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Abstract

Glioblastoma is the most common and most malignant primary brain tumor. Despite aggressive 

multimodal treatment, its prognosis remains poor. Even with continuous developments in MRI, 

which has provided us with newer insights into the diagnosis and understanding of tumor biology, 

response assessment in the posttherapy setting remains challenging. We believe that the integration 

of additional information from advanced neuroimaging techniques can further improve the 

diagnostic accuracy of conventional MRI. In this article, we review the utility of advanced 

neuroimaging techniques such as diffusion-weighted imaging, diffusion tensor imaging, perfusion-

weighted imaging, proton magnetic resonance spectroscopy, and chemical exchange saturation 

transfer in characterizing and evaluating treatment response in patients with glioblastoma. We will 

also discuss the existing challenges and limitations of using these techniques in clinical settings 

and possible solutions to avoiding pitfalls in study design, data acquisition, and analysis for future 

studies.

PRIMARY CENTRAL NERVOUS SYSTEM (CNS) tumors originate from cells within the 

brain, spinal cord, and meninges. In adults, the most common primary brain tumor is 

glioblastoma (GBM), which arises from glial cells. GBM is the most malignant of all 

primary brain tumors,1 and is classified into IDH-wild-type and IDH-mutant, depending on 

the presence or absence of mutation in the IDH1 gene, which encodes isocitrate 

dehydrogenase 1, an enzyme that plays essential roles in normal cell metabolism.2 Despite 

aggressive multimodal treatment, its prognosis has remained unfavorable, with a median 

overall survival limited to 14–16 months.3

Continuous developments in magnetic resonance imaging (MRI) have provided new insights 

into the diagnosis, classification, and understanding of tumor biology. Despite the 

optimization of sequences and protocols, the grading of gliomas based on conventional MRI 

frequently remains unreliable.4 We believe that the integration of information from advanced 

neuroimaging techniques can further improve the diagnostic accuracy of conventional MRI.
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The purpose of this article is to overview the utility of advanced neuroimaging techniques 

such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-

weighted imaging (PWI), proton magnetic resonance spectroscopy (1H MRS), and chemical 

exchange saturation transfer (CEST) in characterizing and evaluating treatment response in 

patients with GBM. We will also discuss the existing challenges and limitations of using 

these techniques in clinical settings and discuss possible solutions to avoid pitfalls in study 

design, data acquisition, and analysis for future studies.

CLINICAL PRESENTATION

The clinical presentation of patients with GBM is variable, depending on tumor size and 

location. The duration of symptoms may be abrupt, mimicking a stroke, or prolonged, 

spanning over several years.5 The main clinical symptoms are related to focal neurological 

deficits, increased intracranial pressure, and “seizures,” which remains the most common 

presenting symptom. Depending on location, focal neurological deficits, such as hearing 

loss, visual impairment, personality changes, hemiparesis, hemineglect, and aphasia, can 

occur, which are likely secondary to brain invasion and necrosis.5 Headaches secondary to 

increased intracranial pressure can be present in up to 50% of patients.6 Tumor-related 

headaches are usually unilateral with variable duration, may awaken patients from sleep, and 

be accompanied by focal neurological deficits, cognitive or behavioral symptoms, nausea, 

vomiting, and papilledema.5 Seizures are the presenting symptoms in about 20–40% of 

patients, which could be simple partial, complex partial, or generalized. Seizures may also 

occur later in the disease course in as many as 50% of patients.5,7 Patients are frequently 

diagnosed as part of an emergency department evaluation for one of the acute presentations 

above. During this visit, patients usually undergo first a computed tomography (CT) 

examination. Once confounding entities are excluded, and a mass lesion is detected, patients 

subsequently undergo an MRI examination.

CONVENTIONAL IMAGING IN INITIAL ASSESSMENT OF GLIOBLASTOMA: 

ROLE AND LIMITATIONS

Neuroimaging plays an integral role in the initial diagnosis, prognosis, as well as in the 

assessment of treatment response in neuro-oncology. Commonly employed conventional 

anatomical MRI sequences include T1-weighted imaging (T1WI), T2WI, fluid attenuation 

inversion recovery (FLAIR), T2*WI gradient echo, and contrast-enhanced T1WI images. 

These sequences provide refined anatomic detail, and the injection of a gadolinium-based 

contrast agent allows for the detection of the blood-brain barrier (BBB) compromise and 

leakage.

GBMs demonstrate a variable signal on T1WI and T2WI, heterogeneous contrast 

enhancement, irregular margins, necrosis, hemorrhage, marked vasogenic edema, invasion 

into normal-appearing brain tissue, and corpus callosum infiltration.8 The association of an 

irregular enhancing lesion with areas of hypo- or nonenhancing tumor infiltration and 

cortical expansion is particularly suggestive of high-grade infiltrating gliomas such as a 

GBM. Satellite lesions and intratumoral hemorrhage are also frequently encountered.8
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Conventional MRI features are limited in reliably distinguishing various glioma grades and 

underlying pathophysiological mechanisms. Moreover, conventional MRI is limited in the 

differentiation of residual or recurrent tumor from treatment-related changes (Fig. 1). 

Furthermore, in some instances, GBM can be challenging to distinguish from other 

intracranial mass lesions such as solitary metastasis, lymphoma, atypical infections, and 

tumefactive demyelination. These limitations are significant to note, as they impact 

diagnosis, prognosis, as well as management approaches.8

The current standard of care treatment for GBM includes maximal safe resection followed 

by concurrent radiotherapy along with adjuvant temozolomide (CCRT).9 Contrast-enhanced 

MRI (unless contraindicated) is the method of choice to estimate the extent of resection and 

to assess for any complications during surgery.10 The first contrast-enhanced MRI should 

ideally be performed within 2 days after surgery in order to assess the extent of resection, 

but no later than 72 hours after surgery.11 When baseline imaging is acquired beyond 72 

hours, subacute hemorrhage/ischemia or reactive postsurgical enhancement may be confused 

with residual neoplasm. Postoperative blood in the surgical cavity may be a confounding 

factor due to its intrinsic T1 shortening effect, which may be difficult to distinguish from an 

enhancing lesion. Therefore, a direct comparison of pre- and postcontrast images, preferably 

obtained in the same imaging plane, is recommended. On baseline postoperative imaging, 

thin curvilinear enhancement may be seen along the margins of the resection cavity, which 

may represent postoperative changes, granulation tissue, micro-ischemia, and/or 

inflammation. Nevertheless, larger enhancing areas with nodular and mass-like 

configuration, similar in morphology to preoperative imaging, indicates residual neoplasm.12

RESPONSE ASSESSMENT

Levin et al.13 proposed the earliest response assessment criteria for malignant brain tumors 

in 1977, which was based on neurological examination, radionuclide scintiscan, and CT. In 

1985, Zeltzer et al.14 proposed criteria and definitions for response and relapse in different 

brain tumors in children, also based on CT. Subsequently, Macdonald et al.15 suggested a 

new response assessment criteria for brain tumors in 1990, found initially on CT, and later 

extrapolated to MRI, in association with clinical assessment and corticosteroid use. The 

“Macdonald criteria” had many relevant limitations, including measuring tumors with 

irregular borders, interobserver variability, underestimation of tumoral components that 

lacked enhancement, lack of specific guidance for the evaluation of multifocal tumors, and 

the difficulty in measuring enhancing lesions in the wall of cystic or surgical cavities.

