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Abstract
Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory 
mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects 
of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and trig-
gers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed 
and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge 
of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, 
and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms 
of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved 
in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signal-
ing pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in 
associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can 
be applied to the treatment of substance use disorders.
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Introduction

Memories related to obtaining positive outcomes promote 
continued reward-seeking behavior that is important for 
survival. Unfortunately, when the outcome is a drug of 
abuse, these memories can become abnormally strong and 
maladaptive, thus promoting drug use over other behaviors. 
Even during abstinence, exposure to environmental cues 
associated with drug use can trigger memories that elicit 
craving, cause physiological stress, and initiate drug-seeking 
behaviors that lead to relapse [1–4]. Uncovering the mecha-
nisms underlying the formation and retrieval of these drug 
memories may reveal ways to improve treatment and prevent 
relapse [5]. Much of the research focused on understanding 
the neural underpinnings of drug-associated memories has 
focused on memories formed during exposure to cocaine 

as the drug of abuse [6]. Cocaine use disorder remains a 
prominent burden on society, and cocaine use continues 
to increase [7]. Furthermore, there has been an increase in 
overdose deaths involving concomitant cocaine and heroin 
use [7]. Finally, identification of neural mechanisms rel-
evant to cocaine memories likely can be applied to other 
drugs of abuse [6, 8]. Thus, in this review, we will focus on 
experiments specifically addressing Pavlovian associative 
memories between cocaine and environmental contexts and 
discrete cues because of the extensive literature examining 
the consolidation, reconsolidation, and extinction of these 
memories.

Types of cocaine memories

Memories about reinforcers often involve associations 
between the reinforcer and contextual or discrete environ-
mental cues, information about the interoceptive effects or 
the value of the reinforcer, and information about behaviors 
that result in seeking and obtaining the reinforcer [3, 8, 9]. 
Drug memories can elicit cravings that promote continued 
use and relapse, but different types of memories may be dif-
ferentially important depending on the type of drug used and 
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the extent of drug use [3]. Moreover, these different types of 
cocaine associations may develop through different mech-
anisms and in different brain circuits, which is important 
to understand in order to optimize treatment development. 
With a focus on cocaine, we will briefly describe some of 
the types of memories that can contribute to drug-seeking 
behavior and relapse (Fig. 1).

Interoception and reward

Due to its direct effects on synaptic dopamine levels in brain 
regions associated with reward, cocaine is highly reinforc-
ing [10]. Neurons in the ventral tegmental area (VTA) of 
the midbrain send dopaminergic projections to the nucleus 
accumbens (NAc), also referred to as the ventral striatum, 
which are important for reward-related prediction and learn-
ing [10]. Cocaine increases synaptic dopamine in the NAc 
and other brain regions, including the dorsal striatum, pre-
frontal cortex (PFC), and limbic regions, and dopamine’s 
modulatory effects on neuronal activity influences both 
the rewarding effects of cocaine as well as reward-related 
learning [8, 10]. Due to its effects on the dopamine sys-
tem, cocaine also produces several physiological effects, 
referred to as interoceptive effects, and associative memories 
between the use of cocaine and these rewarding/interocep-
tive effects are formed [11].

Pavlovian associations

In addition to interoceptive associative memories, Pavlo-
vian associative memories can form between reinforcers 
and contextual or discrete environmental cues (also known 
as classical conditioning). Although these associations pro-
vide valuable information about the availability of natural 
reinforcers, environmental cues associated with cocaine use 
can lead to craving and relapse in individuals with substance 
use disorders [1]. Pavlovian associations are dependent on 
the basolateral amygdala (BLA), and contextual associations 
specifically appear to additionally rely on the hippocampus 
[6, 12]. These regions interact with each other, the PFC, 
and other sensory input regions to establish memory traces 
that can then promote drug using actions via outputs to the 
striatum when these cues and contexts are subsequently 
encountered [13].

