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A predictive index for health status using species-
level gut microbiome profiling
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Providing insight into one's health status from a gut microbiome sample is an important
clinical goal in current human microbiome research. Herein, we introduce the Gut Micro-
biome Health Index (GMHI), a biologically-interpretable mathematical formula for predicting
the likelihood of disease independent of the clinical diagnosis. GMHI is formulated upon 50
microbial species associated with healthy gut ecosystems. These species are identified
through a multi-study, integrative analysis on 4347 human stool metagenomes from 34
published studies across healthy and 12 different nonhealthy conditions, i.e., disease or
abnormal bodyweight. When demonstrated on our population-scale meta-dataset, GMHI is
the most robust and consistent predictor of disease presence (or absence) compared to o-
diversity indices. Validation on 679 samples from 9 additional studies results in a balanced
accuracy of 73.7% in distinguishing healthy from non-healthy groups. Our findings suggest
that gut taxonomic signatures can predict health status, and highlight how data sharing
efforts can provide broadly applicable discoveries.
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ecent advances in the field of human gut microbiome

research have revealed significant associations and poten-

tial mechanistic insights regarding a vast array of complex,
chronic diseases, including cancer’?, auto-immune disease3->,
and metabolic syndrome®-3. Undoubtedly, the many microbiome
studies that focused on disease contexts have been essential for
elucidating underlying pathophysiological mechanisms, and for
developing potential intervention strategies. As researchers
uncover more details regarding which gut commensals may play a
significant role in host health and disease, a promising transla-
tional application of this knowledge would be towards developing
analytical tests or quantitative methods that provide indication of
one’s health based upon a gut microbiome snapshot®-12.

The creation of algorithm-driven markers for detecting early
signs of disease prior to the occurrence of specific, diagnosable
symptoms, especially from biospecimens that can be collected
regularly and noninvasively, is an exciting avenue forward for
personalized medicine!3-16. To this end, current gut microbiome
science could play a significant role in the development of stool-
based tests for dynamically monitoring and predicting wellness.
We can even imagine a hypothetical scenario wherein one can,
through continuous monitoring, be able to detect significant
changes or abnormalities in comparison to her/his normal
baseline measurements; in turn, this will be the cue for additional
tests or lifestyle interventions. In this sense, a proof of principle of
collecting diverse longitudinal biomolecular data from human
subjects, and translating the corresponding complex datasets into
actionable possibilities, has been previously demonstrated by
Price et al.l”

Since new insights regarding the gut microbiome and human
health need to be reliable and robust across a wide range of
human subjects and conditions, population-level analyses can
serve as an important platform for the discovery of broadly
applicable principles and methodologies!8-22. Traditionally, the
collection of a substantial amount of microbiome samples (on the
order of hundreds to thousands) for large cohort investigations
has been undertaken at well-funded, major research centers and
consortiums, mainly due to the prohibitive costs and/or lack of
infrastructure for lone laboratories. However, with the recent
progress in the call for broad data sharing policies and practices??,
conducting analyses by crowdsourcing or repurposing data from
existing published studies have already begun to play important
roles in either hypothesis generation or validation in microbiome
research!24-27, As much 16s rRNA gene amplicon and shotgun
metagenomic sequencing data are now readily available from
multiple, independent studies conducted around the world,
integration by pooling these datasets would provide a promising
strategy to study health- and disease-associated signatures at large
scale, as well as to gain new, holistic insights not offered by
smaller, individual studies.

In this study, we introduce the Gut Microbiome Health Index
(GMHI), a robust index for evaluating health status (i.e., degree of
presence/absence of diagnosed disease) based on the species-level
taxonomic profile of a stool shotgun metagenome (gut micro-
biome) sample. GMHI determines the likelihood of having a
disease, independent of the clinical diagnosis; this is done so by
comparing the relative abundances of two sets of microbial spe-
cies associated with good and adverse health conditions, which
are identified from an integrated dataset of 4347 publicly avail-
able, human stool metagenomes pooled across multiple studies
encompassing various disease states. By applying GMHI to each
sample in our population-scale meta-dataset, we found that
GMHI distinguishes healthy from nonhealthy groups far better
than ecological indices (e.g., Shannon diversity and richness)
generally considered as markers for gut health and dysbiosis.

Intra-study comparisons of stool metagenomes between healthy
and nonhealthy phenotypes demonstrate that GMHI is the most
robust and consistent predictor of health. Finally, to confirm that
GMHI classification accuracy was not a result of over-fitting on
the discovery cohort, we test our approach on a validation set of
679 samples from eight additional published studies and one new
cohort (this study). We find that GMHI not only demonstrates
strong reproducibility in stratifying healthy and nonhealthy
groups, but also outperforms a-diversity indices.

Results

A meta-dataset of integrated human stool metagenomes. An
overview of our multi-study integration approach, wherein we
acquired 4347 raw shotgun stool metagenomes (2636 and 1711
metagenomes from healthy and nonhealthy individuals, respec-
tively) from 34 independently published studies, is depicted in
Fig. 1a. In this study, “healthy” subjects were defined as those who
were reported as not having any overt disease nor adverse
symptoms at the time of the original study; alternatively, “non-
healthy” subjects were defined as those who were clinically
diagnosed with a specific disease, or determined to have abnormal
bodyweight based on body mass index (BMI). Accordingly,
1711 stool metagenomes from patients across 12 different disease
or abnormal bodyweight conditions were pooled together into a
single aggregate nonhealthy group. (Our sample selection criteria
are described in “Methods.” Importantly, all metagenomes were
reprocessed uniformly, thereby removing a major nonbiological
source of variance among different studies, as previously
demonstrated?8.) A description of the studies whose human stool
metagenomes were collected and processed through our com-
putational pipeline is provided in Table 1. We note that, in order
to eventually identify features of the gut microbiome associated
exclusively with health, it is important to be disease agnostic by
considering a broad range of nonhealthy phenotypes. We provide
all subjects’ phenotype, age, sex, BMI, and other questionnaire
measures (as provided in their respective original study) in
Supplementary Data 1. Along with the additional 679 stool
metagenome samples used for validation purposes (discussed
below), this study provides the largest metagenomic (pooled)
analysis of the human gut microbiome to date, in regards to the
number of samples, phenotypes, and studies.

Importantly, we chose to integrate datasets from independent
studies for two notable advantages: (i) the expansion of sample
number could help to amplify the primary biological signal of
interest and improve statistical power2?3%; and (ii) the identified
health/disease-associated signatures could encompass a wide
range of heterogeneity across different sources and conditions
(e.g., host genetics, geography, dietary and lifestyle patterns, age,
sex, birth mode, early life exposures, medication history), thereby
helping to identify robust findings despite systematic biases from
batch effects or other confounding factors?331.

After downloading, reprocessing, and performing quality filtration
on all raw metagenomes, species-level taxonomic profiling was
carried out using the MetaPhlAn2 pipeline3? (“Methods™). Of note,
our study was mainly conducted upon species-level taxonomy
information to obtain as much precise and comprehensive
information about the gut microbiome as possible. A total of
1201 species were detected in at least one metagenome sample; after
removing viruses, and species that were rarely observed or of
unknown/unclassified identity (“Methods”), 313 species remained for
further analysis (Fig. 1b and Supplementary Data 2; a phylogenetic
tree showing the evolutionary relationships among these species is
shown in Supplementary Fig. 1). Interestingly, six species (Bacteroides
ovatus, Bacteroides uniformis, Bacteroides vulgatus, Faecalibacterium
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Fig. 1 Multi-study integration of human stool metagenomes leads to a meta-dataset of healthy and nonhealthy gut microbiomes. a Schematic overview.
A survey was conducted in PubMed and Google Scholar to search for published studies with publicly available human stool metagenome (gut microbiome)
samples from healthy and nonhealthy individuals. The initial collection of stool metagenomes consisted of 7589 samples from 55 independent studies. All
samples (.fastq files) were downloaded and reprocessed uniformly using identical bioinformatics methods. After quality control of sequenced reads,
species-level taxonomic profiling was then performed. Studies and metagenome samples were removed based on several exclusion criterias. Finally, a total
of 4347 samples (2636 and 1711 metagenomes from healthy and nonhealthy individuals, respectively) from 34 studies ranging across healthy and 12
nonhealthy phenotypes were assembled into a meta-dataset for downstream analyses. b Distribution of microbial species’ prevalence across the