Although contrast enhancement is generally a reliable surrogate of brain tumor burden, some 

caveats and exceptions have been discovered as a result of different treatment mechanisms 

that affect vascular permeability. For example, increased vascular permeability from 

cytotoxic therapies, including radiotherapy and antineoplastic treatments, have been shown 

to result in increased contrast enhancement in the context of therapeutic benefit, a 

phenomenon called “pseudoprogression” (PsP).16

Additionally, clinical studies examining the efficacy of new antiangiogenic agents have 

noticed a substantial decrease in contrast enhancement, resulting in high response rates in 
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patients with bevacizumab and cediranib compared with other chemotherapies. It was 

assumed that this high response rate was due to the use of contrast enhancement as the 

primary tool for evaluation in the “Macdonald criteria,” which resulted in a phenomenon 

called “pseudoresponse” (PsR), where contrast enhancement is falsely reduced due to 

changes in vascular permeability independent of an antineoplastic effect. Therefore, 

posttherapy effects such as PsP and PsR hinder a reliable assessment of treatment evaluation.
17

To overcome the limitations of the “Macdonald criteria,” the Response Assessment in 

Neuro-Oncology (RANO) criteria were developed in 2010.18 According to the RANO 

criteria, which incorporates MRI and clinical factors, treatment response may be divided into 

complete response, partial response, stable disease, and progressive disease. Neuroimaging 

response should be determined in comparison to the tumor measurement obtained at 

pretreatment baseline for determination of response, and the smallest tumor measurement at 

either pretreatment baseline or after initiation of therapy should be used for determination of 

progression.

Albeit “RANO criteria” addresses several inconsistencies in the “Macdonald criteria,” there 

are still several limitations to the current standard “RANO criteria” based on recent data. 

The bidirectional measurements of contrast-enhancing tumor size in RANO may 

overestimate tumor volume and result in higher reader discordance. The thresholds adopted 

to define response and true progression (TP) can be considered relatively arbitrary and not 

optimized. There could be a bias toward small tumors when thresholds based on “percentage 

change” are used. Nonenhancing progression is controversial due to the subjective nature of 

the interpretation. Studies have shown that evaluation of nonenhancing TP using T2WI or 

FLAIR may be more complicated than usually understood, thus warranting further 

investigation before it can be integrated appropriately as an early radiographic endpoint. 

Finally, the introduction of new immunotherapeutic agents results in profound inflammation, 

leading to substantial changes in T2 signal intensities as well as in areas of contrast 

enhancement.

In addition, RANO criteria based on conventional MRI are often equivocal in distinguishing 

between PsP, PsR, and TP, and present a considerable diagnostic challenge to distinguish 

these three clinical conditions. Hence, there is a critical demand to develop advanced 

neuroimaging biomarkers to access treatment response reliably.19

Recently, an update to the RANO criteria was proposed. These new criteria include the 

calculation of volumetric response, utilization of contrast-enhanced T1 subtraction maps to 

increase enhancing lesion conspicuity, elimination of qualitative nonenhancing tumor 

assessment requirements, utilization of the postradiation timepoint as the baseline for newly 

diagnosed GBM response assessment, and the estimation of “treatment-agnostic” response 

assessment schemes for identifying PsP, PsR, and a confirmed durable response in newly 

diagnosed and recurrent GBM trials.19

There has been growing evidence that advanced MRI techniques such as DWI, PWI, 1H 

MRS, and CEST hold great potential in the accurate assessment of response. However, these 
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techniques have not yet been included in the most recent response assessment criteria. 

Therefore, further studies are necessary to validate the role of these techniques for response 

assessment in these patients.18

DIFFUSION-WEIGHTED IMAGING

The biophysical mechanism of DWI is based on the microscopic random translational 

motion of water molecules in biological tissues. Water molecule diffusion follows the 

principles of Brownian motion. The magnitude of this motion is characterized by its 

apparent diffusion coefficient (ADC) values expressed in units of mm2/s.20 ADC depends on 

the nature of cellular packing, and the presence of intracellular organelles, cell membranes, 

and macromolecules in various tissue compartments. Variation in ADC values also reflects 

the alteration and redistribution of water molecules between intracellular and extracellular 

compartments of a tissue.

In gliomas, it has been reported that there exists an inverse correlation between ADC values 

and tumor grade.21 High-grade tumors with tightly-packed tumor cells and reduced 

extracellular space demonstrate low ADC values.22 Hence, it is expected that successful 

CCRT, leading to necrosis or cellular lysis, would reduce tumor cellularity and therefore 

lead to increased ADC values. On DWI, changes in the diffusivity pattern of a tumor might 

be used to monitor tumor response to a therapeutic intervention.

DWI is paramount to distinguish enhancing perioperative subacute ischemia from enhancing 

residual tumor on follow-up imaging by comparing areas of enhancement with DWI 

obtained at 24–48 hours of a postoperative MRI scan.23 DWI can also help detect early 

tumor recurrence, especially in nonenhancing regions, with intact BBB. Logistic regression 

analysis has been used to demonstrate that areas of future GBM recurrence demonstrate a 

subtle, but significant, decrease in signal intensity on ADC maps and FLAIR images months 

before abnormal enhancement was evident.24

Since a reduction in the number of neoplastic cells following treatment precedes significant 

tumor size change, ADC may serve as an early imaging biomarker to predict treatment 

outcomes, monitor early treatment response, and detect recurrence.20 In a subset of GBM 

patients, the development of a new focus of restricted diffusion during treatment may 

precede the development of a new enhancing tumor.25 Persistently low ADC measurements 

similar to those observed in acute infarct can be seen in a subset of patients with 

antiangiogenic therapy, from coagulative necrosis, and are associated with improved clinical 

outcomes.26

Diffusion weighting is expressed as a b value, which is dependent on the characteristics of 

the diffusion sequence used. The b value increases with increasing diffusion weighting, and 

sufficient diffusion weighting is usually achieved with a b value of 1000 s/mm2. The advent 

of stronger and faster gradients on the MR scanners has allowed us to use higher b values 

≥3000 s/mm2 and the ability to obtain images with a much greater degree of diffusion 

weighting. The appearance of the brain on high b-value diffusion images is significantly 

different from low b-value images, with white matter becoming relatively hyperintense and 
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the cortical gray matter becoming so hypointense that anatomical surface landmarks of the 

brain may be lost. The signal-to-noise ratio (SNR) also becomes an essential issue at higher 

b-value DW imaging due to the exponential loss in signal with increasing b values. Some 

studies27 have also shown the potential of using a high b value DWI in the differentiation 

between PsR and true response after antiangiogenic treatment.