Goal‑directed instrumental learning (response–outcome 
associative learning)

When cocaine is self-administered, instrumental learning 
occurs alongside Pavlovian conditioning [14]. Initial learn-
ing of instrumental responses requires the formation of 
response–outcome associative memories that guide goal-
directed behavior [15]. This process involves learning that 

an instrumental response or behavior results in delivery of 
the drug and its subsequent rewarding effects [16]. Goal-
directed learning relies on cortico-striatal circuits that use 
contextual stimuli to detect reward availability and guide 
behavior [14]. The dorsomedial striatum (DMS) gets direct 
and indirect input from the PFC (particularly the prelimbic 

Fig. 1   Schematic illustrating the types of associative memories 
involved in cocaine-seeking behavior. Interoception involves associa-
tions between cocaine and its reinforcing and interoceptive effects, 
including increased heart rate and blood pressure, increased locomo-
tor activity, and activation of brain regions associated with reward. 
Pavlovian conditioning results in associations between cocaine and 
discrete cues and/or the context in which cocaine is received. Goal-
directed instrumental learning concerns the association between the 
instrumental response and cocaine, and habit learning concerns asso-
ciations between contextual and discrete environmental stimuli and 
the instrumental response
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region, PL) and the BLA to produce context-appropriate 
behavioral responses [14, 17, 18].

Habit learning (stimulus–response associative learning)

Under certain conditions, usually after significant repeti-
tion of the same action, a goal-directed behavior can shift 
to become a stimulus–response habit [15]. Once habits 
form, behavior no longer relies on the value of the outcome, 
but instead contextual or discriminative stimuli initiate a 
more automated behavioral response [19]. Acquisition of 
stimulus–response associative learning relies on the BLA, 
but the maintenance of habitual behavior depends on the 
central nucleus of the amygdala (CeN) [18]. Similarly to 
goal-directed behavior, learning habitual behavior requires 
changes in cortico-striatal circuitry, including a shift in the 
brain region mediating the behavior from the DMS to the 
dorsolateral striatum (DLS) [20, 21]. Although interocep-
tive, goal-directed, and habitual associative memory forma-
tion are important aspects of cocaine use and addiction, the 
most extensive knowledge about cocaine memory formation, 
reactivation, and extinction addresses Pavlovian associative 
memories, which will be the focus of this review.

Cellular and molecular mechanisms of memory

There are several cellular and molecular processes that 
underlie the formation and maintenance of cocaine memo-
ries. Generally, memory traces are formed when a combina-
tion of neuronal input and activity triggers cellular events 
that ultimately result in changes in protein expression, 
including changes in the membrane expression of recep-
tors, neuronal morphology, and the excitability of cells. All 
of these forms of neuroplasticity can lead to changes in the 
way the neuron responds to inputs, thus allowing for the 
formation of a memory trace and the process of learning. 
Drugs, including cocaine, influence these natural memory 
processes [22]. For example, strong evidence exists for plas-
ticity in corticolimbic circuits during cocaine Pavlovian 
memory formation, and suggests that these circuits are also 
activated during cocaine cue-induced craving, making them 
important targets for the treatment of cocaine use disorder 
[2, 13, 23, 24].

Memory formation requires changes in how neurons 
communicate. Long-term potentiation (LTP) and long-
term depression (LTD) are activity-dependent mecha-
nisms by which synapses can be strengthened or weak-
ened [25]. These processes result in altered expression 
and localization of glutamate receptors and their subunits 
at the synapse, amongst other neurophysiological adapta-
tions [26, 27]. Although LTP and LTD can be regulated 
by modulatory neurotransmitters such as dopamine, these 
processes occur at glutamatergic excitatory synapses, and 

rely on glutamate release from the presynaptic neuron 
along with temporally related post-synaptic depolariza-
tion [24, 28–30]. LTP and LTD are induced by activation 
of particular kinases and phosphatases that regulate the 
phosphorylation and activation of signaling molecules 
[31]. Typically, activation of protein kinases such as cal-
cium/calmodulin‐dependent protein kinase II (CaMKII), 
extracellular signal-regulated kinases (ERKs), and pro-
tein kinases A and C (PKA; PKC) is associated with LTP 
[31, 32]. Alternatively, activation of protein phosphatases 
like calcineurin (CaN) and protein phosphatase 1 (PP1) 
is associated with LTD [31, 32]. These proteins regulate 
the activity of downstream proteins, signaling molecules, 
and transcription factors [10, 28, 31, 32].