4347 stool metagenome samples in the meta-dataset. After removing viruses, unknown/unclassified species-level entities, and rarely observed species
(i.e., detected <1% of all samples), 313 species remained for further analyses. ¢ Principal coordinates analysis (PCoA) ordination plot based on Bray-Curtis
distances shows that healthy (blue; n = 2636) and nonhealthy (orange; n =1711) groups have significantly different distributions of gut microbiome profiles
according to PERMANOVA (R? = 0.017, P< 0.001) after adjusting for each sample’s study origin. Each point corresponds to a sample. Ellipses correspond
to 95% confidence regions. d In an identical PCoA plot, each color represents one of the 13 different phenotypes of health or disease. Among- and within-
group dissimilarities differ only weakly (ANOSIM R =0.21, P=0.001).

prausnitzii, Ruminococcus obeum, and Ruminococcus torques) were of
high prevalence (i.e., detected in >90% of all 4347 samples).

Healthy and nonhealthy guts show species-level differences.
The overall ecology of the gut microbiome has often been asso-
ciated with host health833-35, Using species-level relative abun-
dance (i.e., proportion) profiles, we examined the differences in

gut microbial diversity between the healthy and nonhealthy
groups. First, when using principal coordinate analysis (PCoA)
ordination, we identified a significant difference between the
distributions of these two groups (permutational multivariate
analysis of variance (PERMANOVA), R?=0.02, P<0.001;
Fig. 1c). In the same PCoA plot in which the healthy and 12
nonhealthy phenotypes were presented simultaneously (Fig. 1d),
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white, non-hispanic
black, and others)

USA (non-hispanic
China

(ethnicity/raceb)

Geography

Sequencing
Illumina

platform

Total
from
Study
(n)
70

nonhealthy

Total
(n)
70

Overweight? (n) Underweight? (n)

Disease (n) Obese? (n)

CC (70)

Healthy (n)

Table 1 (continued)

Author (year)
Yu (2015)

we found only a weak difference among groups (analysis of
similarities (ANOSIM) R = 0.21, P=10.001).

Design rationale for a GMHI. We envision that the most
intuitive way to determine how closely one’s microbiome
resembles that of a healthy (or nonhealthy) population is to
quantify the balance between health-associated microbes relative
to disease-associated microbes. Therefore, we propose an index in
the form of a rational equation (and thereby yielding a dimen-
sionless quantity) between two sets of microbial species: those
that are more frequently observed in healthy compared to non-
healthy groups vs. those that are less frequently observed in
healthy compared to nonhealthy groups. Next, we use our com-
pendium of publicly available datasets, which were derived from
healthy and nonhealthy human subjects, to identify these two sets
of species. Finally, with these species, we tune the parameters of a
predefined formula, as well as evaluate its classification accuracy.
The logical rationale of each major step during the development,
demonstration, and validation of our index for predicting general
health status (i.e., presence/absence of diagnosed disease) from a
gut microbiome sample is detailed below. In addition, a step-by-
step protocol is provided in “Methods.”

Israel
France and
Germany
China

HiSeq 2000
Illumina MiSeq

Illumina
NextSeq 500

Illumina
HiSeq 2500

HiSeq 2000

lllumina

883
197
184
4347

0

155
129
7n

A prevalence-based strategy to identify health-associated
microbes. We set out to identify distinct microbial species asso-
ciated with healthy (H) and nonhealthy (N) groups. Here, we use
a prevalence-based strategy to deal with the sparse nature of
microbiome datasets. For this, we first determine py;,,, and py;
or the prevalence of microbial species m in H and N, respectively
(prevalence is defined as the proportion of samples in a given
group wherein m is considered “present,” ie., relative abun-
dance > 1.0 x 107°.) Next, for comparing the two prevalences in
H and N, we apply the following two criteria: prevalence fold
change fI'N and prevalence difference di'N, defined as ;@ and

N.m
PH.m — PNm> Tespectively. A significant effect size between the two
prevalences is considered to exist if both criteria satisfy (pre-
determined) minimum thresholds for prevalence fold change 6
and prevalence difference 6,; (how we determine the best pair of
thresholds is described below). For all detectable microbial species
that simultaneously satisfy £ > 6 and diN >0, we term these
species observed more frequently in H (than in N) as “health-
prevalent” species My. Analogously, we identify “health-scarce”
species My;, or the species observed less frequently in H (than in
N), as those that satisfy fY'H > 6y and dNH >0, where fN4 and

dNH s defined as % and P — Pum respectively. In this
regard, the species that are eventually chosen to compose My and
My are both dependent on 6 and 6. An important strength of
our prevalence-based strategy for identifying microbial associa-
tions is that it does not calculate or compare averages of mea-
surements taken from various sources, which is challenging to
justify when biological and technical heterogeneity could vary
greatly across independent studies. Rather, our approach com-
pares frequencies of a signal—on a sample-by-sample basis—
between two groups, and represents a strategy more applicable to
the context of integrating high-throughput data from different
studies. Importantly, we chose to simultaneously test two
thresholds, rather than one, in order to increase our confidence in
the robustness of My and My, as well as to overcome biases that
can occur from using only one type of threshold.

27
139 238

CA (41),
CC (95)
RA (92)
1287

883
42
55
2636

Collective abundances of two sets of microbial taxonomies.
Having a strategy to identify microbial species associated with
healthy (i.e., health-prevalent species M) and nonhealthy (i.e.,
health-scarce species My), we next couple these two species sets

ACVD atherosclerotic cardiovascular disease, CA colorectal adenoma, CC colorectal cancer, CD Crohn's disease, IGT impaired glucose tolerance, OB obesity, RA rheumatoid arthritis, SA symptomatic atherosclerosis, T2D type 2 diabetes, UC ulcerative colitis.

aReclassification of previously reported healthy samples to abnormal bodyweight condition according to reported BMI (when provided in the original study).

bAs provided in the original study.
cSamples combined from both phases of the Human Microbiome Project (HMP1 and HMP1-I1).

Zeevi (2015)
Zeller (2014)
Zhang (2015)

Total
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with a computational procedure that quantifies the presence/
absence of diagnosed disease for any gut microbiome sample. To
this end, we developed the following mathematical formula: for
species of My in sample i, their “collective abundance” v, ; is

defined as

Ry,,.i
Yu,i = = Z ‘nj,iln(nj.i)‘7 (1)
f ‘MH|]‘€]MH

where Ry ; is the richness of My species in sample i, [My| is the
set size of My, Iy, is the index set of My, and n;; is the relative
abundance of species j in sample i. In brief, y, ; is the product of
the (i) richness, that is, the numeric count of “present” taxo-
nomies, of My species; and (ii) the geometric mean of their
relative abundances. Full details on the physical meaning and
derivation of y,, ; are described in “Methods.” For the species of
My in the same sample i, their “collective abundance” y,, ; can
be defined analogously. Next, the collective abundances of species
in sets My and My in sample i are compared using the ratio of

Vi 0 Va8
Ymy,.i
hi«,MH«,MN = 10g10 <WM ' > ) (2)

My

where h; .y, denotes the degree to which sample i portrays the
collective abundance of My to that of My. More specifically, a
positive or negative h;,, ,, suggests that sample i is character-
ized more by the microbes of My or My, respectively; an h; .
of 0 indicates that there is an equal balance of both species sets.
Full details on the derivation of h;,, ,, are provided in
HAVIH N
“Methods.”