DIFFUSION TENSOR IMAGING

A better method to model diffusion in a complex tissue is to use the diffusion tensor, a 

mathematical model of diffusion in 3D space. In DTI, a tensor model of diffusion consists of 

a 3 × 3 matrix derived from diffusivity measurements in at least six noncollinear/nonplanar 

directions. However, the use of more than six diffusion-encoding directions improves the 

accuracy of the tensor measurement for any arbitrary orientation. The diffusion tensor can be 

represented by a diffusion ellipsoid whose main axis is parallel to the principal diffusion 

direction within a voxel. The major and minor axes of the diffusion ellipsoid are defined by 

three orthogonal unit vectors known as eigenvectors. The length of each eigenvector is 

multiplied by a factor called the eigenvalue. Three eigenvalues, λ1, λ2, and λ3 and three 

eigenvectors v1, v2, and v3 define the shape and orientation of the ellipsoid, respectively. In 

the brain, water molecules are unable to diffuse freely due to natural barriers such as 

intracellular organelles and membranes, and white matter fibers and tracts (anisotropic 

diffusion). Hence, DTI benefits from this anisotropic water motion to estimate the axonal 

direction in vivo. DTI has been used to characterize normal tissue properties, in both 

diagnosis and prognosis of brain tumors in addition to guiding neurosurgical procedures.28

A comprehensive data modeling of DTI provides several scalar parameters such as mean 

diffusivity (MD), fractional anisotropy (FA), coefficient of linear (CL), planar (CP), and 

spherical (CS) anisotropies describing the shape of a diffusion ellipsoid. The most 

commonly used DTI indices in neuro-oncology are MD and FA. MD is comparable and 

mathematically equivalent to the ADC values and also provides similar physiological 

information.29 FA is an index for the amount of diffusion asymmetry within a voxel whose 

value changes from 0 (isotropic) to 1 (maximally anisotropic). Higher values of FA correlate 

with greater directionality of the white matter tracts.30 The geometric indices (CL, CP, and 

CS) have been used to differentiate GBM from metastasis and lymphoma,31 TP from PsP,32 

brain infections from necrotic neoplasms,33 and to evaluate treatment response to 

immunotherapy in GBM patients,34 suggesting that directional organization of tissue 

microstructure may provide additional useful information.35

DTI can be used to detect tumoral infiltration of the adjacent normal-appearing white matter. 

Recently, our group36 demonstrated that FA values from the corpus callosum could quantify 

occult tumor infiltration in GBM patients. Representative anatomical and DTI images from 

GBMs with and without corpus callosum involvement are shown in Fig. 2. Moreover, we 

reported36 that FA may serve as a sensitive prognostic marker for prediction of overall 

survival in GBM patients, as patients with short survival and corpus callosum invasion had 

the lowest FA values from the corpus callosum regions compared to the other groups in our 

study (Fig. 3).
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PERFUSION-WEIGHTED IMAGING

PWI provides multiple additional parameters to overcome the intrinsic limitations of 

conventional MRI. PWI can demonstrate neovascularization, which translates into TP. 

Tumor neovascularization is known to show an extensive network of weak and poorly 

organized tumor vessels. Newly formed vessels are often large, tortuous, irregular, leaky, 

slow-flowing and uneven in diameter.37 Leaky tumor vessels are depicted as an enhancement 

on conventional postcontrast T1-weighted MRI. Nevertheless, with PWI, one can determine 

the blood volume and flow as well as the component of leakage, thus obtaining further 

information on the tumor vasculature.17 The most commonly used PWI techniques are 

dynamic susceptibility contrast imaging (DSC), dynamic contrast-enhanced imaging (DCE), 

and arterial spin labeling (ASL).

Dynamic Susceptibility Contrast

DSC is the most commonly employed PWI method in clinical neuro-oncology.38 DSC 

involves the administration of a bolus of gadolinium-based contrast agent intravenously, 

followed by a series of rapidly acquired gradient or spin-echo images over the organ of 

interest. DSC utilizes the T2* effect of the paramagnetic contrast agent that causes a 

transient decrease in signal intensity during the initial pass through the vasculature by 

creating a local magnetic field distortion around the vessels. By measuring the signal 

intensity as a function of time and fitting it to a mathematical model, various perfusion 

parameters such as blood volume, blood flow, and mean transit time can be extracted.39 

According to the American Society of Functional Neuroradiology (ASFNR) 

recommendations, DSC should be performed on a 1.5 or 3T MR system using T2*-weighted 

gradient-echo sequences for higher SNR and sensitivity, with as short a relaxation time (TR) 

as possible, with echo time (TE) of 40–45 msec at 1.5T and 25–35 msec at 3T, and flip 

angles of 60–70°. Temporal coverage should be 90–120 total timepoints, with a total 

acquisition time of 2–3 minutes. Image acquisition should begin at least 30–50 time points 

before contrast injection via a power injector. A preload administration of a single contrast 

agent bolus, of one-fourth to single-dose (0.025-to 0.1-mmol/kg gadolinium) as a preload is 

given 5–10 minutes before the acquisition of dynamic imaging. The preload dose reduces 

the confounding T1 effects from contrast agent leakage, mainly when high flip angle 

sequences are employed. A summary of the recommended acquisition parameters for DSC 

perfusion imaging can be found elsewhere.40

Multiple qualitative and semiquantitative indices can be derived from DSC data, namely: 1) 

cerebral blood volume (CBV), which is the volume of blood in a given region of brain tissue 

(measured in mL per 100 g of brain tissue); 2) cerebral blood flow (CBF), the volume of 

blood passing through a given region of brain tissue per unit time (measured in mL per 

minute per 100 g of brain tissue); 3) mean transit time (MTT), the average time (measured in 

seconds) it takes for blood to pass through a given region of brain tissue; 4) time-to-peak 

(TTP), defined as the time from initial contrast injection to peak (maximal) signal loss 

within the organ of interest; 5) bolus arrival time (BAT), defined as the interval between 

intravenous contrast injection and its first detection in tissue or a large feeding artery; 6) 

negative enhancement integral (NEI) is the total area under the signal intensity-time curve 
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during the first pass of contrast agent, also known as the area under the curve (AUC). This 

parameter reflects the total amount of contrast transiting through the regional vascular 

system and is roughly proportional to blood volume. The percentage signal recovery (PSR), 

the percentage of MR signal-intensity recovery relative to the precontrast baseline at the end 

of the first pass.40

To obtain CBV, the signal intensity-time curve is converted into a gadolinium concentration-

time curve, and the conversion between signal intensity and gadolinium concentration is 

essentially a logarithmic transformation. The gadolinium concentration is assumed to be 

linearly proportional to the observed change in the T2*-relaxation rate. CBV measurements 

are nonquantitative and can vary within the same tissue type, or the same patient, across 

different scan dates and different MRI scanners. As a result, CBV measurements are 

typically normalized to contralateral white matter tissue to obtain relative CBV (rCBV). As 

the size of the region of interest (ROI) and location must be carefully chosen, often by an 

experienced radiologist, this method often introduces unnecessary bias into the results and 

can be time-consuming.41

The DSC imaging acquisition with subsequent automatic rCBV, rCBF, and MTT color maps 

availability is a relatively fast process. Absolute DSC perfusion quantification is a more 

laborious process since it requires ROI manual segmentation. DSC is a technique that 

assumes that the contrast material remains in the intravascular compartment, which is not 

always the case, especially when dealing with leaky and tortuous capillaries of tumors. 

rCBV, however, may be underestimated or overestimated due to disruption in the BBB.42 

These unwanted leakage effects can be avoided by the preloading dose of contrast injection 

and by the use of leakage correction algorithms such as gamma variate functions.42