Immediate early genes (IEGs) are a subset of genes that 
experience increased transcription in response to neuronal 
activity and plasticity [33]. These genes, including c-fos, 
BDNF and Zif268 encode proteins that are often used as neu-
ronal markers of plasticity because of their reliable expres-
sion in neuronal ensembles that encode memory traces [33]. 
Although the direct roles of each IEG in neural plasticity 
have not been systematically characterized, they generally 
encode synaptic proteins, secretory proteins, and transcrip-
tion factors that have a direct impact on synaptic properties, 
thus contributing to the formation of long-term plasticity 
[33]. Synaptic plasticity is also mediated by epigenetic 
modifications that regulate gene expression [34, 35]. Two 
important epigenetic processes involved in memory include 
DNA methylation, regulated by DNA methyltransferases 
(DNMTs) and demethylases, and histone acetylation, regu-
lated by histone acetyltransferases (HATs) and histone dea-
cetylases (HDACs) [34, 35]. All of these learning and mem-
ory processes have been implicated in cocaine memories.

Cocaine memory acquisition, consolidation, 
and retrieval

The molecular and circuit mechanisms involved in the 
acquisition of long-term memories, including several of 
the mechanisms discussed above, have been extensively 
studied and reviewed [36]. Once memories are acquired, 
they can undergo consolidation, a process of stabilization 
that lasts for hours or days by which cellular and molecular 
changes create a memory trace, or a physical representa-
tion in the brain (Fig. 2) [37]. These cellular and molecular 
changes include gene expression, protein phosphorylation 
and localization, DNA methylation, and histone acetylation 
[10, 22, 34, 35, 38] and occur within brain circuits involved 
in reward, memory, and action selection [10, 39, 40]. The 
acquisition and consolidation of cocaine memories can differ 
from memories for natural reinforcers, in part because the 
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neurobiological effects of cocaine impact mechanisms of 
memory acquisition and consolidation, resulting in memo-
ries that can be maladaptive and hinder abstinence [9].

Memory acquisition and consolidation are separate pro-
cesses that can be distinguished temporally. Experimental 
manipulations occurring before learning address acquisition, 

Weakened associationRe-stabilization of memory
(Association maintained or 

strengthened)

Stable learned association between cocaine and 
cues and/or context

Pairing of cocaine and cues and/or context

Consolidation of Pavlovian 
Associative Memory

Brief exposure to cues 
and/or context

Long or repeated exposure to 
cues and/or context in the 

absence of drug

Memory 
Reactivation

Consolidation 
of Extinction 

Learning
De-stabilization of memory

(memory labile for updating)

Learned lack of association 
between cocaine and cues 

and/or context

X

Reconsolidation Disruption of Reconsolidation

Reduced cue-induced cocaine 
seeking

Maintained cue-induced 
cocaine seeking

Reduced cue-induced cocaine 
seeking

Fig. 2   Schematic demonstrating the consolidation (blue), reconsoli-
dation (green), and extinction (red) of cocaine Pavlovian memories. 
The temporally paired delivery of cocaine with discrete and con-
textual cues results in the consolidation of the associative memory 
between cocaine and these cues. Once consolidated, this memory 
is stable. Long or repeated exposure to these cues results in extinc-
tion learning, which involves learning about the lack of association 
between cocaine and these cues and reduced cue-induced cocaine 

seeking. Alternatively, brief exposure to these cues results in reacti-
vation of the previously consolidated associative memory, which is 
de-stabilized, allowing for potential updating of the memory. Under 
normal conditions, memory reactivation is followed by reconsolida-
tion, and the memory is re-stabilized, resulting in maintenance of the 
associative memory and cue-induced cocaine seeking. If reconsoli-
dation is disrupted, the association between the cues and cocaine is 
weakened, resulting in reduced cue-induced cocaine seeking
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while those occurring within minutes to hours after learning 
address consolidation [41]. However, it is important to note 
that experimental manipulations occurring before learning 
can still be in effect during the consolidation period, and 
may additionally affect consolidation.

Cocaine memory circuitry

Several brain regions interact to form cocaine-context and 
cocaine–cue associative memories because memory forma-
tion involves processing sensory information about con-
textual stimuli, detecting the rewarding effects of cocaine, 
directing attention, and forming reward-seeking behaviors. 
Corticolimbic circuitry is particularly involved in forming 
Pavlovian associations between stimuli and rewards, mak-
ing these brain regions a nexus for cocaine–context and 
cocaine–cue associative learning [13, 42]. The dopaminergic 
reward circuitry and the striatum are also important for this 
type of associative learning [10, 39, 43, 44]. Below, we will 
discuss molecular mechanisms that occur in brain regions 
and circuits between these regions that contribute to Pavlo-
vian associative memories between cocaine and contextual 
stimuli (Table 1).