Determining health-prevalent and health-scarce species. The
minimum thresholds 6 and 6, for prevalence fold change and
prevalence difference, respectively, are used to control for the
number of health-prevalent species My and health-scarce species
Mp; species that simultaneously satisfy the two types of thresh-
olds are selected to be included in one of either group. After-
wards, My and My is provided as input features for y,, ; and

Vi, o Tespectively, and for the calculation of h;; y » which in
turn can classify stool metagenome sample i as healthy (ie.,
hip, m,>0), nonhealthy (e, h;y  <0), or neither (ie,
hip, m, = 0). Lastly, ko is tested on all 4347 stool meta-
genomes in our meta-dataset to find the balanced accuracy
X, v, that is, an average of the proportions of healthy and

nonhealthy samples that were correctly classified, or

P(hi>MHYMN>O|i € H) + P(h,-‘MH>MN<0|i €N) G)

2 )
where P(h; ;. >0]i € H) is the proportion of samples in the
healthy group (H) whose h;, , s are positive, and
P(h; 0, <0li € N) is the proportion of samples in the non-
healthy group (N) whose h; ;. s are negative.

We determine the final, optimal sets of health-prevalent and
health-scarce species (and their corresponding prevalence thresh-
olds) as those that result in the highest balanced accuracy yyi™,, .
This was done accordingly: after systematically testing across a
range of two different thresholds (every pair of 8; and 6, gives
different sets of My and My, and in turn, a different X, MN)’ we
found ™), to be 69.7% when yand 6 were set to 1.4 and 10%,

respectively (Supplementary Table 1). When applying the same
approach for abundance profiles of all other taxonomic ranks, as

Ay My =

well as of MetaCyc pathways, the highest accuracies found in
these were as follows: Phylum, 42.1%; Class, 60.1%; Order, 62.4%;
Family, 67.2%; Genus, 68.2%; and MetaCyc pathway, 59.4%
(Supplementary Table 2). As evidenced by these results,
taxonomic species shows the best classification accuracy. In
addition, performing our method in 10-fold cross-validation
using species-level abundances resulted in an accuracy of 69.6%
(Supplementary Table 3), which is nearly identical to the
balanced accuracy of 69.7% achieved by testing on the set of
samples from which the classifier was derived. Lastly, in
Supplementary Fig. 2, we show a sensitivity analysis of how the
balanced accuracy x changes with respect to the species’
prevalence thresholds 6y and 6,.

We identified 50 microbial species that satisfy both of the
aforementioned thresholds for the highest balanced accuracy;
among these 50 species, 7 and 43 comprise the health-prevalent
and health-scarce groups, respectively (Table 2). Interestingly, we
found higher relative abundance levels of health-prevalent and
health-scarce species in the healthy and nonhealthy group,
respectively (Supplementary Fig. 3). Furthermore, in Supplemen-
tary Fig. 4, we show the prevalence of these species in case (i.e.,
nonhealthy) and/or control (ie., healthy) for the 34 published
studies upon which our stool metagenome meta-dataset was
derived. Despite the heterogeneity and unevenness in prevalences
across all studies, we found that, by and large, health-prevalent
and health-scarce species were observed more frequently in the
control and case samples, respectively. We report known
associations between health-prevalent/-scarce species and
health/disease in Supplementary Data 3.

Henceforth, we term the ratio h; ), between these two
groups of 7 Health-prevalent and 43 Health-scarce species as the
GMHI. GMHI is a dimensionless metric designed to simplify the
accumulation of Health-prevalent and Health-scarce species
observed to be present in a microbiome sample. In practice,
GMHI indicates the degree to which a subject’s stool metagenome
sample portrays microbial taxonomies associated with either
healthy or nonhealthy. An additional summary of the design
process of GMHI, enumerated in three key steps, is provided in
Supplementary Note 1.

Analogous to the example mentioned above, a positive or
negative GMHI allows the sample to be classified as healthy or
nonhealthy, respectively; a GMHI of 0 indicates an equal balance
of Health-prevalent and Health-scarce species, and thereby
classified as neither. Therefore, GMHI is especially favorable in
terms of the simplicity of the decision rule and the biological
interpretation regarding the two sets of microbes involved in
classification. Importantly, our metric can be measured on a per-
sample basis, requires very little parameter tuning, and foregoes
the use of qualitative assessments, for example, “low” or “high” a-
diversity. Furthermore, we found no significant association
between library size and GMHI (mixed-effects linear regression,
P =0.45; Supplementary Fig. 5), and that, by and large, the
distributions of the index for healthy individuals do not vary
much between studies (Supplementary Fig. 6).

GMHI is associated with high-density lipoprotein cholesterol.
To see whether GMHI can encompass certain physiological fea-
tures of health, we looked for statistical associations between
GMHI and well-recognized components of physiological wellness
from clinical lab tests. More specifically, we searched for corre-
lations with GMHI and the following, as reported in their original
studies: circulating blood concentrations of fasting blood glucose
(from 785 subjects), triglycerides (from 915 subjects), total cho-
lesterol (from 521 subjects), low-density lipoprotein cholesterol
(LDLC; from 848 subjects), and high-density lipoprotein
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Table 2 Microbial species of the Health-prevalent and Health-scarce groups.

Group? Species nameP

Prevalence in healthy
samples, Py (%)

Prevalence in nonhealthy
samples, Py (%)

Difference, Py —
Py (%)

Fold change®, Py/Pyn
or Pn/Py

H+
H+
H+
H+
H+
H+

H+
H—
H—
H—
H—
H—

H—

H—
H—
H—
H—
H—
H—
H—
H—
H—
H—

H—
H—
H—
H—
H—
H—
H—
H—

H—
H—

Alistipes senegalensis
Bacteroidales bacterium ph8
Bifidobacterium adolescentis
Bifidobacterium angulatum
Bifidobacterium catenulatum
Lachnospiraceae
bacterium 8_1_57FAA
Sutterella wadsworthensis
Anaerotruncus colihominis
Atopobium parvulum
Bifidobacterium dentium
Blautia producta
Candidatus
Saccharibacteria TM7c
Clostridiales

bacterium 1_7_47FAA
Clostridium asparagiforme
Clostridium bolteae
Clostridium citroniae
Clostridium clostridioforme
Clostridium hathewayi
Clostridium nexile
Clostridium ramosum
Clostridium symbiosum
Eggerthella lenta
Erysipelotrichaceae
bacterium 2_2_44A
Flavonifractor plautii
Fusobacterium nucleatum
Gemella morbillorum
Gemella sanguinis
Granulicatella adiacens
Holdemania filiformis
Klebsiella pneumoniae
Lachnospiraceae
bacterium 1_4_56FAA
Lachnospiraceae
bacterium 2_1_58FAA
Lachnospiraceae
bacterium 3_1_57FAA_CT1
Lachnospiraceae
bacterium 5_1_57FAA
Lachnospiraceae
bacterium 9_1_43BFAA
Lactobacillus salivarius
Peptostreptococcus stomatis
Ruminococcaceae
bacterium D16
Ruminococcus gnavus
Solobacterium moorei
Streptococcus anginosus
Streptococcus australis
Streptococcus gordonii
Streptococcus infantis
Streptococcus mitis/oralis/
pneumoniae

Streptococcus sanguinis
Streptococcus vestibularis
Subdoligranulum sp.

