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Abstract

Physical activity is dynamic, complex, and often regulated idiosyncratically. In this paper, we 

review how techniques used in control systems engineering are being applied to refine physical 

activity theory and interventions. We hypothesize that person-specific adaptive behavioral 

interventions grounded in system identification and model predictive control will lead to greater 

physical activity than more generic, conventional intervention approaches.

Summary for Table of Contents:

Computational modeling approaches can be applied with intensive longitudinal data on physical 

activity to refine behavioral theories and improve interventions.
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INTRODUCTION

The majority of American adults fail to attain recommended levels of physical activity (1). 

Insufficient population-level physical activity adversely impacts health and creates 

substantial burden for healthcare systems (2). Significant time and resources have been 

invested to promote physical activity. Yet, to date, these investments by policy makers, the 

health care industry, employers, and consumers have not been sufficient to meet the 

challenge. A fundamental barrier to addressing the inactivity crisis is the misalignment 

between the nomothetic assumptions of behavioral theories and interventions that seek to 

work at the population-level and the idiographic nature of behavioral dynamics at the 

individual level. Put simply, a one-size-fits-all approach to theory and behavioral 

intervention development is unlikely to be sufficient for complex, multiply-determined 

Corresponding author: David E. Conroy, Department of Kinesiology, The Pennsylvania State University, 266 Rec Hall, University 
Park, PA 16802. Tel 814.863.3451, Fax 814.865.1275, conroy@psu.edu. 

The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Exerc Sport Sci Rev. Author manuscript; available in PMC 2021 October 01.

Published in final edited form as:
Exerc Sport Sci Rev. 2020 October ; 48(4): 170–179. doi:10.1249/JES.0000000000000232.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



behavioral phenomena such as physical activity. We propose that methods developed in the 

field of control systems engineering can be integrated with behavioral science to optimize 

the explanatory and predictive power of person-specific models of behavior. These person-

specific models can provide a basis for refining theories to explain individual behavior and 

developing person-specific adaptive intervention approaches. These approaches use 

periodically updated models of behavioral responses to intervention to refine decision rules 

for delivering interventions. In this paper, we review research applying system identification 

methods to develop person-specific models of physical activity dynamics and propose that 

this research sets the stage for improving physical activity interventions using model 

predictive control tools to deliver person-specific adaptive behavioral interventions.

ALIGNING THEORY, DATA, AND METHODS FOR DYNAMIC PHENOMENA

Most theories used to explain physical activity were developed to differentiate between 

people engaged in more versus less physical activity (3). Static summaries of individual 

differences in physical activity have been common in this literature. This approach has been 

effective for explaining infrequent health behavior decisions (e.g., whether to get vaccinated 

against flu or screened for cancer) but may not be as effective for explaining and predicting 

health behavior decision processes (e.g., whether to move or not) that vary continuously in 

time (4).

Studies using ecological momentary assessment and ambulatory monitoring methods for 

capturing intensive longitudinal data are increasingly common and important in the physical 

activity literature (5). Advances in mobile and sensor technology have made it possible to 

capture intensive longitudinal data on physical activity and associated psychological 

processes in the natural context of daily life with limited expense for researchers or burden 

for participants (6,7). Intensive longitudinal data have energized the research community 

because of their potential to reveal processes involved in initiating and maintaining behavior 

change (8). Access to intensive longitudinal data on behavior is necessary but not sufficient 

to study behavioral dynamics. Appropriate modeling strategies are also needed (7).

To date, multilevel modeling has been the most common technique applied to model 

intensive longitudinal data (9,10). These models have been applied profitably to test 

hypotheses about synchronicity and sequentiality but, for reasons noted below, they are not 

suitable for all modeling purposes with intensive longitudinal data (5). Multilevel models 

provide fixed effect estimates that represent the average within-person association between 

two variables (11–13). Caution is needed when attempting to generalize associations at the 

inter-individual level to explain within-person processes or system dynamics because those 

population-level estimates may not adequately describe any individuals in the dataset (14). 

At the individual level, within-person associations can vary quite dramatically from person 

to person so multilevel models often include random effects to capture that variance. Even 

with random effects in a model, conclusions about fixed effects are conditioned on an 

assumption that observations of each participant were made under similar conditions (15). 