Dynamic Contrast-Enhanced

DCE perfusion involves the acquisition of T1-weighted images, generally using 3D-spoiled 

gradient recalled echo (SPGR) or fast low angle shot (FLASH) sequences before, during, 

and after the injection of gadolinium-based contrast agent. DCE measures T1 changes in 

tissues over time after bolus administration of gadolinium. DCE is often performed for 

generating tissue perfusion parameters based on pharmacokinetic modeling that typically 

requires an additional precontrast T1 mapping protocol. Full quantitative analysis of the 

DCE data requires conversion of signal intensity to the gadolinium concentration curve, 

selection of an appropriate tissue model, and estimation of model parameters from the fitted 

data.43 In clinical settings, a model proposed by the Tofts-Kermode model is the most 

commonly used pharmacokinetic model to process the DCE data.44 The most commonly 

used DCE-MRI-derived parameter is the volume transfer constant (Ktrans) that determines 

the flux of gadolinium contrast agent from blood plasma to the extravascular extracellular 

space. Physiologically, Ktrans reflects tumor perfusion and vascular permeability. The other 

clinically relevant parameters include volume fraction of extravascular extracellular space in 

tissue (ve) that might be related to ADC values and cellularity, and volume fraction of 

plasma space (vp).39,45 If DCE and DSC are acquired during the same examination, it is 

recommended that DCE is acquired prior to DSC, so that the first contrast injection for the 

DCE allows the estimation of vascular leakage using DCE and also works as the preload for 
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DSC.39 The main limitations of DCE include the lower temporal resolution as compared 

with DSC and the lack of consensus for the optimal pharmacokinetic model. Since 

parameters acquired by different models are not comparable, those differences across 

different institutions may hinder the comparison of findings.17

Arterial Spin Labeling

Arterial spin labeling (ASL) is an entirely noninvasive and contrast injection-independent 

PWI technique utilizing water molecules flowing inside arterial vessels as a contrast material 

in ASL. During imaging acquisition, these molecules are tagged magnetically prior to 

entering the region to be studied and then followed until they reach the area of interest.46 

CBF values can be calculated by the differences in signal between the labeled images and 

the nonlabeled control images.46,47 Among the multiple ASL methods available, 

pseudocontinuous ASL is now widely accepted as the method of choice. During a 

pseudocontinuous acquisition, blood is labeled from 2–4 seconds. After a delay of 1.5–2 

seconds, which allows the labeled blood to arrive in the brain tissue, images are acquired.47 

One major advantage of ASL is the lack of leakage effects. Leakage correction is, therefore, 

unnecessary in ASL.49 ASL scanning times are longer than DSC and DCE, due to lower 

SNR, which may increase the risk of motion artifacts.39 In comparison with the other PWI 

methods, ASL offers fewer parameters, with CBF being the most frequently used parameter 

in routine clinical practice. Nevertheless, it has been demonstrated that CBF obtained by 

ASL correlates well with rCBV derived from DSC acquisition.47

PWI Predicting and Evaluating Treatment Response

Some studies have suggested that pretreatment rCBVmax can be used as a prognostic marker 

for overall survival in patients with GBM. In particular, patients with high pretreatment 

rCBVmax demonstrated lower survival in comparison with patients with low pretreatment 

rCBVmax.50 We believe that these results could have a potential clinical benefit and, in the 

future, may aid in individualized treatment planning because patients with high pretreatment 

rCBVmax can be offered upfront alternative treatment strategies, including bevacizumab, 

immunotherapy, or other therapies targeted toward increased survival.

Treatment response assessment is more reliably performed with PWI than conventional 

MRI. A recent meta-analysis has shown a pooled sensitivity and specificity of anatomical 

MRI of 68% (95% confidence interval [CI] 51–81) and 77%,45–93 respectively, whereas the 

pooled sensitivity and specificity of DSC were of 87%82–91 and 86%77–91 and the pooled 

sensitivity and specificity of DCE were of 92%73–98 and 85%,76–92 respectively.51–53 

Several studies51 have demonstrated that rCBV values are higher in TP than in treatment-

related effects. rCBV values are higher in tumors, indicating their hyperperfusion volume. 

However, there is a wide variability of the optimum rCBV threshold for differentiating 

between TP and treatment-related effects, ranging from 0.71–3.7.51 Further attempts should 

be aimed at validating cutoff values and to standardize perfusion measurements, allowing the 

identification of the best cutoff for clinical implementation.17

rCBF has also been used for differentiating tumor recurrence from stable disease with a 

diagnostic accuracy comparable to that of rCBV.54 Additionally, semiquantitative DSC 
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parameters such as peak height and percentage of signal recovery have been found to be 

significantly higher in TP than PsP.55 Moreover, these heuristic parameters are highly 

affected by the gain factor of the acquisition systems, contrast agent volume, and injection 

rate. As a result, these factors can easily change the shape of the signal-intensity time curves, 

precluding accurate estimation of the true concentration of contrast agent in the tissues, and 

thus making comparison and quantification difficult. Moreover, these descriptive parameters 

provide no physiologic information about the lesion of interest.

DCE demonstrates a superior diagnostic accuracy to differentiate TP from PsP.51 This higher 

accuracy can be explained by the Ktrans parameter, which reflects the higher capillary 

permeability of leaky tumor vessels. In DCE, most experience has been built up with AUC 

along with Ktrans. The Ktrans, ve, and AUC values in the normal white matter were 

significantly different from those in the radiation necrosis and recurrent gliomas. The only 

significantly different hemodynamic parameters between recurrent tumor and radiation 

necrosis were Ktrans and AUC, which were significantly higher in the recurrent glioma group 

than in the radiation necrosis group (P ≤ .0184). A Ktrans cutoff value higher than 0.19 min−1 

showed 100% sensitivity and 83% specificity for detecting recurrent gliomas, whereas an 

AUC cutoff value higher than 15.35 had 71% sensitivity and 71% specificity.56

There is a significant difference in Ktrans values between patients with TP and PsP, with 

higher values for the former.57 A difference in mean ve values demonstrated a prognostic 

accuracy of 88% when a cutoff value of 0.873 was used.57 However, the paucity of uniform 

thresholds due to a lack of uniformity in data acquisition and pharmacokinetic models 

remains troublesome.

Studies evaluating ASL to assess treatment response in GBM are scarce. Three ASL 

studies54 (DOI:10.1007/s00330-017-4789-9) (DOI:10.1177/0284185112474916) reported 

unsatisfactory diagnostic accuracy, with broad differences in sensitivity and specificity. On 

ASL, TP is seen as areas with high rCBF values. ASL has shown higher imaging quality in 

comparison to DSC to differentiate TP and PsP using rCBF values.58 In another study,58 

ASL and DSC had similar results in differentiating TP and PsP; however, DSC reached a 

higher diagnostic accuracy. In contrast, another investigator suggested that ASL could 

outperform DSC when using a normalized CBF cutoff ratio of 1.3.59

PROTON MAGNETIC RESONANCE SPECTROSCOPY

Several studies,60–64 including from our group, have reported the utility of 1H MRS for 

studying brain tumor metabolism with promising results in the evaluation of neoplasm 

grade, discrimination between types of neoplasms, differentiation of recurrent tumors from 

radiation injury, and determination of prognosis and response to treatment. In the clinical 

setting, 1H MRS is generally performed either as a single voxel technique (SVS) or as a slab 

comprised of several voxels (multivoxel spectroscopy / chemical shift imaging [CSI]). 