4_3 54A2FAA
Subdoligranulum variabile
Veillonella atypica

58.5
731
68.2
1.9
30.8
44.8

481

231
23
6.6
5.0
1.9

16.2

20.8
345
239

9.8
26.9
143
10.8
209
18.9
18.5

349
22
14
5.9
3.4
36.9
17.4
18.1

336
18.3
6.9
55

3.8
19
16.4

41.8

7.4
10.8
26.9

6.7
12.5
12.3

4.4
16.2
5.9

6.9
225

399
514
46.4
15
135
26.9

26.2
37.4
12.7
16.7
15.6
13.2

40.0

44.1
69.7
50.4
26.1
56.1
317
319
475
37.4
334

56.5
12.3
1.7
21.0
214
573
343
38.0

47.1

359

18.9

16.2

143
13.7
31.3

68.0
322
30.2
42.0
226
28.2
329

319
30.7
16.7

17.3
345

18.5
21.8
219
10.4
17.3
17.9

21.8
—14.3
-10.4
-101
-10.6
-1n.3

-23.8

-23.3
-35.3
-26.5
-16.4
-29.2
-17.4
=211

-26.6
-18.5
-14.9

-21.6
-10.1
-10.3
-15.2
-18.0
-20.4
-16.9
-19.9

-13.5

-17.7

-12.0

-10.7

-10.5
-1.8
-15.0

-26.2
-24.8
-19.4
-15.0
-15.9
-15.8
-20.6

-17.5
-14.5
-10.8

-10.4
-12.0

1.5
14
1.5
7.8
2.3
17

1.8
1.6
5.6
25
31

6.8

25

21

2.0
21

27
21

22
3.0
23
2.0
1.8

1.6
57
8.1
3.6
6.3
1.6
2.0
21

14

2.0

27

3.0

3.7
7.4
1.9

1.6
4.4
2.8

1.6
3.4
23
27

22
1.9
2.8

25
15

3H+ Health-prevalent species, H— Health-scarce species.
bAccording to the species-level taxonomies designated by MetaPhlAn2.
CRatio of larger value to smaller value.
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Fig. 2 GMHI is associated with high-density lipoprotein cholesterol (HDLC). a GMHI shows a moderately positive correlation with HDLC (Spearman’s
p=0.34,95% Cl: [0.28, 0.40], P=7.19 x 10-24), which is a key parameter of cardiovascular health, in 841 subjects. b Significantly higher abundances of
HDLC were observed in subjects with positive GMHI compared to those with negative GMHI (two-sided Mann-Whitney U test, P=1.22 x 10-16). d Cliff's
Delta. The sample size of each group, whose subjects’ HDLC records were available in the original studies, is shown within parentheses. Standard box-and-
whisker plots (e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5 interquartile range; circles, outliers) are used to depict groups

of numerical data.

cholesterol (HDLC; from 841 subjects). Of note, self-reported
well-being, treatment regimens, and other questionnaire data
were either not provided at all or too sparsely collected to have
any practical or statistical significance. When selecting for mod-
erate correlations or better, that is, |Spearman’s p|20.3 (P<
0.001), we identified HDLC as the only feature that was sig-
nificantly associated with GMHI (p=0.34, 95% confidence
interval (CI): [0.28, 0.40], P=7.19 x 10~2%; Fig. 2a). In addition,
we identified significantly higher abundances of HDLC in subjects
with positive GMHI compared to those with negative GMHI
(Mann-Whitney U test, P=1.22 x 10~16; Fig. 2b). This moder-
ately positive correlation is encouraging for linking GMHI to
actual health, as HDLC in the bloodstream is commonly con-
sidered as “good” cholesterol, and could be protective against
heart attack and stroke, according to the American Heart Asso-
ciation. In relevance to this point, a recent study by Kenny et al.3
showed that cholesterol metabolism by gut microbes can influ-
ence serum cholesterol concentrations, and may thereby impact
cardiovascular health. Overall, our finding demonstrates the
importance of integrating clinical data with gut microbiome, and
also hints at the possibility of GMHI serving as an effective and
reliable predictor of cardiovascular health. In contrast, fasting
blood glucose (p=—0.06, 95% CI: [—0.12, 0.01]), triglycerides
(p=—0.13, 95% CI: [—0.19, —0.06]), total cholesterol (p = 0.15,
95% CI: [0.06, 0.23]), LDLC (p = 0.09, 95% CI: [0.03, 0.16]), and
even age (p=0.04, 95% CI: [—0.01, 0.08]) were noted to have
only weak or no meaningful correlations with GMHIL

Species-level GMHI stratifies healthy and nonhealthy groups.
We calculated GMHI for each stool metagenome in our meta-
dataset of 4347 samples to investigate whether the distributions
of GMHI differ between healthy and nonhealthy groups. We
found that the gut microbiomes in healthy have significantly
higher GMHIs in comparison to gut microbiomes in non-
healthy (Mann-Whitney U test, P = 5.06 x 10~212; Cliff's Delta
effect size = 0.56; Fig. 3a). (Of note, Cliff’s Delta (d) is a non-
parametric effect-size measure that quantifies how often one
value in one distribution is higher than the values in the second
distribution; it is a difference between probabilities, and thus
ranges from —1 to +1.) By definition of GMHI, this result
reflects the dominant influence of Health-prevalent species over
Health-scarce species in the healthy group, and vice versa in the
nonhealthy group.

Next, to further identify differences between healthy and
nonhealthy groups, we examined multiple measures of ecological
characteristics that can be defined on a per-sample basis. For a-
diversity based on the Shannon index, we found significantly
higher values in healthy than in nonhealthy (Mann-Whitney U
test, P=8.50 x 10~% Cliff's Delta = 0.10; Fig. 3b). In agreement
with our results, previous investigations have also reported higher
diversity in the gut microbiomes of healthy controls than in those
of disease patients3’-3. In addition, we found that the minimum
number of species required to comprise at least 80% of the
sample’s relative abundance (henceforth called “80% abundance
coverage”) was significantly higher in healthy compared to
nonhealthy (Mann-Whitney U test, P=2.30x 10713 Cliffs
Delta =0.13; Fig. 3c). This concept, as demonstrated similarly
by Kraal et al.#0, has been adopted in previous studies to estimate
the membership of core microbiomes*!42. Finally, species
richness, which is defined as the observed number of different
species, was found to be significantly lower in healthy compared
to nonhealthy (Mann-Whitney U test, P=2.30 x 1074%; Cliff’s
Delta = —0.26; Fig. 3d).

Finally, we investigated for differences in GMHI and in these
ecological characteristics between healthy and each of the 12
phenotypes of the nonhealthy group. At the individual phenotype
level, the healthy group showed significantly higher GMHI levels in
all but 1 (symptomatic atherosclerosis) of the 12 different disease
or abnormal bodyweight conditions (Mann-Whitney U test, P <
0.001; Fig. 3e). For Shannon diversity and 80% abundance
coverage, we found that only 3 (CD, obesity, and type 2 diabetes)
of the 12 nonhealthy phenotypes showed statistically significant
differences (Fig. 3f, g); both properties were higher in healthy for all
three comparisons. For richness, we found that 8 of the 12
nonhealthy phenotypes were significantly different compared to
healthy (Fig. 3h): seven of these eight were of higher richness,
whereas one (CD) was of lower richness. Taken together, our
results suggest that: (i) healthy and nonhealthy gut microbiomes
show distinct ecological characteristics; (ii) GMHI embodies a gut
microbiome signature of wellness that is generalizable against
various nonhealthy phenotypes; and (iii) GMHI can distinguish
healthy from nonhealthy individuals more reliably than Shannon
diversity, 80% abundance coverage, and richness.

Group proportions and Shannon diversity with respect to
GMHLI. For increasingly higher (more positive) and lower (more
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negative) values of GMHI, we observed an increasing proportion
of samples from healthy and nonhealthy groups, respectively
(Fig. 4a). For example, 98.2% (165 of 168) of metagenome sam-
ples with GMHIs >4.0 were from the healthy group; and 81.2%
(164 of 202) of metagenome samples with GMHIs <—4.0 were
of nonhealthy origin. In addition, the top 10 to 100 healthy
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and nonhealthy stool metagenome groups (selected based on
their GMHIs) clearly clustered apart from each other in
PCoA ordination (Supplementary Fig. 7), in stark contrast to the
case when all samples were projected simultaneously (Fig. 1c).
These observations confirm that very high (or low) collective
abundance of Health-prevalent species relative to that of
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Fig. 3 Comparisons among GMHI and other ecological metrics in stratifying healthy from nonhealthy phenotypes. a-d Significantly higher distributions
of GMHI (P =5.06 x 10~212), Shannon diversity (P = 8.50 x 10~9), and 80% abundance coverage (P = 2.30 x 10~12) were observed in gut microbiomes of
healthy than in those of nonhealthy individuals, whereas higher species richness (P = 2.30 x 10~46) was observed in nonhealthy gut microbiomes. The
strongest effect size (Cliff's Delta, d) was seen with GMHI. e-h The healthy group was found to have a significantly higher distribution of GMHIs than all
but one (SA) of the 12 nonhealthy phenotypes. For Shannon diversity and 80% abundance coverage, only three nonhealthy phenotypes (CD, OB, and T2D)
were found to have significantly different distributions compared to healthy; both properties were higher in healthy than in CD, OB, and T2D. For species
richness, 7 (ACVD, CA, CC, OB, OW, RA, and T2D) of the 12 nonhealthy phenotypes were observed to have significantly higher richness than healthy; in
contrast, only CD showed significantly lower richness compared to healthy. All P values shown above the violin plots were found using the two-sided
Mann-Whitney U test. *P < 0.001 in two-sided Mann-Whitney U test; n.s., not significant. The sample size of each group is shown within parentheses.
ACVD atherosclerotic cardiovascular disease, CA colorectal adenoma, CC colorectal cancer, CD Crohn’s disease, IGT impaired glucose tolerance, OB
obesity, OW overweight, RA rheumatoid arthritis, SA symptomatic atherosclerosis, T2D type 2 diabetes, UC ulcerative colitis, UW underweight. Standard
box-and-whisker plots (e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; circles, outliers) are used to depict
groups of numerical data.