Just as scientists are cautious about generalizing conclusions about behavior in the lab to 

behavior in the natural context of daily life, they should also be cautious in generalizing 

conclusions about behavior observed in different contexts of daily life (15). Collecting more 
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data to represent more diverse contextual exposures is not the answer to this problem by 

itself. Approaches that predict future responses of an individual based on incoming data 

about that individual are needed to create a cumulative understanding of dynamics at the 

individual level. Multilevel models are not well suited to that challenge.

Dynamic approaches assume that systems evolve as a function of both past and present 

conditions of the system. These systems require a memory of recent conditions because past 

states and behaviors may impose constraints on future states and behaviors. For example, 

future physical activity may be constrained by physiological limits on energy availability or 

psychological limits for tolerating fatigue or pain. The science of physical activity 

promotion will advance most rapidly if person-specific psychological, contextual, and 

behavioral dynamics can be leveraged to adapt or “tune” interventions to the specific 

requirements of each individual. With person-specific models generated, one could then go 

on to the latter step of identifying principles that do (and do not) generalize across members 

of the population (16).

TRANSLATING BEHAVIORAL THEORIES INTO COMPUTATIONAL MODELS 

OF PHYSICAL ACTIVITY

Behavioral interventions to promote physical activity are always either explicitly or 

implicitly grounded in a theory or conceptual model of behavior change. In our view, 

theories are explanatory tools that integrate principled reasoning and evidence to make sense 

of observations; they explain why relations exist between variables. In contrast, conceptual 

models are descriptive tools for organizing observations and specifying hypothesized causal 

influences (including feedback loops); they summarize how variables are related. 

Conceptual models are useful because they can be used to operationalize theories 

mathematically and allow users to simulate how changes in one variable might influence 

change in another.

Conceptual models can vary in complexity. At one end of the spectrum, models can be quite 

simple, merely describing the expected direction of an association between two variables. At 

the opposite end, models can be formal mathematical expressions of systems of relations 

that unfold between constructs, behaviors or contexts and may even change over time. 

Computational models refer to a broad class of approaches used to specify beliefs about the 

dynamic behavior of complex systems (17). These models can be used to simulate how 

future behavior would unfold over time under a variety of conditions. Most models of 

physical activity – indeed all health behaviors – have been closer to the simple than complex 

end of this continuum because they rarely address the dynamics of behavior directly (18). 

This simplicity is constraining theory and intervention development for complex health 

behaviors. To advance the science of physical activity promotion, behavioral models need to 

be refined – that is, formally expressed, expanded, and elaborated – into testable 

computational models. These models can then be used to guide development of experiments, 

such as system identification experiments, that formally test these computational models.

This work is underway. Computational models of health behavior emerged in the past 

decade, initially based on the theories of reasoned action and planned behavior (19,20). The 
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first attempts to translate social-cognitive theory into formal computational models of 

physical activity occurred shortly thereafter (6,21). This work implemented a specific class 

of computational modeling techniques that describe system dynamics. Figure 1 illustrates a 

simplified dynamic system in which an input alters a network of states in the system to 

effect change on an output. Inputs represent external factors that influence the states and 

outputs being studied. Some inputs are controllable using behavior change techniques; 

others are exogenous and not controllable (e.g., weather conditions). States describe internal 

processes that can be modified indirectly (e.g., self-efficacy beliefs). Outputs represent 

measurable outcomes connected to the behavior being studied (e.g., step counts). Proof-of-

concept for computational modeling of physical activity was provided via secondary 

analysis of bottom-up change processes in a small data set from a sub-sample of data from 

the Mobile Interventions for Lifestyle Exercise and Eating at Stanford study (6,21,22). 

Martín, Rivera, Riley, Hekler and colleagues specified a computational model with two 

inputs (skills training and reminders to set goals) and two outputs (self-efficacy beliefs and 

daily step counts) (23). The model was used to simulate values for self-efficacy and daily 

step counts under varying conditions. When predicted values were compared to observed 

values, the model accounted for approximately a third of the variance in efficacy beliefs and 

half of the variance in physical activity levels.

Martín, Riley, and colleagues extended that approach in a top-down manner to represent 

social-cognitive theory more fully (21,24). Their model, shown in Figure 2, applied a fluid 

analogy model commonly used to manage supply-chain dynamics. Psychological processes 

were represented as flowing from inputs through states to outputs, much like fluid flow 

between tanks, or energy traveling between capacitators in the power grid. It included 

dynamic variables that functioned as both states and behavior, including self-management 

skills (e.g., goal-setting, self-monitoring), outcome expectancies, self-efficacy beliefs, cues 

to action (e.g., invitations to walk with someone), behavior, and behavioral outcomes (e.g., 

well-being). For example, the output of physical activity was expressed as a function of a 

network of states involving outcome expectancies, self-efficacy beliefs, and cues to action. 