However, SVS or CSI 1H MRS may suffer from an incomplete sampling of the neoplasm. 

Moreover, the sampled voxels might include the external margins of the necrotic areas or 

peritumoral regions, or both. Thus, metabolite levels in such lesions might be influenced by 

the contribution from different tissue compartments of a neoplasm.
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On the other hand, relatively new 1H MRS sequences such as the 3D-echo planar 

spectroscopic imaging (3D-EPSI) allow acquisition of metabolite maps with an excellent 

spatial resolution that can be spatially coregistered to anatomical images to facilitate 

mapping of metabolite alterations from different regions of a neoplasm with less probability 

of partial volume averaging. A representative postcontrast T1-weighted image and 

corresponding Cho/NAA map from a patient with GBM are shown in Fig. 4. The potential 

of 3D-EPSI in characterizing glioma grades,65 mapping glycine distribution in gliomas,65 

planning radiation therapy,66 identifying residual tumor following radiation therapy,67 

evaluating response to epigenetic modifying agents in recurrent GBM,68 evaluating 

treatment response to tumor treating fields,63 differentiating TP from PsP,62 and in assessing 

the effect of whole-brain radiation therapy on normal brain parenchyma in patients with 

metastases has been reported.69

In neuro-oncology, major metabolites that are typically observed on 1H MRS spectrum are 

N-acetylaspartate (NAA), choline (Cho), lactate (Lac), mobile lipids, creatine (Cr), 

glutamate (Glu), glutamine (Gln), glycine (Gly), myoinositol (ml), glutathione (GSH), and 

2-hydroxyglutarate (2-HG). NAA shows the largest signal in a normal healthy brain and is 

considered a putative marker of neuronal density and viability and generally decreases in 

gliomas.70 The Cho signal is a composite of free choline, phosphocholine (PC), and 

glycerophosphocholine (GPC), which are the precursors and breakdown products of the 

main membrane phospholipid phosphatidylcholine. The intensity of this resonance is 

associated with cell proliferation and cell signaling and is usually elevated in brain 

neoplasms, including GBM.71 However, the lack of Cho elevation can be seen in some 

lower-grade brain neoplasms.72 Therefore, it has been recommended that low Cho levels 

should not prevent us from considering the possibility of a primary brain neoplasm. Lac is 

the final byproduct of anaerobic glycolysis and enhanced in cancer as part of the Warburg 

effect.73 Lipids (fatty acid, lipid droplets, or triglycerides) are rarely observed in the normal 

brain, but are often increased in glial tumors and are associated with cell death and increased 

necrosis.7 The Cr signal is a composite of creatine and phosphocreatine (PCr), which are 

involved in energy metabolism via the creatine kinase reaction. Cr levels vary within normal 

brain regions and, in some cases, with tumorigenesis.75 Glu is the most abundant amino acid 

in the brain and an essential neurotransmitter. In gliomas, glutaminolysis is often required 

for tumor growth as an anaplerotic source of carbon complementary to glucose metabolism.
76 Representative spectra from high and low rCBV regions of a neoplasm are shown in Fig. 

5.

Several studies have reported that glioma patients whose lesions harbor IDH mutations are 

associated with better prognosis, regardless of histological grade, and these patients 

demonstrate more prolonged survival than those with IDH wildtype. Few studies77 have 

used modified 1H MRS sequences in detecting resonances for 2HG. The oncometabolite, 

2HG, has been proposed as a putative biomarker for IDH-specific genetic profile for 

gliomas. Recently,78 we also reported our initial experience of identifying patients with IDH 

mutation using 2D correlation spectroscopy (COSY) with an ultrahigh-field (7T) MR 

system.
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Several studies have also demonstrated the potential of 1H MRS in evaluating treatment 

response in GBM patients who underwent CCRT following surgery. Some studies79 have 

demonstrated that increases in Cho/NAA and/or Cho/Cr ratios are significantly higher in 

patients with recurrent tumors than those with radiation necrosis. A meta-analysis of 455 

GBM patients treated with radiotherapy concluded that 1H MRS alone has moderate 

diagnostic performance in differentiating glioma recurrence from radiation necrosis using 

Cho/Cr and Cho/NAA metabolite ratios, and strongly recommended its use only in 

combination with other advanced imaging technologies.80 Since the pathogenesis of PsP and 

radiation necrosis is similar, it may be assumed that these two conditions would exhibit 

similar metabolite patterns. Indeed, the investigators of a previous study reported a lower 

Cho/NAA ratio and higher lipid levels in PsP than those patients with TP.81 However, this 

study used single voxel or single slice multivoxel 1H MRS techniques and, therefore, was 

constrained by the limited overall spatial coverage of the neoplastic lesions. We believe that 

one of the reasons for the poor diagnostic performance of 1H MRS in differentiating tumor 

recurrence and radiation necrosis in the meta-analysis mentioned above may be because of 

contamination from different tissue compartments while using large voxel size 1H MRS 

methods.

On the other hand, alternate methods such as 3D-EPSI provide high-resolution metabolite 

maps from the entire brain that can help us in simultaneously probe metabolite profiles from 

different areas of a neoplasm.69,82 Recently, we distinguished TP from PsP in GBM patients 

with a sensitivity of 94% and a specificity of 87% using 3D-EPSI.62 Representative 

anatomical images, Cho/NAA maps, and corresponding reresection histology 

photomicrographs from a TP and a PsP patient are shown in Fig. 6. In additional studies 

from our group, we employed 3D-EPSI in assessing treatment response to anti-EGFRvlll 

chimeric antigen receptor T-cell therapy34 and tumor treating fields63 in patients with GBM. 

These studies indicate that 3D-EPSI may be a valuable tool to study brain tumor metabolism 

and assess for treatment response.

CHEMICAL EXCHANGE SATURATION TRANSFER (CEST)

CEST is a relatively novel metabolic imaging technique that allows the detection of specific 

endogenous and exogenous molecules that are present at very low concentrations (μM to 

mM range). In CEST imaging, exchangeable solute protons, such as hydroxyls (-OH), 

amides (-NH), and amines (-NH2) that resonate at a frequency different from the bulk water 

protons (off-resonance frequencies for -OH, -NH and -NH2 protons are ~0.5–1.5 ppm, ~3.5 

ppm, and 1.8–3.0 ppm, respectively) are selectively saturated using radiofrequency 

irradiation. This saturation is subsequently transferred to bulk water when solute protons 

exchange with water protons leading to a decrease in the water signal proportional to the 

concentration of solute molecules. While the saturation pulse is being applied, this process 

continues to decrease the water magnetization. Simultaneously, longitudinal relaxation 

processes return the saturated proton spins to their thermal equilibrium state until the system 

reaches a steady-state condition or the saturation pulse is turned off. The reduction in the 

water signal can be imaged with any fast imaging pulse sequences. The acquisition of CEST-

weighted images must be rapid before T1 relaxation reduces the amplitude of the CEST 

signal. For a similar reason, CEST imaging should be acquired before the administration of 
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gadolinium-based contrast agents. CEST contrast requires that a distinct chemical shift 

difference (Δω) between water and the exchangeable proton on the solute is preserved, and 

the exchange rate (ksw) needs to be in the slow to an intermediate regime in the nuclear 

magnetic resonance (NMR) time scale such that ksw ≤ Δω.