a b —
200
100 {|E Healthy °
Nonhealthy 7 [] 0
] #of binned o __ 5.0 | Heatthy -
samples I Nonh.ealt'hy 51-

s 8 o - 600 3 S

8 ] Z X 25{

5 3 8 .

£ 60 g k= »

I ° @ = .

- ] 400 o =

g o 14 [} 04 *

S 40 3 ﬁ

5 o—o ¢ S g

S 7] kel
]

< L -2.5 1

o oo o 200 S
=
=] p=0.17

0 O 50 p-17x 10
GMHI<-4 -3 2 -1 0 1 2 3 4 6 1 2 3 0 200
andGMHI>-6 4 -3 -2 -1 0 1 2 3 4

Shannon diversity
GMHI bins

Fig. 4 Changes in group proportions and in Shannon diversity with respect to GMHI. a All 4347 metagenomes were binned according to their GMHI
values (x-axis). Each gray bar indicates the total number of samples in each bin (y-axis, right). Points indicate proportions (i.e., percentages) of samples in
each bin corresponding to either healthy or nonhealthy individuals (y-axis, left). In bins with a positive range of GMHIs, the majority of samples classified as
healthy; in contrast, samples in bins with a negative range of GMHIs mostly classified as nonhealthy. This trend was more pronounced towards bins on the
far right and left. b GMHI stratifies healthy (n =2636) and nonhealthy (n =1711) groups more strongly compared to Shannon diversity. Each point in the
scatter-plot corresponds to a metagenome sample (4347 in total). Histograms show the distribution of healthy (blue) and nonhealthy (orange) samples
based on the parameter of each axis. In general, GMHI and Shannon diversity demonstrate a weak correlation (Spearman's p = 0.17, 95% ClI: [0.14, 0.19],
P=1.7%10-28). The P value (Ho: p = 0) was determined by using a t-distribution with n — 2 degrees of freedom, where n is the total number of
observations.

Health-scarce species is strongly connected to being healthy (or metagenome samples from both case (i.e., disease or abnormal
nonhealthy). bodyweight conditions) and control (i.e., healthy) subjects were
GMHI and Shannon diversity were compared for each sample available, we compared GMHI, Shannon diversity, 80% abun-
to examine their overall concordance. As shown in Fig. 4b, GMHI  dance coverage, and species richness between healthy and non-
clearly performed much better in stratifying the healthy and healthy phenotype(s). By focusing on datasets from individual
nonhealthy groups compared to Shannon diversity. A small yet studies one by one, this approach not only removes a major
significant relationship was found between our metric and this source of batch effects, but also provides a good means to
conventional measure of gut health (Spearman’s p =0.17,95% CI:  investigate the robustness of our previously observed trends
[0.14, 0.19], P=1.66 x 10728). In addition, similar results were (when healthy and nonhealthy samples were compared against
seen when GMHI was compared with 80% abundance coverage each other in aggregate groups) across multiple, smaller studies.
(Spearman’s p =0.22, 95% CI: [0.19, 0.25], P = 8.48 x 10~48) and We found that GMHI in healthy was significantly higher than
with richness (Spearman’s p=—0.27, 95% CI: [—0.30, —0.24], that in any nonhealthy phenotype for 11 out of 28 case-control
P =427 x10"74) (Supplementary Fig. 8). comparisons (Fig. 5a). For Shannon diversity and 80% abundance
coverage, we found significantly higher values in healthy than in

nonhealthy phenotypes for two and four case-control compar-

Intra-study analyses favor GMHI over other ecology metrics. isons, respectively (Fig. 5b, c). Last, we found species richness in
We next examined how well GMHI and other features of healthy to be significantly lower than that in nonhealthy
microbial ecology (i.e., Shannon diversity, 80% abundance cov- phenotypes for three case-control comparisons (Fig. 5d). Clearly,
erage, and species richness) could distinguish healthy and non- the performance of GMHI was not perfect (and likewise for
healthy phenotypes within individual studies. Specifically, in each ~ other ecological characteristics), as the expected trend from the
of the 12 studies (out of 34 total) wherein at least 10 stool prior pooled analysis was not replicable for all case-control
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Fig. 5 GMHI generally outperforms other microbiome ecological characteristics in distinguishing case and control across multiple study-specific
comparisons. In each of the 12 studies wherein at least 10 case (i.e., disease or abnormal bodyweight conditions) and at least 10 control (i.e., healthy) subjects
were available, stool metagenomes were analyzed to compare a GMHI, b Shannon diversity, € 80% abundance coverage, and d species richness between
healthy and nonhealthy phenotype(s). GMHI was found to have a significantly higher distribution in healthy for 11 (out of 28) case-control comparisons across
nine different studies; Shannon diversity and 80% abundance coverage were found to have significantly higher distributions in healthy for two and four
case-control comparisons (across two and four studies), respectively; and species richness was found to have a significantly lower distributions in healthy for
three case-control comparisons across three different studies. Each study’s phenotype sample size is shown within parentheses to the right of the phenotype
abbreviation. Standard box-and-whisker plots (e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
samples) are used to depict groups of numerical data. The same colors in boxplots were used for the same phenotypes. P values (two-sided Mann-Whitney
U test) for each study-specific comparison between healthy and nonhealthy phenotypes are shown adjacent to the boxplots accordingly: * and ¥ indicates
significantly different distributions consistent with, and opposite to, respectively, the previously observed results when healthy and nonhealthy groups were
compared in aggregate. * or ¥0.01 < P value < 0.05; ** or ¥*¥0.001 < P value < 0.07; *** or ¥¥¥0.0001 < P value < 0.001; **** or *¥¥¥P value < 0.0001. ACVD
atherosclerotic cardiovascular disease, CA colorectal adenoma, CC colorectal cancer, CD Crohn's disease, IGT impaired glucose tolerance, OB obesity, OW

overweight, RA rheumatoid arthritis, SA symptomatic atherosclerosis, T2D type 2 diabetes, UC ulcerative colitis, UW underweight.

comparisons within every study; overall though, GMHI strongly
outperformed other microbiome ecological characteristics in
distinguishing case and control.

Analogous to the analysis above (wherein healthy was compared
to each separate nonhealthy phenotype within individual studies),
we compared healthy against a general nonhealthy phenotype, in
which all disease samples were lumped together, when applicable.
Importantly, comparisons were still made within individual studies.
We found that there were statistically significant differences in
GMHI between cases and controls (Mann-Whitney U test, P < 0.05;
Supplementary Table 4) in 6 of the 12 studies. In contrast, we found
statistically significant differences in Shannon diversity, 80%
abundance coverage, and richness between cases and controls in
two, three, and three (of 12) studies, respectively.