In this model, recycle flows were introduced to accommodate feedback loops where recent 

or present values of one construct influence future values of another construct and those 

values subsequently influence future values of the original construct. For example, self-

efficacy beliefs served as an inflow to physical activity outputs, and physical activity served 

as an input to self-efficacy belief outputs. This arrangement represents what Bandura 

described as reciprocal determinism based on agency (self-efficacy beliefs influencing future 

physical activity) and mastery experiences (physical activity influencing future self-efficacy 

beliefs) (25). The extended model also incorporated a set of variables that served exclusively 

as inputs to the model, such as skills training for enhancing self-management skills, 

observed behavior, verbal persuasion and social support, perceived barriers, intrapersonal 

states, environmental context, and a variety of internal and external cues that influence cues 

to action.

A series of simulations were conducted by varying a limited number of parameters in the 

model to observe responses in outputs (24). Results of those simulations aligned with 

predictions of the theory. For example, self-efficacy moderated the effects of cues to action 

on behavior; cues had a limited effect when self-efficacy was low but a sustained positive 
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effect when self-efficacy was high. These effects were not unbounded. Increasing the 

frequency of cues to action for several days led to diminishing returns and ultimately 

became counterproductive. This model holds promise for application with real participant 

data and can yield new insights for designing and refining behavioral interventions (18).

SYSTEM IDENTIFICATION OF DAILY PHYSICAL ACTIVITY RESPONSES TO 

INTERVENTION

Control systems engineering provides a set of tools for (1) specifying computational models 

of dynamic systems, (2) identifying model coefficients from intensive longitudinal data 

(system identification), and (3) simulating how outputs are expected to respond to different 

inputs over time (26). When multi-component behavioral interventions introduce 

components at different occasions, system identification can be applied retrospectively to 

identify which components actively stimulated behavior change (and which were inert). This 

bottom-up approach uses interventions to excite the system so its dynamics can be 

characterized.

Identifying Inputs Associated with Maintenance of Daily Physical Activity

The earliest-known application of system identification for decomposing the effects of a 

multi-component treatment package involved a secondary analysis of daily physical activity 

reports from a subsample of participants in the Active Adult Mentoring Program (27). 

Participants were selected from the treatment group of a 16-week randomized controlled 

trial that used peer volunteers to deliver a physical activity intervention grounded in social-

cognitive theory. This intervention involved multiple components, including self-monitoring, 

gym memberships, behavioral initiation training, and maintenance training. At the end of the 

16-week intervention period, both the treatment group and the control group increased their 

physical activity but only the treatment group maintained some of those gains at an 18-

month follow-up (28).

In secondary analyses, participants in the treatment group who completed the intervention 

period (n=34) were divided into subsamples of maintainers (n=10) and nonmaintainers 

(n=24) based on whether they reported engaging in 150 minutes or more of moderate-to-

vigorous physical activity at the 18-month follow-up (participants who did not report that 

level of activity were classified as nonmaintainers). Hekler and colleagues then applied 

system identification tools to model daily self-reported physical activity (output variable) as 

a function of the onset and offset of individual intervention components and time-varying 

determinants of physical activity (input variables). Using continuous-time linear models, 

physical activity was modeled as a first-order system, meaning that physical activity was 

modeled as a function of previous-day states and activity and inputs from time-varying 

intervention components (note: higher-order systems would involve more than one previous 

day of data, increasing the memory built into the model).

System identification modeling yielded different models for maintainers and non-

maintainers. Nonmaintainers’ physical activity was a function of inputs that included self-

monitoring, having a gym membership, and engaging in more exercise bouts outdoors. In 