The frequency-dependent saturation effects are visualized similar to the magnetization 

transfer (MT) technique by plotting the water saturation (Ssat) normalized by the signal 

without saturation (S0) as a function of saturation frequency. This gives rise to a Z-spectrum 

or CEST spectrum that is characterized by the symmetric direct saturation (DS) around the 

water frequency, which leads to the assignment of 0 ppm to the water frequency. This DS 

effect may interfere with the detection of CEST signals, which is addressed by using the 

symmetry of the DS through MT ratio (MTR) asymmetry analysis:

MTRasym(Δω) = MTR(Δω) − MTR( − Δω)
= Ssat( − Δω)/S0 − Ssat(Δω)/S0

Several factors such as the concentration of solutes, number of exchangeable protons, 

exchange rate, temperature, and pH of the local environment, T1, T2, saturation frequency, 

amplitude, duration of saturation frequency, and magnetic field strength regulate the CEST 

contrast on imaging.83

The CEST signal originates from the endogenous mobile proteins/peptides and metabolites 

such as Glu, lac, mI, and glucose that play crucial roles in tumor development, growth, and 

progression. Therefore, studying these macromolecules and metabolites may help us in 

understanding the brain tumor microenvironment and evaluating response to targeted 

therapies.

Amide Proton Transfer (APT)

APT imaging is a CEST technique that measures a reduction in bulk water intensity due to 

the chemical exchange of labile amide protons present within the peptide bonds of 

endogenous mobile proteins and peptides in tissues. Amide protons resonant at about 8.3 

ppm on the MR spectrum, and hence have a chemical shift 3.5 ppm downfield from water. 

Due to the very slow exchange rate (~30 s−1) of amide protons, it is possible to obtain nearly 

complete saturation using a low-power, long-duration saturation pulse. Given the slow 

exchange rate of amide protons, APT imaging can also be performed even at 3T field 

strength. It has been reported that the APT signal is very sensitive to variations in pH levels, 

as lower pH in the ischemic regions leads to the diminished APT exchange rate, and 

consequently, a decline in the CEST effect is observed. Because of excellent sensitivity to 

pH, it is possible to use APT for determining the pH of tissues after proper calibration of the 

signals.

It is widely believed that active tumor cells express higher concentrations of mobile protein 

and peptide components.85,86 Also, metabolically active tumors produce an excess of lactic 

acid in the extracellular tumor microenvironment. This decrease in tumor pH should 

generate lower APT contrast due to slower exchange rate of amide protons because the 

chemical exchange of protons from the amide group to water is base-catalyzed. Despite 
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these two counteracting mechanisms, higher APT contrast is generally observed from 

neoplastic regions compared to normal tissues. Some studies have shown the great potential 

of APT-weighted imaging in delineating malignant neoplastic infiltration from peritumoral 

vasogenic edema, in differentiating histopathological grades, and in discriminating high-

grade gliomas from primary cerebral lymphomas.87 APT imaging can also reliably 

distinguish recurrent tumor from radiation necrosis.88 Additionally, the intensity of the APT 

signal was shown to decrease in irradiated tumors at 3 days and 6 days posttreatment periods 

relative to baseline, suggesting that APT may be useful in evaluating treatment response in 

brain tumors. The APT signal is also a valuable imaging biomarker for distinguishing TP 

from PsP in GBM patients. Some studies have documented significantly higher APT signals 

in TP cases than those with PsP.85 In contrast to TP, there are fewer mobile cytosolic 

proteins and peptides in regions of brain injury associated with PsP, due to lower cellular 

density and disrupted cytoplasm. Collectively, these studies suggest that APT that is based 

on the CEST mechanism is fast emerging as a novel molecular MRI technique in neuro-

oncology.

Glutamate (GLU)-CEST

Glu is the most important excitatory neurotransmitter in the central nervous system and 

plays a vital role in tissue bioenergetics.89 It has been demonstrated that Glu exhibits a pH 

and concentration-dependent CEST effect (Glu-CEST) between its amine group observed at 

~3.0 ppm downfield from bulk water protons. Using 1H MRS, some previous studies have 

reported high Glx (Glu and Gln) in GBM relative to the normal brain parenchyma.60 

Elevated levels of Glx have also been observed on in vitro 1H MRS studies of perchloric 

acid extracts of GBM specimens.90 In addition to its role as an energy fuel, Glx is involved 

in the cellular anabolic pathways. In particular, it is essential for the synthesis of purine and 

pyrimidine bases as a carbon (via aspartate) and nitrogen donor and, therefore, necessary for 

tumor cell growth.91

Moreover, tumors have been shown to release Glu at high levels, which may stimulate tumor 

cell proliferation via activation of Glu receptors. As GBM is known to infiltrate into the 

surrounding brain parenchyma, it has been observed that Glu is involved in facilitating 

tumor invasion by causing excitotoxic damage to the normal brain, thereby paving a 

pathway for tumor migration.92 Moreover, the peritumoral region is considered the primary 

area responsible for epileptogenesis, and increased levels of Glu in the peritumoral region 

has been implicated in the pathobiology of glioma-associated seizure activities.92,93

Our group94 developed a CEST method for imaging Glu (Glu-CEST) that can be utilized to 

generate high-resolution parametric maps to better understand the role of this crucial 

metabolite in studying brain tumor metabolism. In a recent study, increased peritumoral Glu-

CEST contrast was associated with both recent seizures and drug-refractory epilepsy in 

patients with grade II–III gliomas, thereby substantiating the notion that peritumoral region 

is an epileptogenic zone.95 In an ongoing project, we are currently investigating the potential 

of a 7T Glu-CEST sequence in detecting occult neoplastic infiltration into the normal brain 

by means of evaluating the extent of glutamatergic excitatory activity (unpublished data, Fig. 

7). We believe that better visualization of neoplastic spread in normal-appearing brain 
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regions may help clinicians to plan surgery and/or radiation therapy in a more controlled and 

effective manner, thereby preserving eloquent brain functions.

IMPORTANCE OF MULTIPARAMETRIC ANALYSIS

Multiparametric analysis is an evolving method in which multiple quantitative MRI 

techniques are analyzed in combination in order to overcome the intrinsic limitations of 

conventional MRI and to potentiate the individual value of each advanced MRI technique in 

isolation. Quantitative data obtained from metabolic and physiologic techniques such as 

DWI, DTI, DSC, DCE, ASL, or 1H MRS can be combined and analyzed with multivariate 

logistic regression, analysis of variance, or even with artificial intelligence (AI) tools to 

determine the optimal parameter/s and thresholds for addressing a specific question. 