Validation of GMHI reproducibility on independent cohorts.
Evaluation of any biomarker or molecular signature on inde-
pendent patient samples is the gold standard for assessing its
robustness!®. To confirm the reproducibility of our prediction
results in stratifying healthy and nonhealthy phenotypes (Fig. 3),
we leveraged GMHI to predict the health status of 679 individuals
whose stool metagenome samples were not part of the original
formulation of GMHI. For this, we used gut microbiome data
from an additional eight published studies (Supplementary
Table 5), which include stool metagenomes from healthy subjects
and patients with ankylosing spondylitis (AS), colorectal ade-
noma, colorectal cancer, Crohn’s disease (CD), liver cirrhosis
(LC), and nonalcoholic fatty liver disease (NAFLD). In addition,
we utilized our extensive biobank of stool collections to gather
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Fig. 6 GMHI demonstrates strong reproducibility on an independent validation cohort. The validation cohort (679 stool metagenome samples)
consisted of 12 total sub-cohorts ranging across eight healthy and nonhealthy phenotypes from nine different studies. a GMH]Is from stool metagenomes of
the healthy group were significantly higher than those of the nonhealthy group (two-sided Mann-Whitney U test, P = 3.49 x 10—28). d Cliff's Delta. b All
three healthy sub-cohorts (H', H2, and H3) were found to have significantly higher distributions of GMHI than seven (of nine) nonhealthy sub-cohorts
(AS4, CcC>! ccd, CDS, LC7, NAFLDS, and RA®). No significant differences were found among H', H2, and H3. The number in superscript adjacent to
phenotype abbreviations corresponds to a particular study used in validation (see Supplementary Table 5 for study information). Standard box-and-whisker
plots (e.g., center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, samples) are used to depict groups of
numerical data. *Significantly higher distribution in healthy sub-cohort (two-sided Mann-Whitney U test, P < 0.01). The number adjacent to * indicates the
healthy sub-cohort (H', H2, or H3) to which the respective sub-cohort was compared. The sample size of each group or cohort is shown within
parentheses. AS ankylosing spondylitis, CA colorectal adenoma, CC colorectal cancer, CD Crohn's disease, H healthy, LC liver cirrhosis, NAFLD,

nonalcoholic fatty liver disease, RA rheumatoid arthritis.

our own set of samples from patients with rheumatoid arthritis
(RA) (“Methods™; see Supplementary Data 4 for subject meta-
data relating to both clinical and nonclinical factors). All meta-
genome samples in this validation dataset were pooled into one of
two groups (i.e., healthy or nonhealthy), as demonstrated above.

In agreement with our results on the discovery cohort (training
data), GMHIs from stool metagenomes of the healthy validation
group (n=118) were significantly higher than those of the
nonhealthy validation group (n=>561) (Mann-Whitney U test,
P=3.49 x 10728 Cliff's Delta =0.64; Fig. 6a). In addition, the
balanced accuracy resulted in 73.7%, as the classification accuracy
for the healthy and nonhealthy validation group was 77.1% (91 of
118) and 70.2% (394 of 561), respectively. Notably, these results
were better than the performances on the discovery cohort,
wherein balanced accuracy was 69.7%, and accuracy on the
healthy and nonhealthy group was 75.6% (1993 of 2636) and
63.8% (1092 of 1711), respectively.

Of note, we also compared the classification accuracy of GMHI to
those of classifiers based upon the Health-prevalent species and
Shannon diversity (see Supplementary Methods), and to that of a
more intricate classification algorithm (Random Forests). In regards
to balanced accuracies on the training data, the classifiers based
upon Health-prevalent species (y = 66.3%) and Shannon diversity
(y =53.6%) performed comparable to, or much worse than, GMHI
(y=69.7%); furthermore, balanced accuracy on the independent
validation dataset for Health-prevalent species and Shannon
diversity resulted in 59.3 and 47.0%, respectively (Supplementary
Tables 6 and 7, respectively). On the other hand, the Random
Forests classifier (“Methods”) achieved a remarkable accuracy on the
training data (y = 98.5%). However, building complex decision rules
entails the risk of over-fitting. Surely enough, this nearly perfect
accuracy was mostly in part a result of outstanding over-fitting,
evidenced by the poor accuracy of 52.3% (balanced accuracy) on the
679 samples of the validation cohort. In Supplementary Table 8, we
provide a summary of all accuracies for classifying healthy vs.
nonhealthy by the various classifiers reported in this study.

To investigate GMHI performances on the validation cohort
more closely, we examined the 12 total sub-cohorts (defined per
unique phenotype per individual study) ranging across eight
healthy and nonhealthy phenotypes from eight additional
published studies and one newly sequenced batch. As shown in
Fig. 6b, all three healthy sub-cohorts were found to have
significantly higher distributions of GMHI than seven (of nine)
nonhealthy phenotype sub-cohorts (Mann-Whitney U test, P <
0.01; see Supplementary Table 9 for Cliffs Deltas). The
classification accuracies for these three healthy sub-cohorts were
87.5% (28 of 32), 74.1% (43 of 58), and 71.4% (20 of 28);
alternatively, the classification accuracies for the nonhealthy
phenotype sub-cohorts were the following: 94.5% (155 of 164) for
LC; 75.6% (65 of 86) for NAFLD; 73.3% (11 of 15) for CD; 67.3%
(33 of 49) for RA; 55.7% (54 of 97) for AS; 37.0% (10 of 27) for
CA; and 77.5% (31 of 40), 47.5% (29 of 61), and 27.3% (6 of 22)
for three different cohorts of CC. Strikingly, GMHI performed
well (>75.0%) in predicting adverse health for LC and NAFLD,
although stool metagenomes from patients with liver disease
were not part of the original discovery cohort. This finding
suggests that GMHI could be applied beyond the original 12
phenotypes (of the nonhealthy group) used during the index
training process. Overall, the strong reproducibility of GMHI
implies that the highly diverse and complex features of gut
microbiome dysbiosis implicated in pathogenesis were reasonably
well captured during the dataset integration and original
formulation of GMHI. Thereby, our results support previous
findings by Duvallet et al.?® in regards to the presence of a
generalized disease-associated gut microbial signature, which was
observed to be shared across multiple studies and pathologies.
Finally, from similar analyses for Shannon diversity, 80%
abundance coverage, and species richness on the validation
cohort, we were able to conclude that GMHI is the most accurate,
robust, and clinically meaningful classifier compared to these
other ecological characteristics (Supplementary Note 2 and
Supplementary Fig. 9).
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Discussion

In this study, we present the GMHI, a simple and biologically
interpretable metric to quantify the likelihood of disease presence
from a gut microbiome sample. At first, we envisioned that the
most intuitive way to determine how closely one’s microbiome
resembles that of a healthy (or nonhealthy) population is to
compare the collective abundances of Health-prevalent and of
Health-scarce species. By pooling massive amounts of publicly
available data (4347 publicly available, shotgun metagenomic data
of gut microbiomes from 34 published studies), we identified a
small consortium of 50 microbial species associated with human
health to serve as features for our classification model: 7 and
43 species were prevalent and scarce, respectively, in the healthy
group compared to the nonhealthy group. In regards to classifi-
cation accuracy, GMHI distinguished healthy from nonhealthy
(as well as from individual diseases) far better than methods
adopted from ecological principles (e.g., a-diversity indices),
thereby paving a path forward to evaluate human (gut micro-
biome) health through stool metagenomic profiling. Notably, this
framework can be applied to other body niches, for example,
quantifying health in skin or oral microbiomes. When demon-
strating the potential of GMHI on independent validation data-
sets, we obtained strong prediction results for healthy individuals,
and for cohorts with autoimmunity and liver disease. The strong
reproducibility on validation datasets suggests that sufficient
dataset integration across a large population could lead to robust
predictors of health. This may be due, in part, to the signature
encompassing more of the heterogeneity across various sources
and conditions, while amplifying signal (against noise) from the
repeated phenotype characteristics.

Despite the strong reproducibility in classification accuracy
demonstrated on the validation datasets, more is left to be desired
in regards to achieving higher accuracies. We conjecture that
misclassifications were partly because of the complex#3-45,
stochastic*®47, and highly personalized!®4® nature of gut
microbiome ecologies; all of which complicate the identification
of reliable signatures of health. In addition, sample collection and
processing procedures, laboratory personnel, study run-dates,
measurement instruments, and so forth are tremendously chal-
lenging to control in population-scale investigations. In the long
term, in order to find even more accurate gut microbiome-based
markers, we envision integrating larger data repositories to take
into consideration a higher number of samples and sources of
heterogeneity.