Conroy et al. Page 5

Exerc Sport Sci Rev. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contrast, maintainers’ physical activity was a function of inputs that included self-

monitoring, behavioral initiation training, maintenance training, and engaging in more 

exercise bouts outdoors. Thus, system identification provided the unique insights that (1) 

having gym memberships did not discriminate maintainers from non-maintainers, but (2) 

uptake of behavioral initiation and maintenance training were critical for discriminating 

those sub-groups at follow-up. One implication of this system identification analysis for 

optimizing future interventions is that it may be useful to reconsider the cost-benefit analysis 

of providing gym memberships as a part of this multicomponent package. This component 

adds expense but neither stimulated a greater behavioral response during the intervention 

period nor supported maintenance of physical activity at follow-up. Indeed, the data 

suggesting better maintenance among those who exercised outdoors, suggests a plausible 

iatrogenic effect to gym membership related to maintenance, which makes sense when 

considering the gym membership was removed at that time. Thus, any behavioral routines 

generated in the context of a gym were no longer available to the person. A second 

implication is that the behavioral initiation and maintenance trainings used should be refined 

to address the needs of nonmaintainers more effectively.

Identifying Person-Specific Intervention Inputs of Daily Physical Activity

Another bottom-up application of system identification was used to test a dynamic 

formulation of social cognitive theory using data from the Just Walk intervention (29,30). 

After a 2-week baseline period of activity monitoring with a consumer device, 20 adult 

participants received a pseudo-randomized schedule of daily step count goals with varying 

reward values for a 12-week intervention period. The pseudo-randomized schedule was 

designed to produce the behavioral variation (excitation) needed for dynamic modeling of 

two independent inputs on behavior. In this case, those inputs were the two intervention 

components: daily step goals and reward values. The ability to experimentally manipulate 

these inputs allows for estimation and validation of computational models, thus, allowing 

system identification to be used to test these models.

Daily step goals were tailored based on initial activity levels during the baseline period. 

They varied from ‘doable’ (matching the median daily steps during baseline) to ‘ambitious’ 

(up to 175–250% of the median daily steps during baseline depending on initial step counts). 

Whenever participants met their daily step goal, they earned reward points that could be 

exchanged for gift cards. These values were announced with the step goal in a message at 

the beginning of every day. Daily reward values ranged from 100 to 500 points 

(corresponding to monetary equivalents ranging from $0.20 to $1.00). These two 

intervention components were manipulated in an orthogonal manner so participants could be 

incentivized with small or large rewards for attaining doable or ambitious goals. Daily 
reward receipt was a third input but was not experimentally manipulated. Prior to delivering 

intervention messages, participants were prompted to self-report other hypothesized time-

varying determinants of physical activity (e.g., expected stress, expected busyness, expected 

typicality of the day).

System identification modeling was used to estimate the effects of controllable 

(manipulated) inputs, the intervention components, as well as the uncontrollable 
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(disturbance) inputs and states, on daily step counts. This experiment was open loop because 

the output (behavior change) in this dynamic system was not used to provide information 

that would be used to modify subsequent inputs (whereas closed loop experimentation uses 

changes in the output variable to adjust subsequent inputs). Separate linear systems with 

exogenous inputs were estimated for every participant. For each participant, 16 separate 

models were estimated. The base model included the daily steps goal, expected reward 

value, and rewards received. The 15 additional models included all possible combinations of 

five inputs: expected busyness, expected stress, expected typicality, and whether it was a 

weekend or weekday (separate binary variables). Final model selection for each participant 

was based on theoretical plausibility, empirical consistency and reliability.

This process resulted in individual models of varying complexity (e.g., 45% of the final 

models had four inputs, 40% of the final models had five inputs). Model fit was calculated 

by comparing observed daily steps with model-simulated daily steps for each individual. Fit 

for the 20 participants ranged from 6.3% to 46.0% of the observed daily step variance 

(M=19.2, SD=9.3, median=19.1). The most common input variables in the 20 individual 

models were whether it was a weekend or weekday and the expected typicality of the day. 

These findings revealed potential tailoring variables that could inform decisions about 

whether to deliver incentivized step goals to participants.

Implications for Developing Person-Specific Behavioral Interventions

The person-specific dynamical models estimated for system identification can also be used 

to simulate treatment responses under varying conditions. Freigoun et al. provided an 

example of an individual’s step responses to different goal intensities, expected rewards, 

granted rewards and expected busyness (30). Simulated responses from individual 

dynamical models can be used to determine the optimal combinations of intervention 

components for a given individual. These response simulations can reveal components that 

are more likely to be active versus inactive for stimulating behavior change. That 

information can be leveraged to optimize interventions by including only active components.