Hippocampus

It is widely accepted that the hippocampus plays a major 
role in memory acquisition, and particularly the dorsal hip-
pocampus (DHC) in contextual Pavlovian conditioning for 
drug memories [12]. Local inhibition of the DHC with mus-
cimol prior to cocaine conditioned place preference (CPP) 
conditioning disrupts learning, affirming that the DHC is 
also important for the acquisition of contextual condition-
ing for cocaine [41]. Additionally, inhibition of the DHC 
impairs retrieval of a cocaine CPP memory [45]. The role 
of the DHC in cocaine memory consolidation is less clear. 
Although evidence suggests that the DHC is necessary for 
the consolidation of aversive contextual conditioning, inhi-
bition of the DHC immediately or 6 h after cocaine CPP 
training does not disrupt learning, providing evidence that 
the DHC is not immediately essential for the consolidation 
of cocaine-context associations [41]. In contrast, inhibition 
of the DHC with muscimol 12 h after cocaine CPP condi-
tioning impairs memory retention, indicating that neuronal 
activity in the DHC may be important for other memory 
storage processes or late-stage consolidation [46].

Epigenetic mechanisms in the DHC are also important for 
cocaine–context associative memory. Systemic administra-
tion of the HDAC inhibitor sodium butyrate prior to cocaine 
CPP conditioning leads to increased histone acetylation in 
the hippocampus, but not the amygdala, and improves later 
recall of cocaine–context associative memory [47]. These 
results suggest that histone acetylation plays a role in the 

acquisition or consolidation of these memories in the hip-
pocampus. Additionally, injection of a DNMT inhibitor into 
the CA1 area of the hippocampus hindered acquisition of the 
cocaine–context associative memory, indicating that DNA 
methylation in the hippocampus is also important for acqui-
sition [48].

Amygdala

Research involving fear-related associative learning suggests 
that whereas the DHC is particularly important for contex-
tual associations, the BLA is important for both contextual 
and cue associations [12]. Evidence supports this dichotomy 
in the cocaine literature as well [47, 49]. Expression of a 
cocaine CPP memory is impaired by inhibition of protein 
synthesis or PKC in the BLA, indicating that both protein 
synthesis and PKC-mediated protein phosphorylation in 
the amygdala are necessary for cocaine-context memory 
retrieval [49]. Similarly, the consolidation and expression of 
cocaine CPP memory is impaired by inhibition of the protein 
kinase cyclin-dependent kinase 5 (cdk5) in the BLA [50]. 
Additionally, the BLA plays a critical role in the acquisition 
and consolidation of cocaine-cue (or cocaine-conditioned 
stimuli) associative memories. NMDA receptor antagonism 
in the BLA immediately before or after a cocaine-cue classi-
cal conditioning session inhibits the acquisition and consoli-
dation of the cocaine–cue associative memory, respectively 
[51]. Pairing an audiovisual cue with cocaine infusions 
during self-administration compared to saline also leads to 
potentiation of projections from the MGN of the thalamus to 
the lateral amygdala, indicating that potentiation of synapses 
carrying auditory information about conditioned stimuli to 
the amygdala during drug use plays an important role in 
acquiring these associations [52]. Further investigation is 
required to determine if cocaine associative memory forma-
tion depends on intracellular signaling pathways and epige-
netic mechanisms in the amygdala similar to those required 
for other associative memories [53, 54].

Prefrontal cortex

Cocaine memory acquisition, consolidation, and retrieval 
also rely heavily on the PFC and its corticolimbic circuit 
connections to the hippocampus and amygdala [13]. The 
PFC is thought to be important for action selection based 
on the value of goals, which is an essential aspect of drug-
seeking behavior [10]. Chemogenetic inhibition of glu-
tamatergic, but not GABAergic, neurons in the medial 
prefrontal cortex (mPFC) suppresses both the acquisition 
and expression of cocaine CPP, without affecting lithium 
chloride-induced conditioned place aversion, suggesting 
a unique role of excitatory transmission in the mPFC in 
reward–context associative memory acquisition and retrieval 
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Table 1   Summary of experiments addressing mechanisms of cocaine Pavlovian memory acquisition, consolidation, and expression

