously argued, this difference may be due 
to the Influenza vaccination provided by SUS every year for vulnerable 

Fig. 5. State prevalence of daily Influenza (number of hospitalization/100,000 inhabitants) for 2017–2019. In the left panel, box plots comparing prevalence among 
states. In the right, the average annual profile for each state. 

Table 3 
Relative Risks (RR) and Confidence Interval (CI) at 95% for hospital admissions due to Influenza.   

AM 
RR (CI 95%) 

CE 
RR (CI 95%) 

ES 
RR (CI 95%) 

MA 
RR (CI 95%) 

PR 
RR (CI 95%) 

Rain 1.2417 (0.9522–1.6192) 1.1205 (0.9928–1.2646) 1.0202 (0.9179–1.1338) 1.0212 (0.9025–1.1554) 0.9795 (0.9728–0.9887) 
Tmin 1.0960 (0.9936–1.2089) 0.9613 (0.9273–0.9966) 0.9896 (0.9526–1.0281) 1.0088 (0.9988–1.0298) 0.9888 (0.9692–1.0097) 
Tmax 1.0771 (1.0154–1.1425) 1.0646 (1.0258–1.1049) 1.0461 (1.0112–1.0823) 1.0090 (1.0078–1.0254) 1.0204 (1.0028–1.0384) 
Inso 1.0257 (0.96264–1.0928) 0.9630 (0.9375–0.9893) 0.9696 (0.9502–0.9894) 1.0043 (0.9841–1.0249) 0.9974 (0.9518–1.0025) 
RH 1.0294 (1.010–1.0492) 1.0016 (1.0009–1.0115) 1.0003 (1.0001–1.0022) 1.0155 (1.0088–1.0222) 1.0013 (1.0006–1.0021) 
lag1 0.9261 (0.9823–1.0418) 0.9830 (0.9697–0.9966) 0.9906 (0.9768–1.0047) 0.9891 (0.9813–0.9970) 0.9818 (0.9722–0.9915) 
lag2 0.9838 (0.9739–0.9952) 0.9703 (0.9568–0.9840) 0.9748 (0.9609–0.9888) 0.9792 (0.9717–0.9867) 1.0136 (1.0035–1.0236) 
lag3 1.1441 (1.0492–1.2476) 1.0743 (1.0613–1.0875) 1.0894 (1.0758–1.1032) 1.0580 (1.0502–1.0659) 1.0207 (1.0109–1.0306) 
lag4 1.0657 (0.9666–1.1749) 0.9979 (0.9844–1.0115) 0.9997 (0.9858–1.0139) 0.9793 (0.9708–0.9880) 0.9958 (0.9858–1.0060) 
lag5 0.9791 (0.9688–0.9903) 0.9648 (0.9517–0.9781) 0.9607 (0.9472–0.9744) 0.9731 (0.9655–0.9808) 0.9824 (0.9727–0.9922) 
lag6 0.9879 (0.9786–0.9893) 0.9900 (0.9781–1.0021) 0.9949 (0.9822–1.0078) 0.9976 (0.9910–1.0042) 0.9854 (0.9757–0.9951) 
lag7 1.2104 (1.1071–1.3233) 0.9877 (0.9754–1.0002) 0.9908 (0.9780–1.0037) 0.9907 (0.9834–0.9982) 1.0031 (0.9935–1.0128) 
HDI 0.9657 (0.9309–1.0398) 
Elderly 1.7152 (1.6742–1.7574) 
Water 1.0170 (1.0122–1.0219) 

Rain = Rainfall frequency, Tmin = minimum temperature (oC); Tmax = Maximum temperature (oC); Inso. = insolation (hours); RH = Relative Humidity (%); Mob. =
Mobility (%); HDI= Human Development Index; Elderly = fraction of the population aged over 60 years old (%); Water = homes with access to clean water supply (%). 
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groups. As the vaccine is free and is systematically provided by SUS, the 
existing inequalities measured by HDI are not highlighted in Influenza, 
in an opposite way of what happens in the case of COVID-19, for which 
no vaccine is available yet. However, other inequalities such as access to 
clean water supply is a risk factor. 