These examples of system identification from the Active Adult Mentoring Program and the 

Just Walk intervention modeled physical activity at a daily time scale. It is also possible to 

predict behavioral responses to physical activity interventions on faster time scales (e.g., 

hourly), provided that corresponding behavioral data are available, if interventions are 

expected to be delivered on a more frequent schedule. Faster time scales can be attractive for 

dynamical modeling because they yield the required intensive data in shorter periods. Yet 

there is a danger in selecting a time scale that is too fast because noise can drown out the 

signal from intervention responses. Noise represents unique variance in measurements that is 

unrelated to the signal in the sensor measurements (similar to unique variance of item 

responses unassociated with a latent variable in a latent factor model). Thus, researchers 

need to exercise their judgment and test different measurement time scales to select one that 

balances the duration of data acquisition with an acceptable signal-to-noise ratio.

These two examples also assume that a common model underlies person-specific behavioral 

dynamics across all contexts. Developing person-specific models to describe real-world 

behavior represents a major advance in physical activity research. It is also possible that 
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behavioral dynamics differ systematically across contexts. For example, consistent with 

national physical activity data, the Just Walk study models indicated that physical activity 

varied consistently between weekends and weekdays (29,31). In this instance, there may be 

advantages to modeling behavior as a switched system by constructing sub-models with (a) 

separate functions for modeling behavior on weekends versus weekdays, and (b) rules for 

determining when to switch to each model when predicting behavior. Switched systems are 

useful when behavioral dynamics differ under specific known conditions, such as on 

weekends versus weekdays. The next example extends applications of system identification 

to model the dynamics of acute behavioral responses to physical activity interventions in a 

switch model that allows for different control dynamics on weekends and weekdays.

SYSTEM IDENTIFICATION OF MOMENTARY PHYSICAL ACTIVITY 

RESPONSES TO INTERVENTION

Text messages represent a common mode of physical activity interventions that can be 

delivered multiple times every day at very little cost (32–36). The conventional approach to 

evaluating text message interventions is to treat them as a treatment package by comparing 

the physical activity of groups who received text messages and groups who did not receive 

text messages at the end of an intervention period. This approach has shown that, as a 

treatment package, text messages appear to have small-to-medium sized positive effects on 

physical activity (34–36). Yet little is known about the parameters for optimizing messaging 

effects. Interventionists are left with little guidance to answer important dosing questions: 

When should messages be sent? Which messages should be sent? How many messages 

should be sent? In what contexts and states should a message be sent? How long does it take 

for the build-up of an effect? How long is the half-life or degradation of an effect? How long 

is a given message expected to have an active effect on behavior before another message is 

needed? System identification can be applied to answer these questions.

In a recent study, Conroy, Lagoa and colleagues enrolled 10 adults to receive text messages 

and wear activPAL activity monitors for 16 weeks (37,38). Participants received five text 

messages distributed in equal-sized blocks from 8:00am to 8:00pm, with message delivery 

constrained so all messages were separated by at least one hour to avoid message pile-up. 

Messages were drawn randomly from one of three content libraries – ‘move more,’ ‘sit less,’ 

and trivial facts. The ‘move more’ and ‘sit less message content was informed by social-

cognitive theory for consistency with prior messaging interventions as well as existing 

evidence for physical activity motivation (34,39,40). Participants were incentivized to 

confirm message receipt with a brief, timely reply. Message confirmation rates (>98%) 

suggested high fidelity of treatment delivery and receipt throughout the study (41).

One of the challenges in modeling these data was the intensity of data from the physical 

activity monitors which sampled at 20 Hz and provided output in 15-second epochs. 

Assuming 16 waking hours daily, each participant produced over 430,000 physical activity 

measurements over the 4-month study period. To produce a suitable signal-to-noise ratio, 

data were aggregated up to 15-minute epochs (after exploring a number of possibilities). 

Using a bottom-up approach, dynamical models were specified to estimate the effects of 
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receiving each type of text message (input) on activity behavior (output) in the subsequent 

15-minute epoch. Past behavior also predicts future behavior. Memory of past behavior was 

added to the model by including recent activity behaviors as inputs. Model order (the 

number of previous epochs of behavior used as inputs) was varied to evaluate effects on 

model uncertainty. A 5th-order model (i.e., using the last 5 epochs of behavior as inputs) was 

selected. Next, separate piecewise models were specified to estimate the effects of text 

message and recent behavior (inputs) on weekend and weekday physical activity (outputs).