Paradigm Brain region Manipulation Results Species, age, sex Citations

CPP DHC Inhibition with muscimol Impaired acquisition, 
expression, and late-
stage consolidation, but 
not early consolidation

Rat, adult, M; mouse, 
adult, M; rat, adult, 
M

Meyers et al. [41]; 
Hitchcock and Lattal 
[45]; Kramar et al. 
[46]

CPP DHC HDAC inhibitor Enhanced acquisition 
and/or consolidation

Mouse, adult, M Itzhak et al. [47]

CPP DHC and PL DNA methyltransferase 
inhibitor

Inhibition in the DHC 
restrained acquisition, 
inhibition in the PL 
blocked expression

Mouse, adult, M Han et al. [48]

CPP DHC D1/D5 dopamine recep-
tor antagonist

Impaired acquisition and 
expression, but not 
consolidation

Rat, adult, M Kramar et al. [46]

CPP DHC D1 dopamine receptor 
agonist or antagonist

Agonist impaired and 
antagonist enhanced 
consolidation

Rat, adult, M Kramar et al. [73]

CPP DHC β-adrenergic receptor 
antagonist

Impaired expression Rat, adult, M Otis and Mueller [76]

CPP BLA Protein synthesis, PKA, 
PKC, and MEK inhibi-
tors

Inhibition of protein syn-
thesis and PKC, but not 
PKA or MEK, blocked 
expression

Mouse, adult, M Lai et al. [49]

CPP Amygdala Cdk5 inhibitor Cdk5 inhibition in the 
BLA, but not CeA, 
inhibited consolidation 
and expression

Rat, adult, M Li et al. [50]

Classical conditioning 
after self-adminis-
tration

BLA NMDA receptor antago-
nist

Inhibited acquisition and 
consolidation

Rat, adult, M Feltenstein and See [51]

Self-admin MGN-LA n/a Potentiation of projec-
tions from the MGN to 
the LA as associations 
form

Rat, adult, M Rich et al. [52]

CPP mPFC Chemogenetic inhibition Inhibition of glutamater-
gic, but not GABAe-
rgic, mPFC neurons 
suppressed acquisition 
and expression

Mouse, adult, M Zhang et al. [55]

CPP PL Removal of perineuronal 
nets from interneurons

Impaired acquisition Rat, adult, M Slaker et al. [56]

CPP mPFC CB1 receptor antagonist Consolidation of mem-
ory induced by high 
cocaine dose impaired, 
by low cocaine dose 
facilitated

Mouse, adult, M Hu et al. [57]

CPP NAc core Rac inhibitor Inhibited consolidation Rat, adult, M Ding et al. [58]
Self-admin NAc mTOR inhibitor mTOR inhibition in the 

core, but not shell, 
impaired consolidation

Rat, adult, M Wang et al. [59]

CPP NAc knockout of the histone 
acetyltransferase CBP

Prevented acquisition Mouse, adult, M + F Malvaez et al. [63]

CPP NAc Dephosphorylation of 
HDAC5 at S279

Impaired acquisition Mouse, adult, M Taniguchi et al. [62]

CPP NAc HDAC3 knockout Enhanced acquisition Mouse; adult, M + F Rogge et al. [61]
CPP NAc Baf53B knockout 

(inhibits nucleosome 
remodeling)

Reduced acquisition and 
LTP

Mouse, adult, M + F White et al. [64]
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[55]. Although chemogenetic inhibition of GABAergic 
neurons in the mPFC does not affect cocaine CPP learning, 
these GABAergic neurons still play an important modula-
tory role [56]. Specifically, the removal of perineuronal nets, 
which are important for neural plasticity, from parvalbumin-
containing, fast-spiking GABAergic interneurons in the PL 
impairs the acquisition of cocaine CPP [56]. Additionally, 
activity at CB1 receptors in the mPFC can bidirectionally 
modulate consolidation of cocaine CPP learning, with CB1 
antagonism in the mPFC impairing CPP memory consoli-
dation induced by higher doses of cocaine, but facilitating 
consolidation induced by lower doses [57]. Finally, inhibi-
tion of DNMTs in the mPFC impairs the expression, but not 
acquisition, of cocaine CPP, demonstrating a role of DNA 
methylation in the mPFC in the retrieval of cocaine–context 
associative memories [48].