Temperature and Humidity are factors significantly associated with 
both diseases, which suggests that seasonality may be a factor attrib
utable to both viruses. This explains the high number of cases in the 
tropical climate. 

The exposure-response curves for COVID-19 and Influenza at lag 3 
for maximum temperature and relative humidity for AM (tropical 
climate) and PR (subtropical climate) are presented in Figs. 6 and 7, 
respectively. 

Temperature presents similarities in the risks for COVID-19 (Fig. 6 a 
and b) and Influenza (Fig. 6 c and d), with a risk factor above percentile 
75th for both diseases. Humidity is also observed in having the same 
way, as can be seen on exposure-response curves for AM (Fig. 6). The 
same result is observed in the case of PR for both diseases. However, for 
humidity, these similarities in the curves are not so clear, but the risk is 
around the mean (Tables 2 and 3) and a protective factor is observed 
between 25th and 75th percentiles for influenza and 75th and 99th 
percentiles for COVID-19. Anyway, it is important to note that the 
COVID-19 period in PR presented atypical meteorological conditions 
(drier) concerning the climatology of the corresponding period. 

From the discussed results, a few similarities can be highlighted 

between Influenza and COVID-19, considering the results of regression 
analysis and exposure-response curves performed for Influenza from 
2017 to 2019, besides the results for the restricted period (March 1st to 
May 15th, 2017–2019) presented in Table S2 and Fig. S5 in the sup
plementary material. Both diseases are caused by viruses with equal 
modes of transmission and both can cause SARS and present seasonality; 
temperature and humidity are the main related atmospheric variables. 
Therefore, we believe that COVID-19 also has a similar annual cycle like 
Influenza, with tropical regions presenting a different cycle than sub
tropical regions, since the variability of temperature and humidity is 
significantly different between these regions. 

4. Conclusions 

In this study, we evaluated the influence of atmospheric and socio- 
economic conditions on the spread of COVID-19 and Influenza in trop
ical and subtropical states in Brazil. COVID-19 presented a different 
epidemiological profile in tropical and subtropical Brazilian climates. 
Seasonality showed similarities with the behavior of Influenza in pre
vious years. Despite the relevance of social distancing, indicated in this 
study by mobility, the climate had an important influence on both 
COVID-19 and Influenza suggesting that, for the tropical region (AM, 
MA, and CE), COVID-19 arrived in a favorable time. This favorable 
climate condition, identified by an abnormal rainy season that influ
enced humidity, was observed mainly in AM and MA and may have 

Fig. 6. Exposure-response curves of maximum temperature (◦C) and relative humidity (%) and their RR at lag 3 for AM (tropical climate). a) and b) for COVID-19 
cases and c) and d) for Influenza hospitalizations. Vertical lines mean the 25th, 75th, and 99th percentiles. 
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contributed to a large number of cases. On the other hand, COVID-19 
arrived in unfavorable periods and atypical meteorological conditions 
for PR state, i.e. under much drier and sunnier conditions than normal, 
with several hours of solar radiation that contributed to the control of 
COVID-19 spread in the state. 

Age is the most important risk factor for influenza, while for COVID- 
19 the HDI is the most important factor to explain the differences among 
regions in the number of COVID-19 cases followed by age and social 
distancing. 

Finally, the dataset has limitations associated with sub notifications 
of cases and deaths by COVID-19. Similar limitations can be extended to 
the social distancing measure, analyzed through the mobility changes 
since it cannot represent with accuracy how far people are staying away 
from each other. Besides, hospital admission for influenza obtained from 
SUS cannot represent the total population, as well as the data available 
for COVID-19 that is yet limited to a few months, which can influence 
the results. However, we believe that these results can be extended to 
other similar regions and call attention to the influence of socioeco
nomic inequalities on the spread of the pandemic. 
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