Conroy, Lagoa and colleagues then used coefficients generated from observed data to 

simulate impulse responses to each type of text message. As seen in the left panel of Figure 

3, impulse response curves indicate the expected change in activity behavior (output) during 

each 15-minute epoch following delivery of a single message of each type. Impulse 

responses reveal how long it takes for that single message to have its peak momentary effect 

(i.e., whether it changes behavior instantly or 30 minutes after message delivery). They also 

suggest when messages may become inert and no longer have an effect on activity behavior. 

This information can be useful for optimizing the frequency of message delivery schedules. 

We have also found it helpful to examine cumulative step response curves. As seen in the 

right panel of Figure 3, cumulative response curves indicate the overall effect of an 

individual message over time, as indicated by the steady state achieved at the asymptote of 

the curve. These two curves summarize (a) the latency for a single message to initiate its 

expected momentary effect (delay of initial change), (b) the latency for a single message to 

achieve its expected peak momentary effect (delay of peak instantaneous change), (c) the 

magnitude of a single message’s peak expected effect (peak instantaneous change), (d) the 

duration a message is actively exerting an effect on behavior before behavior achieves a 

steady state (settling time), and (e) the expected overall effect of a single message (steady 

state). This information is important when individual messages are used to stimulate desired 

behavior change in a system.

These two plots can reveal the heterogeneity of behavioral responses to individual text 

messages. Figure 4 presents simulated impulse response (panels a, c, e, and g) and 

corresponding step response (panels b, d, f, and h; cumulative behavior change) curves 

following delivery of three types of messages for two participants. These curves represent 

simulated responses based on the empirically-generated person-specific models of behavior 

change. The output of these models, represented by the y-axis, involved changes in the 

number of minutes moving following message delivery relative to what would be expected if 

a message had not been delivered. The maximum impulse response is theoretically 

constrained by the size of the epoch (e.g., an individual cannot exceed 15 minutes of 

movement time during a 15-minute epoch) but also practically constrained by model-

predicted outputs in the absence of message delivery (e.g., if 4 minutes of movement time 

were predicted for an epoch without a message, the maximum impulse response during that 

epoch would be 11 minutes with a message).

Both participants in this example were more responsive to messages delivered on weekends 

(panels a, b, e, and f) than on weekdays (panels c, d, g, and h). This difference suggests that 

occupational or social factors during weekdays may have constrained their ability to respond 

to messages. On weekends, each participant showed a behavioral response to a specific type 
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of message but these responses differed. The first participant (top half of Figure 4; panels a 

and b) responded to ‘move more’ messages by moving for an additional 8 minutes over the 

next 5 hours but had only trivial responses to the other messages. The second participant 

(bottom half of Figure 4, panels e and f) responded to ‘sit less’ messages by moving for an 

additional 10 minutes over the next 5 hours. Taken together, these results can be used to 

deliver messages on schedules specific to each participant. They can inform a decision rule 

that controls when messages are sent (i.e., on weekends rather than on weekdays), which 

messages are sent (i.e., ‘move more’ messages for the first participant, ‘sit less’ messages for 

the second participant), and how many messages are sent to achieve a behavior change goal 

(i.e., five messages for the first participant, four for the second participant). Similar 

heterogeneity of responses was found when sedentary time was the output in each model 

(37).

USING COMPUTATIONAL MODELS TO INFORM PERSON-SPECIFIC 

BEHAVIORAL INTERVENTIONS

The promise of precision medicine has been hyped (42). Genetic applications have captured 

the greatest interest and largely failed to live up to the hype (so far) (43). Precision medicine 

approaches could be expanded to address public health needs to focusing on prevention and 

addressing social determinants of health (44,45). The approach described here provides a 

basis for developing context-sensitive, person-specific adaptive behavioral interventions 

informed by intensive longitudinal data. A rich variety of data types can be incorporated in 

these models and interventions, including behavioral or physiological data from wearable 

sensors, psychological data from self-reports or personal sensing, contextual data linked to 

spatial locations, and temporal data.

Building on the text message intervention described above, the system identification 

coefficients provide a basis for developing person-specific decision rules for selecting and 

timing message delivery based on recent behavior, historical responses to different 

messages, and contextual tailoring variables (e.g., weekend vs weekday, location, weather 

conditions, built environment features). In this way, decision rules can ensure that people 

only receive messages they respond to, when they are likely to respond, and as often as 

needed to achieve their behavior change goals. Automating the design of these context-

sensitive, person-specific decision rules can promote health equity by making behavior 

change accessible across a variety of social contexts that constrain physical activity.