Nucleus accumbens (NAc)

Dopaminergic activity in the NAc, particularly the shell 
region, has also been implicated in the consolidation of 
Pavlovian learning [8]. Moreover, numerous intracellular 
signaling processes in the NAc have also been implicated 
in cocaine-associative memory. For example, Rac, a regu-
lator of actin dynamics and neural plasticity, is essential 
for the consolidation of cocaine CPP conditioning, and the 
kinase activity of mammalian target of rapamycin (mTOR) 
in the NAc core regulates the expression of cocaine–cue 
associations in a self-administration paradigm [58, 59]. 
In addition, epigenetic mechanisms play a role in cocaine 
memory formation [60]. Local knockout of the histone 
acetyltransferase CREB-binding protein inhibits cocaine 
CPP learning, and increased activity of HDAC5 in the 
NAc suppresses the acquisition of cocaine CPP, while 
local knockout of HDAC3 in the NAc enhances CPP 
acquisition, providing evidence that histone acetylation 
in the NAc is an important mechanism for cocaine–context 

associative learning [61–63]. In addition to histone acety-
lation, nucleosome remodeling in the NAc also appears to 
be essential, demonstrated by reduced LTP and cocaine 
CPP acquisition when nucleosome remodeling is inhib-
ited [64]. Finally, chemogenetic inhibition of GABAergic 
neurons in the NAc prior to CPP testing reduces place 
preference, suggesting that the activity of GABAergic neu-
rons in the NAc is also important, though this experiment 
did not differentiate between GABAergic interneurons and 
medium spiny neurons (MSNs) [65].

Dorsal striatum

When Pavlovian associations between cocaine and envi-
ronmental stimuli form in a paradigm where the drug is 
obtained by operant self-administration, these associations 
guide the acquisition of the drug-seeking and drug-taking 
behavior [44, 66, 67]. Evidence suggests that while Pavlo-
vian conditioning relies on the ventral striatum (NAc), as 
drug-seeking progresses, Pavlovian associations guide the 
formation of goal-directed and eventually habitual instru-
mental response strategies aimed at obtaining the drug 
[44, 66, 67]. Goal-directed drug-seeking depends on input 
to the DMS as well as corticolimbic circuits described 
above [20, 44, 66]. Under certain conditions, drug-seeking 
can become habitual, where the behavior is initiated by 
environmental stimuli without relying on the value of the 
outcome, and this behavior is dependent on dopaminergic 
input to the DLS [20, 66, 68]. Goal-directed cocaine-seek-
ing and the acquisition of habitual cocaine-seeking are also 
reliant on functional connectivity between the BLA and 
DMS, and the performance of habitual cocaine-seeking 
behavior relies on multisynaptic functional connectivity 
between the CeN and the DLS [18]. Cue-controlled goal-
directed and habitual drug seeking additionally continue to 
rely on corticolimbic circuits described above [18, 67, 69].

Table 1   (continued)

Paradigm Brain region Manipulation Results Species, age, sex Citations

CPP NAc Chemogenetic inhibition Inhibition of GABAer-
gic neurons inhibited 
expression

Mouse, adult, M Zhang et al. [65]

CPP VTA NMDA receptor antago-
nist

Impaired acquisition and 
expression

Rat, adult, M Zhou et al. [72]

CPP Systemic Stress-induced noradren-
ergic activity leading 
to increased dopamine 
release in the mPFC

Attenuated acquisition 
and expression

Rat, adult, M Shinohara et al. [74]

CPP Systemic β1-adrenergic receptor 
antagonist

Impaired expression Rat, adult, M Fitzgerald et al. [75]

CPP Systemic M1 receptor antagonist Impaired consolidation Mouse, adult, M Zacarias et al. [77]
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Modulatory systems