Several limitations of our study should be noted when inter-
preting our results. First, as the stool metagenomes were collected
from over 40 published studies, we cannot entirely exclude
experimental and technical inter-study batch effects. Our efforts
to curtail batch effects include: (i) consensus preprocessing, that
is, downloading all raw shotgun metagenomes and reprocessing
each sample uniformly using identical bioinformatics methods;
(ii) using frequencies of a signal (ie., prevalence of “present”
microbes) to identify significant associations, rather than com-
paring or averaging effect sizes between populations, or per-
forming data transformations that may lead to spurious
conclusions*’; and (iii) validating the reproducibility of GMHI on
independent datasets. Second, given our selection criteria
(“Methods”), our study does not include all publicly available gut
microbiome studies and samples. Certainly, more studies and
samples can be taken into consideration under more relaxed
criteria. Third, in an effort to be as precise as possible in
describing taxonomic features of the human gut, our metage-
nomic analyses were performed using species-level abundances;
however, microbial strains are clearly the most clinically infor-
mative and actionable unit°%>!. Moreover, different strains within
the same species can have significantly different associations with

disease®?=>>, which could not be considered in our study.
Nevertheless, our shotgun metagenomic approach is a significant
advancement over 16s rRNA gene amplicon sequencing, which
are known to be mostly limited to genus-level investigations®®>7.
Fourth, in the nonhealthy group, we pooled samples from only 12
phenotypes. Certainly, many more pathological states have been
linked to the gut microbiome, including neurodegenerative and
psychiatric disorders®®-0, Thus, future studies will need to con-
tinuously update and expand our findings by encompassing a
much broader range of conditions as new data become available.
Fifth, we did not consider metagenomic functional profiles to
define gut ecosystem health as demonstrated extensively by
others27:01-63  ag this too was outside the scope of our study. For
microbiomes of any phenotype of interest, we posit that analyzing
both taxonomic composition and functional potential are both
important and complementary directions. Last, while we defi-
nitely tried to be as inclusive as possible of various geographies,
ethnicities/races, and cultures, we do acknowledge that complete
elimination of biases is practically impossible. Certainly, for
future works, we plan to iteratively expand our application to
encompass broader ranges of subjects, including those from
underdeveloped countries and minority ethnicities/races, to better
understand microbiome diversity and foster inclusion in micro-
biome research®.

Methods

Multi-study integration of human stool metagenomes. We performed
exhaustive keyword searches (e.g., “gut microbiome,” “metagenome,” “whole-
genome shotgun (WGS)”) in PubMed and Google Scholar for published studies
with publicly available WGS metagenome data of human stool (gut microbiome)
and corresponding subject meta-data (as of March 2018). In studies wherein
multiple samples were taken per individual across different time-points, we
included only the first or baseline sample in the original study. We excluded studies
pertaining to diet or medication interventions, or those with fewer than 10 samples.
Samples from subjects who were <10 years of age were also excluded from our
analysis. Last, samples that were collected from disease controls, but were not
reported as healthy nor had any mentioning of diagnosed disease in the original
study, were excluded from our analysis. Raw sequence files (.fastq) were down-
loaded from the NCBI Sequence Read Archive and European Nucleotide Archive
databases (Supplementary Data 1) for the study analysis.

Reclassification of healthy samples based on reported BMI. Healthy indivi-
duals, regardless of whether they had been determined as healthy in the original
studies, were considered to be part of the nonhealthy group if their reported BMI
fell within the range of underweight (BMI < 18.5), overweight (BMI > 25 and <30),
or obese (BMI 2 30). Stool metagenome samples from such individuals were
reclassified as underweight, overweight, or obese in our analysis.

Quality control of sequenced reads. Sequence reads were processed with the
KneadData v0.5.1 quality-control pipeline (http://huttenhower.sph.harvard.edu/
kneaddata), which uses Trimmomatic v0.36 and Bowtie2 v0.1 for removal of low-
quality read bases and human reads, respectively. Trimmomatic v0.36 was run with
parameters SLIDINGWINDOW:4:30, and Phred quality scores were thresholded at
“<30.” Illumina adapter sequences were removed, and trimmed nonhuman reads
shorter than 60 bp in nucleotide length were discarded. Potential human con-
tamination was filtered by removing reads that aligned to the human genome
(reference genome hgl19). Furthermore, stool metagenome samples of low read
count after quality filtration (<1M reads) were excluded from our analysis.

Species-level taxonomic profiling. Taxonomic profiling was done using the
MetaPhlAn2 v2.7.0 phylogenetic clade identification pipeline? using default
parameters. Briefly, MetaPhlAn2 classifies metagenomic reads to taxonomies based
on a database (mpa_v20_m200) of clade-specific marker genes derived from
~17,000 microbial genomes (corresponding to ~13,500 bacterial and archaeal,
~3500 viral, and ~110 eukaryotic species).

Sample filtering based on taxonomic profiles. After taxonomic profiling, the
following stool metagenome samples were discarded from our analysis: (i) samples
composed of >5% unclassified taxonomies (100 samples); and (ii) phenotypic outliers
according to a dissimilarity measure. More specifically, Bray-Curtis distances were
calculated between each sample of a particular phenotype and a hypothetical sample
in which the species’ abundances were taken from the medians across those samples.
A sample was considered as an outlier, and thereby removed from further analysis,
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when its dissimilarity exceeded the upper and inner fence (i.e, >1.5 times outside the
interquartile range above the upper quartile and below the lower quartile) among all
dissimilarities. This process removed 67 metagenome samples.

Species removal based on taxonomic profiles. As taxonomic assignment based
on clade-specific marker genes may be problematic for viruses®>%, we excluded the
298 of viral origin from our analysis. Species that were labeled as either unclassified
or unknown (118 species), or those of low prevalence (i.e., observed in <1% of the
samples included in our meta-dataset; 472 species), were also excluded. Eventually,
313 microbial species across 4347 stool metagenome samples remained in our
study for further analysis (Supplementary Data 2).

PCoA based on taxonomic profiles. The R packages “ade4” v1.7-15 and “vegan”
v2.5.6 were used to perform PCoA ordination with Bray-Curtis dissimilarity as the
distance measure on the stool metagenome samples, which were comprised of
arcsine square root-transformed relative abundances of the aforementioned 313
microbial species identified by MetaPhlAn2. 999 permutations (“adonis2” function
in the R “vegan” package v2.5.6) were performed, while random permutations were
constrained within studies by using the “strata” option.

Calculation of microbiome ecological characteristics. The R package “vegan”
v2.5.6 was used to calculate Shannon diversity (Shannon index) and species rich-
ness based on the species abundance profiles for each sample of our meta-dataset.
To identify the 80% abundance coverage for a stool metagenome sample, the
smallest number of microbial species that comprise at least 80% of the total relative
abundance was identified.

Identifying microbial species more frequently observed in healthy than in
nonhealthy (and vice versa):

(a) Let py,, and pn,, be the prevalence of microbial species m, that is,
proportion of samples in a given group where m is “present” (or relative
abundance >1.0 x 1072), in the healthy group H and nonhealthy group N,
respectively. Remark: The relative abundances for all detectable species in a
microbiome (metagenome) sample sums to 1.

(b) For m, the prevalence fold change f!N and prevalence difference d:'N,
defined as 22 and PHm — PNom> respectlvely, is identified.

(c) Let 6 and 0 be defined as the minimum thresholds for fHN and 4N,
respectively. For all detectable species in a microbiome sample, those that
satisty fH:N > 6y and d!N > 6, are identified. These species are included as
an element of “Health-prevalent” species My, or the set of species more
frequently observed in group H than in group N.

(d) To identify “Health-scarce” species My or the set of species more frequently
observed in group N than in group H, steps (b) through (c) are repeated
with the following considerations:

i. For m, let fN'H and dNH be defined as 2 and py,, — ppy,m respectively.
ii. The same thresholds Gf and 6, are used t6 identify My. In this regard, the
species that are eventually chosen to compose My and My are both
dependent on 6 and 6.
iii. Finally, all detectable species that satisfy f\'">6, and dj*>6, are
included in My.