This extension of system identification to develop person-specific decision rules will rely on 

another set of tools from control systems engineering. Model predictive control is a real-time 

framework for developing decision rules (controllers) that directly incorporate system 

identification models (46,47). These controllers are effectively optimization algorithms that 

implement the decision rules for intervention delivery, and can be configured for multi-

component interventions, while recognizing constraints that limit dosages or keep outcomes 

of interest at acceptable levels. Figure 5 presents one pipeline for person-specific adaptive 

behavioral interventions. System identification tools are used to develop a dynamical model 

of the behavior. That model is used to design a controller for achieving a specific objective, 
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such as increasing physical activity by 30 minutes daily. The controller draws on 

information about recent and present values of the state to determine whether to deliver an 

intervention, which intervention to deliver, when to deliver the intervention, and how often 

to deliver the intervention. Behavioral responses to the intervention are tracked and used to 

adapt future intervention decisions by the controller as well as to adapt the model 

underpinning the controller. This integration of system identification and model predictive 

control in this way has been described as a control optimization trial (46). This approach can 

even be extended to permit periodic adaptations as the intervention algorithm learns more 

about how a specific individual responds to different interventions (inputs) under different 

conditions (states and external factors such as the day of week or weather conditions). This 

intervention approach would be adaptive (in the control systems sense) because the person-

specific decision rules are refined as new information about that person’s behavioral 

dynamics accumulates. It is akin to the continuous tuning interventions described by Hekler 

and colleagues (45).

System identification can also be used to develop just-in-time adaptive interventions (JITAI; 

48). The JITAI approach was developed to deliver context-sensitive behavioral interventions 

at moments of vulnerability/opportunity and receptivity. These interventions require that 

intervention developers specify decision points (the frequency of determining whether or not 

to intervene), a tailoring variable that will be used to determine vulnerability/opportunity at 

each decision point, a decision rule that will be used to determine whether the level of the 

tailoring variable should trigger an intervention, one or more intervention options that can be 

delivered, and proximal and distal outcomes that are targeted. The decision rule in most just-

in-time adaptive intervention approaches (JITAI) is generic, meaning that the same rule is 

applied for all participants. The person-specific adaptive intervention approach described 

here is different. It may start with a generic decision rule but it progressively adapts that rule 

to be increasingly person-specific over time as it acquires new information about an 

individual’s behavioral responses to different interventions under different conditions. 

Unlike many existing JITAI approaches, this model also has built-in memory that stores 

recent values of the state and behavior to inform decisions about whether or not to intervene. 

Another difference between these approaches is that existing JITAI approaches do not 

monitor responses to interventions to inform whether future interventions should be 

delivered.

To be sure, system identification and model predictive control are not the only approaches 

available to model intensive longitudinal data and inform intervention development. Mixed-

effect location-scale modeling is an approach for estimating individual differences in 

variance adjusted for means (49). Time-varying effect models are useful for characterizing 

how (instantaneous) relations between variables change over time (50). Machine learning is 

a buzzword used to describe a large family of methods for classification and prediction 

tasks. Machine learning approaches can overlap with the system identification described 

herein because both use past or current information to predict future behavior, a critical 

feature for intervention development.

With respect to intervention development, if a generic decision rule can be applied to all 

participants, then the established JITAI framework can be applied to develop context-
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specific behavioral interventions (48,51). Micro-randomized trials can be used to provide an 

experimentally-derived, generic decision rule for delivering these interventions (52). The 

HeartSteps intervention was the first example of a micro-randomized trial for physical 

activity promotion (53). Another approach to personalizing interventions involves 

recommender systems. For example, the MyBehavior app uses a multi-arm bandit method to 

provide personalized physical activity recommendations (54,55). This intervention 

incorporated an explore-and-exploit algorithm to leverage both the familiarity of frequently-

enacted physical activities with the novelty of new physical activities to stimulate behavior 

change. If one has access to large volumes of data, it may even be possible to develop a 

model and controller simultaneously using reinforcement learning tools; however, this 

approach has yet to be applied to develop a physical activity intervention (56). As these and 

other approaches for personalizing physical activity interventions become more popular, it 

will be valuable to compare them directly to determine which approaches lead to the most 

effective interventions in the least amount of time.