Modulatory neurotransmitter systems, such as the dopamin-
ergic, noradrenergic, and cholinergic systems, affect neural 
plasticity and influence memory acquisition, consolidation, 
and expression [70, 71]. Drugs of abuse, including cocaine, 
increase dopamine concentrations at the synapse, which then 
alters memory formation processes throughout the reward 
circuitry, including the PFC, striatum, and limbic system 
[10]. The role of dopaminergic projections from the mid-
brain in reward-related learning and memory has been exten-
sively reviewed previously, so a few representative studies 
are included here [10]. For example, one study showed that 
NMDA receptor activity in the VTA, which contains dopa-
minergic cell bodies, is necessary for both cocaine CPP 
memory acquisition and retrieval [72]. Furthermore, several 
studies suggest that VTA dopaminergic projections to the 
DHC are particularly critical for contextual learning related 
to drugs of abuse [10]. For instance, infusion of a D1/D5 
dopamine receptor antagonist into the DHC before cocaine 
CPP conditioning impairs memory acquisition, and infusion 
before testing impairs retrieval, suggesting that dopaminer-
gic input to the DHC is important for both the acquisition 
and retrieval of cocaine–context associative memories [46]. 
Alternatively, this input may be less important for consoli-
dation, because D1/D5 antagonism immediately and 12 h 
after cocaine CPP conditioning did not impair learning [46]. 
Interestingly, administering a D1 receptor antagonist in the 
DHC 12 h after cocaine CPP conditioning actually extends 
the persistence of the cocaine–context associative memory, 
while administering a D1 agonist at this timepoint impairs 
later recall [73]. Together, these experiments suggest that 
dopaminergic input to the DHC is initially important for 
cocaine–context associative memory acquisition and for 
later retrieval and memory expression, but may actually 
hinder late-stage consolidation [46, 73].

In addition to dopamine, noradrenergic projections from 
the locus coeruleus regulate attention and vigilance, and 
therefore have a role in memory acquisition and retrieval 
[10]. Recent evidence suggests that stress-induced noradr-
energic activity interacts with the VTA reward circuitry 
to increase dopamine release in the mPFC, augmenting 
cocaine CPP memory retrieval [74]. Systemic inhibition of 
β1-adrenergic receptors impairs the retrieval of cocaine-CPP 
memory, demonstrating an influence of adrenergic activ-
ity on memory expression [75]. More specifically, adren-
ergic input to the DHC also plays a role, as inhibition of 
β-adrenergic receptors in the DHC impairs the retrieval of 
cocaine CPP memories [76]. Finally, the neuromodulator 
acetylcholine is also implicated in the regulation of appe-
titive contextual memories, as systemic antagonism of M1 
type muscarinic receptors disrupts cocaine CPP memory 
consolidation [77].

Effects of cocaine on memory systems

The circuitry described above is important for memory 
acquisition, consolidation, and expression, and has been 
particularly implicated in Pavlovian associative memories 
between cocaine and environmental cues and contexts. 
Because cocaine’s effects on dopamine release influence 
the reward circuitry involved in endogenous reward learning 
and Pavlovian conditioning, it can enhance the formation of 
these memories and lead to aberrant learning that promotes 
behaviors characteristic of addiction [9]. Drugs of abuse, 
including cocaine, have behavioral, physiological, and 
molecular effects on learning and memory that have been 
extensively reviewed elsewhere [3, 9, 10, 22, 66]. Briefly, 
exposure to cocaine and other stimulants leads to persistent 
plastic changes in the circuits involved in reward and mem-
ory formation, and can also promote the formation of habits, 
which are thought to contribute to the development of the 
compulsive drug use characteristic of addiction [9, 78–81].

Cocaine memory reactivation 
and reconsolidation

After memories are acquired and undergo consolidation, 
they are believed to be stable and are resistant to amnestic 
agents [82]. However, memory retrieval, or reactivation, 
triggers a reconsolidation process during which memories 
are again labile and susceptible to manipulation (Fig. 2) 
[82, 83]. This reconsolidation process may serve the evo-
lutionary purpose of allowing memories to be updated with 
new information, but it may also allow for the disruption of 
maladaptive drug-related memories [84–88]. There is con-
siderable overlap between the molecular and circuit mecha-
nisms that underlie original consolidation and subsequent 
reconsolidation, with processes including protein synthesis, 
transcription factors, protein kinases and phosphorylation, 
NMDA-receptor-mediated synaptic plasticity, and modula-
tory receptor activity [28, 83, 89]. However, there are dis-
tinctions between the consolidation and reconsolidation of 
memories, both in the molecular processes and brain regions 
involved [83, 90].