Identifying vy, (or vy, ), that is, the “co
My) in a microbiome sample:

llective abundance” of species in My (or

(a) Y, is defined as the “collective abundance” of My species in a microbiome
sample The calculation of y,, takes into consideration the following:

i. Species richness, that is, the numeric count of “present” species of MH.
ii. (geometric) Mean of their relative abundances.

(b) Basic assumptions:

iy, is positively correlated with Ry, , or the richness of My, species. Thus,
(thelr correlation) p(y/M Ry, )>0. Remark: Due to the possible large
discrepancy between the cardma.hty (set size) of My and that of My, the

roportzon of presgnt My species is used. As such, R, is replaced with
‘M . Thus, PV, P ) >0,

ii. ), is positively corre&ated with (Mp), or the mean abundance of species in
M. Thus, P(¥ar,» (M) >0. Remark: As it is common in microbiome data
to have dlscrepanaes between species’ relative abundances to span several
orders of magnitude, the geometric mean, rather than the arithmetic mean, is
more appropriate to represent the mean relative abundance of My, species.
More specifically, the Shannon’s diversity index, which is a weighted
geometric mean (by definition) and commonly applied in ecological contexts,
is used. Thus, for simplicity, (M) ~ Z]E,W |n;ln(n;)| is assumed, where
Iyy,, is the index set of My, and n; s the relativé abundance of species jin Iy,

(c) Owverview:

i. Given the assumptions in (b), as well as the nonnegativity of M“‘ and
E}d InIn(n;)|, vy, is simply formulated as a product of the aforemen-

tioned two traits. Thus, let Vi, = \MH\ ZJEIM [n;ln(n;)]-
ii. Analogously, let y,, = ‘MN‘ Yjer,,, Injin(n;)]
My

Identifying h; \;, > that is, ratio of ¥, to Yy, in sample i:

(a) Formally, the log ratio of y,, to y,, in sample i can be written as
RW
] i,

_ ()|
=log,, ;j‘;,\‘zﬂw ‘nln(n)‘

(b) By definition, |Mp| and |[My] is the highest richness that can be obtained by
My and My species, respectively, in a particular microbiome sample.
However, the possibility that these maximum values are rarely obtained
cannot be ruled out; if so, then consequently, having a larger set size of My
(or My) can generally result in a lower distribution of H/I ‘ (or “")
potentially leading to biases in ;. when |[My|> [My or
[My| < |My|. Therefore, the upper limits that can be eventually used in
replacement of |[My| and |[My| in Eq. (4) should reflect more of what is
actually observed in real microbiome data, for example, samples ranked
according to the magnitude observed between Ry, and Ry . In this regard,
the following procedure to find alternative measures for" |MH| and |[My|
is used:

(4)

hi.M,,‘MN

i. Identify Ry, and R, for all microbiome samples in groups H and N.

ii. Rank order all samples consecutively by two criteria: first, by all values of
RM in ascending order (from lowest to highest); and then, by all values of
RM in descending order (from highest to lowest). This sorting strategy
prlorltizes having the highest possible R,, (but with the constraint of
having Ry, ~ 0) for the most top-ranked samples; and having the highest
possible RM (but with the constraint of having Ry~ 0) for the most
bottom-ranked samples.

iii. Let kg be the closest integer to 1% of the number of samples in group H. As
H is composed of 2636 samples, let kg be 26. Analogously, as N is composed
of 1711 samples, let ky be 17.

=

iv. Denote | M|’ as the median Ry from the top k; samples, and denote |My|’
as the median R, from the bottom ky samples.
v. Replace [My| and |MN| in Eq. (4) with |[Mp|" and |My]’, respectively.

(¢) In summary, the ratio of Vg, 10 ¥y, in gut microbiome sample i can be

written as
njln (nj)‘ . )

n;ln (n])‘

Ry D
[My |1 £=j€lny,

RM
_MN
Myl Z]GIMN

hia,, 1, = logig

Calculating the balanced accuracy of hyy

(a) The relative abundances of species in My and those in My for microbiome
sample i can be provided as input features for: (i) v, —and y,, ,
respectively; and (ii) h; yy, > which in turn can classify sample ias healthy
(es By, >0) nonhealthy (ies By, <0) or neither (ie,

(b) The clasmﬁcat.lon accuracy or predictive performance of h; , \, is found by
testing it on all samples in groups H and N, and then by finding 'the balanced
accuracy x,; , defined in Eq. (3).

Determining optimal sets M}, and MJ:

(a) The final, optimal sets of M}; and M}, are found by first considering a range
of thresholds 6;and 6. Every pair of 6yand 6, gives different sets of My and
My, and in turn, different values of balanced accuracy X ., (see
Supplementary Table 1).

(b) The final, optimal sets of M}; and M, (and their corresponding 9}' and Gy)
are determined as those that result in the highest balanced accuracy xj™

MetaCyc pathway functional profiling of stool metagenomes. MetaCyc
pathway-level relative abundances in each stool metagenome were quantified by
the HUManN v2.0 pipeline®? using default parameters. The EC-filtered UniRef90
gene family database was integrated within the pipeline. Pathways that were
unmapped (or unintegrated) were excluded from the analyses.
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Designing a classifier based upon Random Forests. A classifier based upon a
Random Forests algorithm was designed and curated in Python v3.6.4., while
model implementation was performed in the “scikit-learn” Python package v0.23.1.

Stool sample collection and processing. All stool samples from patients with RA
were obtained following written informed consent. The collection of biospecimens
was approved by the Mayo Clinic Institutional Review Board (#14-000616). Stool
samples from patients with RA were stored in their house-hold freezer (—20°C)
prior to shipment on dry ice to the Medical Genome Facility Research Core at
Mayo Clinic (Rochester, MN). Once received, the samples were stored at —80 °C
until DNA extraction. DNA extraction from stool samples was conducted as fol-
lows: aliquots were created from parent stool samples using a tissue punch, and the
resulting child samples were then mixed with reagents from the Qiagen Power
Fecal Kit. This included adding 60 pL of reagent C1 and the contents of a power
bead tube (garnet beads and power bead solution). These were then vigorously
vortexed to bring the sample punch into solution and centrifuged at 18,000 x G for
15 min. From there, the samples were added into a mixture of magnetic beads
using a JANUS liquid handler. The samples were then run through a Chemagic
MSM1 according to the manufacturer’s protocol. After DNA extraction, paired-
end libraries were prepared using 500 ng genomic DNA according to the manu-
facturer’s instructions for the NEB Next Ultra Library Prep Kit (New England
BioLabs). The concentration and size distribution of the completed libraries was
determined using an Agilent Bioanalyzer DNA 1000 chip (Santa Clara, CA) and
Qubit fluorometry (Invitrogen, Carlsbad, CA). Libraries were sequenced at 23-70
million reads per sample following Illumina’s standard protocol using the Illumina
cBot and HiSeq 3000/4000 PE Cluster Kit. The flow cells were sequenced as 150 x 2
paired-end reads on an Illumina HiSeq 4000 using the HiSeq 3000/4000 Sequen-
cing Kit and HiSeq Control Software HD 3.4.0.38. Base-calling was performed
using Illumina’s RTA version 2.7.7.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw sequencing data accession IDs of all publicly available stool metagenome samples
(and their corresponding studies) used in all analyses of this study are available in
Supplementary Data 1 and Supplementary Data 4. Sequences for the dataset containing
rheumatoid arthritis stool metagenomes used for GMHI validation have been deposited
at NCBI’s Sequence Read Archive (SRA) data repository (BioProject number
PRJNA598446), and can be downloaded without any restrictions. The deposited
sequences include .fastq files for 49 patients with rheumatoid arthritis. Measurements
were taken from distinct samples. Human reads were identified and removed prior to
data upload.

Code availability

R scripts demonstrating how to reproduce all findings shown in the main figures, as well
as how to calculate GMHI for a given stool metagenome sample, are available at https://
github.com/jaeyunsung/GMHI_2020.
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