Multiparametric MRI has been widely used to differentiate necrotic GBM from brain 

infections,33 to differentiate GBM from solitary brain metastasis,96 predict treatment 

response in GBM patients, to differentiate radiation necrosis from recurrent tumor,97 to 

assess tumor invasiveness,98 and in survival prediction.99

Representative anatomical images, MD, FA, CL, CP, and CBV maps, each from a patient 

with pyogenic abscess, and necrotic GBM, are shown in Figs. 8 and 9, respectively. The 

combination of DTI metrics and rCBV can help in the differentiation of necrotic GBM from 

brain metastasis and primary cerebral lymphoma. A multiparametric data analysis approach 

has also been widely used to evaluate treatment response in patients with GBM (Figs. 10 and 

11). In the past, we used advanced MRI techniques in identifying TP or PsP with high 

sensitivity and specificity.32 We also developed a classification model by incorporating FA, 

CL, and rCBVmax in multivariate logistic regression analyses to discriminate TP from PsP 

with an accuracy of 90%.

While assessing the therapeutic effect of anti-EGFRvIII chimeric antigen receptor T-cell 

therapy in patients with recurrent GBM, our group recently34 demonstrated that progression 

probability values derived from multiparametric MRI might allow a more accurate 

evaluation of treatment response than the use of individual parameters in isolation. Some 

other studies have also demonstrated the potential of multiparametric MRI in assessing 

treatment response to immunotherapies and targeted therapies in GBM patients.100

EMERGING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI), machine learning (ML), neural networks (NNs), deep learning 

(DL), and convolution neural networks (CNNs) are major components of data science that 

have driven significant attention into the neuro-oncology domain lately (Fig. 12).

AI is an overarching term that encompasses any task executed by a computer that generally 

requires human intelligence.101 ML is a component of data science focused on algorithms 

that enable computers to perform predictions about a new dataset using already trained data 

(Fig. 13). ML algorithms can be further classified as supervised and unsupervised.102 

Supervised ML algorithms are trained on a human-labeled dataset, which subsequently 

provide classification or regression on unlabeled data. The most common supervised ML 

techniques are linear and logistic regression, support vector machines (SVMs), naive Bayes, 
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decision trees, and random forest methods. In unsupervised ML, algorithms may identify 

undisclosed patterns for unlabeled datasets that are unrecognized in humans. The most 

common unsupervised machine learning methods include K-means, mean shift, affinity 

propagation, hierarchical clustering, Gaussian mixture modeling, and self-organizing maps.
102 Many AI techniques have been deployed to assist in glioma management. Several AI 

algorithms have already been employed to predict tumor grading, underlying genetic 

mutations, and survival rates; to automate diagnosis from histopathological slides; to 

segment tissues for surgical planning; and to monitor patients after treatment.103

Approaches with logistic regression classifiers,104 SVM,105,106 and NNs,107 have suggested 

that AI algorithms may be used to predict tumor grade based on imaging features. Some 

studies103 have also demonstrated that the prediction of tumor genomics from imaging data 

may be performed by AI algorithmic radiomics with a high accuracy rate. Radiomics is a 

broad term that comprises a set of computational methods that extract quantitative features 

from imaging that are beyond the human eye’s ability to detect.108,109 Previous studies have 

demonstrated ML-based algorithms predicting genetic mutations from imaging. The most 

frequently studied genetic mutations are the presence of IDH mutations,103,110–113 O6-

methylguanine-DNA methyltransferase (MGMT) promoter methylation,114–116 and the 

codeletion of chromosome arms 1p/19q, which are associated with better treatment response 

and survival rates.117 In addition, ML algorithms have been used to extract data from genetic 

databases, thereby clustering GBM patients into different transcriptional subtypes to predict 

the prognosis and treatment response.118

Preoperative planning has also been assessed by AI algorithms such as CNNs, SVM, and 

random forest algorithms with at least moderate accuracy. AI algorithms have already been 

used for tumoral segmentation,119–121 to differentiate voxels representing viable neoplasm 

vs. edema vs. normal brain tissue,117,122–125 and for tumor localization.126 AI has also been 

applied for intraoperative planning, aiding neurosurgeons to resect the maximum amount of 

tumor and the minimum amount of viable tissue. DL methods, coupled with hyperspectral 

imaging, were able to accurately (about 80%) differentiate neoplastic tissue from adjacent 

nontumoral brain tissues.127

The creation of slide scanners, which can digitalize microscopic slides into high-quality 

image files (computational histopathology), has made possible the inclusion of AI into the 

pathology realm.128,129 SVM and decision trees have already been used to segment and 

classify cells on smear preparations of gliomas with high accuracy.130 CNNs also have been 

used to extract significant histopathological features of a GBM from a slide with high 

accuracy.131 SVM algorithms have been employed for diagnosis and glioma grading (grades 

II, III, and IV) on slide images with an accuracy of about 90%.132

Few studies are available involving the application of AI to differentiate treatment effects 

from tumor progression. An SVM classifier has been trained to diagnose PsP vs. TP in GBM 

patients treated with surgery and CCRT with high sensitivity and specificity of the classifier 

for PsP.133 A CNN developed to differentiate TP vs. PsP in patients with GBM had an 

acceptable performance and a high AUC.134 Several AI algorithms have been developed to 

predict the survival in glioma patients, with superior accuracy compared to conventional and 
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advanced MRI techniques.134–138 AI also has the potential to impact the field of 

radiotherapy positively, assisting in patient selection, segmentation, simulation, treatment 

planning, quality assurance, and follow-up.127

In conclusion, GBM is the most common and most fatal of all primary malignant brain 

tumors in adults. Diagnosis and treatment response evaluation remain highly dependent on 

neuroimaging. Despite aggressive multimodal treatment, the prognosis has remained poor. 

Continuous developments in neuroimaging techniques have provided new insights into the 

understanding of the underlying tumor biology. Conventional MRI sequences provide 

refined anatomic detail and detection of BBB integrity and leakage. Multiparametric MRI 

combining advanced MRI techniques such as DWI, DTI, DSC, DCE, 1H MRS, Glu-CEST, 

and APT imaging are useful to accurately assess treatment response, particularly with the 

advent of novel targeted therapies. We believe that with continued advances in personalized 

medicine and better understanding and availability of these emerging neuroimaging 

techniques powered by AI tools, will improve the quality of life and overall outcome in these 

patients.
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FIGURE 1: 
Postcontrast T1-weighted and T2-FLAIR images at three different slice levels from patients 

with TP (left panel) and PsP (right panel) demonstrating equivocal imaging findings with 

similar patterns of contrast enhancement and surrounding areas of T2-FLAIR signal 

abnormality suggesting the limitation of conventional MR imaging in reliably differentiating 

TP from PsP in GBM patients.
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FIGURE 2: 
MR images of 70-year-old female glioblastoma patient with corpus callosum invasion (top 

panel) (a–c) and a 53-year-old male glioblastoma patient without corpus callosum invasion 

(bottom panel) (d–f). Axial contrast-enhanced T1-weighted images (a,d) demonstrate the 

extension of enhancing tumor into the splenium of CC in (a) (arrowhead), with normal-

appearing CC in (d). Axial FLAIR images (b,e) demonstrate corresponding expansile 

infiltrative FLAIR signal abnormality in the splenium of corpus callosum (arrow) in (b), 

whereas the CC seems uninvolved in (e, arrow). Lower FA from the splenium of the corpus 

callosum is noticed in the FA map (c, arrow) for the patient with shorter survival than the 

one with longer overall survival (f, arrow). Reprinted with permission from Ref. 39 (Mohan 

et al., Eur J Radiol 2019 Mar; 112:106–111).
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FIGURE 3: 
Left panel: Boxplot of FA from the corpus callosum (CC) in GBM patients with short and 

long survival. The solid line inside the box represents the median value, while the edges 

represent the 25th and 75th percentiles. Straight line (bars) on each box indicates the range of 

data distribution. Circles represent outliers (values more than 1.5 box length from the 75th/