CHALLENGES OF DEVELOPING PHYSICAL ACTIVITY INTERVENTIONS 

USING COMPUTATIONAL MODELING

Control systems engineering offers a powerful suite of tools that can be applied to develop 

person-specific behavioral interventions but it presents unique challenges for researchers. 

These challenges include research design, data processing, and communicating results to a 

research community that may be unfamiliar with these methods.

From a research design perspective, intensive longitudinal data are clearly needed. The 

question is, how much? The factors used to inform statistical power analyses – sample size, 

effect size, and Type-1 error rates – are less informative for planning studies using system 

identification. Instead, the relevant considerations involve the time scale of interest (e.g., 

daily vs hourly), the types and timing of inputs, the potency of the inputs (relative to 

potential unmeasured influences), whether feedback is included in the design, model 

complexity, and uncertainty in the model.

Sensors, such as accelerometers, have enabled high-frequency data collection. Raw sensor 

signals are typically processed by software or firmware for an activity monitor to provide 

physical activity indices at different levels of abstraction (e.g., counts/minute, steps/minutes, 

daily duration of moderate-to-vigorous physical activity). Our experience has shown that 

more frequent data is not always better because the noise-to-signal ratio can be inflated. As a 

part of data processing, researchers will need to explore a variety of sampling frequencies to 

determine the optimal one for their applications.

Finally, system identification approaches are well-established in control system engineering 

but largely unfamiliar to the physical activity promotion community. These models have 

unique evaluation and reporting requirements. Researchers may need to educate reviewers 

and editors who are not accustomed to this type of work. None of these challenges are 

insurmountable but they will require a flexible, team science approach to introduce 

computational modeling approaches into the world of physical activity promotion.
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CONCLUSIONS

In sum, we reviewed early-stage research applying a well-established suite of tools from 

control systems engineering to develop, identify and interpret computational models of 

physical activity. These models provide a basis for designing, refining and optimizing 

physical activity interventions at a variety of time scales. Whether a single time scale is 

sufficient to model physical activity dynamics is not clear and efforts are underway to 

develop multi-time scale models of physical activity dynamics (18). We propose that single 

or multi-time scale models can be extended using model predictive control tools to deliver 

interventions that are sensitive to recent behavior, historical responses to treatments, and a 

variety of contexts under which behavior is executed over time. As information is acquired 

about behavior in new contexts and about different responses to treatment, these models can 

be adapted to ensure they remain person-specific as people develop and change. Although 

intervention development has been our focus, the accumulation of person-specific dynamic 

models has potential to accelerate theory development (16). To date, health behavior theories 

have not been articulated in ways that describe the dynamics of physical activity. The 

accumulation of person-specific dynamic models can be used to identify common processes 

as well as distinct subgroups characterized by predictable boundary conditions or processes 

(16). We look forward to further applications of system identification and model predictive 

control tools to improve the science and practice of physical activity promotion.
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Key Points

• Physical activity has largely been studied as a static individual difference 

instead of a dynamic process.

• Control systems engineering approaches can reveal how behavioral 

interventions influence daily and momentary physical activity dynamics.

• System identification of behavioral responses to interventions provides the 

basis for developing and adapting person-specific decision rules to select and 

time behavioral interventions.

• Person-specific behavioral interventions can be developed, adapted, and 

scaled to refine health behavior theories and address broad and unmet public 

health needs.

• Whether person-specific adaptive behavioral interventions are superior to 

more generic intervention approaches is an open empirical question.
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Figure 1. 
Generic dynamical system model showing inputs influencing states which influence outputs. 

This system evolves over time borrowing information about the recent and present inputs 

and states to predict future outputs.
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Figure 2. 
Social-cognitive theory expressed as a computational model (Reprinted from (21). Copyright 

© 2020 IEEE. Used with permission.)
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Figure 3. 
Impulse response (left panel) and cumulative step response curves (right panel) depicting the 

simulated response to an individual message. These curves reveal a number of important 

response features, including the latency to initiate a momentary message effect (a), latency 

to peak momentary message effects (b), magnitude of peak momentary message effects (c), 

settling time for responses to a message (d), and steady state response to a message (e).
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Figure 4. 
Heterogeneity of physical activity responses to different message types on weekends (panels 

a, b, e, and f) and weekdays (panels, c, d, g, and h) for two individuals (top and bottom 

halves; panels a-d and e-h).
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Figure 5. 
Precision behavioral intervention pipeline.
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