25th percentile). 0. Control group.1. Long survivors without CC invasion. 2. Short survivors 

without CC invasion. 3. Long survivors with CC invasion. 4. Short survivors with CC 

invasion. Comparison between groups 1 and 2 (P = 0.14), groups 2 and 3 (P = 0.95) did not 

reach a significant difference. There were significant differences between all other groups (P 
< 0.05). Right panel: The ROC curve demonstrates that the FA value from the CC is the best 

predictor for overall survival, with an AUC of 0.77, sensitivity 1, specificity 0.59 using a 

cutoff value of 0.70). Reprinted with permission from Ref, 39 (Mohan et al., Eur J Radiol 

2019 Mar; 112:106–111).
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FIGURE 4: 
Axial postcontrast T1-weighted image demonstrating a nonenhancing neoplasm in the left 

parietal lobe; however, the corresponding 3D-EPSI derived metabolite ratio map 

demonstrates high Cho/NAA, suggesting a higher-grade glioma. On histopathology (not 

shown), this neoplasm showed areas of increased mitotic activities and pseudopalisading 

necrosis consistent with GBM (WHO grade IV).

Gonçalves et al. Page 30

J Magn Reson Imaging. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5: 
Axial T2-FLAIR image (a) demonstrating an ill-defined hyperintense and expansile mass in 

the right frontal region extending into the genu of CC. There is heterogeneous contrast 

enhancement within the mass on the corresponding postcontrast T1-weighted image (b). A 

DSC-derived CBV map (c) shows high CBV within the mass. Proton MR spectra (d,e) from 

a voxel encompassing a high CBV region (red color) and from a voxel encompassing a low 

CBV region (green color) are exhibiting various metabolites. Please note the presence of 

high Cho levels from a high CBV region within the neoplasm, suggesting regions of high 

vascularity are associated with increased cellular proliferation. 1H MRS grid overlaid on 

CBV map (e) showing spectra from different regions of neoplasm. On histopathology (not 

shown), this mass showed areas of high cellularity, pseudopalisading necrosis, and 

endothelial proliferation consistent with anaplastic astrocytoma (WHO grade III).
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FIGURE 6: 
Top row: axial postcontrast T1-weighted image from a patient with TP, demonstrating a 

neoplasm in the right thalamus infiltrating into the lateral ventricles. The ROIs are overlaid 

on the image, with the colors indicating the following defined regions: yellow, CER; orange, 

IPR; brown, DPR. The corresponding Cho/NAA map shows areas of elevated Cho/NAA 

(color bar indicating the distribution of nonnormalized Cho/NAA). A photomicrograph of a 

histologic section (hematoxylin-eosin stain) shows zones of high tumor cellularity, necrosis, 

and vascular proliferation. Bottom row: axial postcontrast T1-weighted image from a patient 

with PsP, demonstrating a neoplasm in the left frontal lobe. The different ROIs as defined 

above, are overlaid on the image. The corresponding Cho/NAA map shows reduced 

Cho/NAA compared with that of the TP case shown above. A photomicrograph of 

hematoxylin-eosin stain reveals most of the tissue with treatment-related changes, including 

extensive geographic necrosis and vascular fibrinoid necrosis. Reprinted with permission 

from Ref. 62 (Verma et al., NMR Biomed 2019 Feb; 32 (2): e4042).
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FIGURE 7: 
Representative B0 and B1 field in-homogeneity corrected Glu-CEST maps at different slice 

levels demonstrating high glutamate contents within the tumor bed. Please note the presence 

of high glutamate signals in the body and splenium of corpus callosum, indicating 

infiltrative nature of this neoplasm.
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FIGURE 8: 
A patient with pyogenic abscess. An axial postcontrast T1-weighted image demonstrating a 

ring-enhancing lesion in the left frontal lobe. This lesion demonstrates heterogeneous signal 

intensities on the corresponding T2-FLAIR and B0 images, with moderate edema. The 

central core of the lesion shows low signal on the MD map, and slightly high signal 

intensities on the FA and CP maps, indicating anisotropic content. An enhancing region in 

the abscess wall demonstrates minimally elevated rCBV. Reprinted with permission from 

Ref. 36 (Chawla et al., J Magn Reson Imaging2019 Jan; 49 (1):184–194).
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FIGURE 9: 
A patient with necrotic GBM. Axial postcontrast T1-weighted image demonstrates a ring-

enhancing lesion in the right posterior temporal lobe, with heterogeneous signal intensities 

on the corresponding T2-FLAIR and B0 images as well as marked surrounding edema. The 

central core of the lesion shows high MD and low FA, CL, and CP. Also, marked elevation 

of rCBV corresponding to the enhancing region is visible. Reprinted with permission from 

Ref. 36 (Chawla et al., J Magn Reson Imaging 2019 Jan; 49 (1):184–194).

Gonçalves et al. Page 35

J Magn Reson Imaging. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 10: 
Axial MR images from a 62-year-old patient with TP. Postcontrast T1-weighted image 

shows an enhancing lesion in the left frontal lobe. Coregistered DTI-derived parametric 

maps and CBV maps are shown. Increased FA, CL, and CBV are seen corresponding to the 

areas of enhancement (white arrows).
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FIGURE 11: 
Axial MR images from a 65-year-old patient with PsP. Postcontrast T1-weighted image 

shows a heterogeneously enhancing lesion in the right thalamic region. Coregistered DTI-

derived parametric maps and CBV maps are shown. CBV map shows moderately increased 

CBV from the lesion (white arrows). Decreased FA, CL, and CP and increased CS are 

observed from the enhancing part compared with normal white matter. Also, note the 

presence of lower CBV from contrast-enhancing regions compared to that from the TP 

patient shown in Fig. 10, suggesting a lower degree of perfusion and neovascularization in 

PsP compared to TP.
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FIGURE 12: 
Venn diagram demonstrating the hierarchy of artificial intelligence fields defined in the text.
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FIGURE 13: 
Treatment response in neuro-oncologic imaging. After standard-of-care treatment with 

combined radiation therapy and chemotherapy, increasing T2 FLAIR signal intensity 

abnormality and new and/or increasing size of enhancing lesions are often seen. AI-based 

“virtual biopsy” could assist in distinguishing underlying biology and segregating treatment 

response into three possible categories: true progression (>75% recurrent and/or residual 

glioma at pathologic examination), mixed response (25–75% recurrent and/or residual 

glioma at pathologic examination), and pseudoprogression (>75% treatment-related 

changes). Categories dictate distinct therapeutic approaches. In this example, the new 

enhancing lesion was found to represent 100% of treatment-related changes at pathologic 

examination, with few atypical cells. Reprinted with permission from Ref. 100 (Rudie et al., 

Radiology 2019 Mar; 290 (3):607–618).
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