Disrupting reconsolidation

The period of lability a memory enters during reconsolida-
tion has become a target for intervention in substance use 
disorders [91]. Because cocaine memories often promote 
drug craving and seeking, disrupting these memories could 
provide relief for people trying to maintain abstinence [87]. 
Much of the research about the reconsolidation of cocaine 
memories has investigated methods of reactivating cocaine 
memories, what processes are required for reconsolidation, 



3753Molecular and circuit mechanisms regulating cocaine memory﻿	

1 3

and how to then interfere with these processes in order to 
develop potential clinical treatments (Table 2).

Context reactivation

One method of preclinically investigating the reconsolida-
tion of cocaine–context associative memories is by briefly 
re-exposing an animal to a cocaine-associated context [92]. 
This re-exposure can occur after either cocaine CPP condi-
tioning or conditioned activity (CA), a paradigm in which 
Pavlovian associations between a psychostimulant and an 
environment produce increased locomotion when the ani-
mal is re-exposed to the environment without drug [92]. 
Although these methods can model subsequent retrieval 
of the cocaine-context associative memory through prefer-
ence for the drug-paired chamber or presence of conditioned 
reactivity, they cannot evaluate subsequent drug-seeking 
behavior. Therefore, re-exposure to the context of drug 
self-administration after cocaine self-administration training 
has been used to evaluate both subsequent memory retrieval 
and drug-seeking behavior [52, 93–95]. Brief re-exposure 
to a cocaine-associated context triggers reactivation and 
reconsolidation (Fig. 2). Reconsolidation of a CPP and CA 
memories after context exposure are inhibited by systemic 
administration of NMDA receptor antagonists, β-adrenergic 
receptor antagonists, a muscarinic acetylcholine receptor 
antagonist, protein synthesis inhibitors, and kinase inhibi-
tors, suggesting several of the processes involved in cocaine 
memory consolidation are also required for reconsolidation 
[92, 96–103]. The re-exposure to a context associated with 
cocaine self-administration also increases serum corticos-
terone concentrations, and this activation of the HPA axis 
may also play a role in memory reactivation and reconsolida-
tion [104]. In addition, a role for dopamine modulation of 
the reward circuitry on reconsolidation is demonstrated by 
the observation that antagonism of dopamine D3 receptors, 
which are preferentially expressed in mesocortioclimbic 
regions, impaired reconsolidation of CPP memory [105]. 
Further, nitric oxide signaling, a retrograde messenger 
involved in the formation of memories through facilitation 
of synaptic plasticity, as well as NMDA receptor activity, 
is also important for reconsolidation after reactivation of 
cocaine contextual memory in the CPP paradigm [99, 106, 
107].

Experiments involving region-specific interventions 
have revealed, unsurprisingly, that several of the brain 
regions important for cocaine-context memory consoli-
dation are also involved in reconsolidation. Whereas the 
DHC is particularly important for the acquisition of these 
memories, its role in consolidation is somewhat ambiguous 
[41, 46–48]. However, the DHC plays a clear role in the 
reconsolidation of cocaine–context associative memories. 
Inhibition of excitatory pyramidal neurons in the DHC after 

cocaine-context memory reactivation impairs the reconsoli-
dation of a cocaine CPP memory, and DNA demethylation 
by the methylcytosine dioxygenase tet3 plays an essential 
role in the epigenetic control of the post-retrieval activity of 
these neurons [108]. Additionally, inactivation of the DHC 
with tetrodotoxin after re-exposure to the context of cocaine 
self-administration reduced subsequent reinstatement in this 
context, suggesting the disruption of reconsolidation [95]. 
NMDA receptor-mediated plasticity in the DHC appears to 
be particularly important, as inhibition of SFK, a tyrosine 
kinase that regulates the phosphorylation of NMDA receptor 
subunits disrupts reconsolidation of a cocaine-self-admin-
istration contextual memory [109]. However, inhibition of 
protein synthesis in the hippocampus had no effect, indi-
cating that regions other than DHC are responsible for the 
effects of broad protein synthesis-dependent reconsolidation 
events [95].

Indeed, inhibition of protein synthesis in the BLA after 
reactivation of the cocaine context memory blunted context-
induced reinstatement of self-administration, suggesting that 
the BLA may be at least one region that requires protein 
synthesis for reconsolidation of these memories [110]. Addi-
tionally, activity of the protein kinase Cdk5 in the BLA is 
required for the reconsolidation of cocaine CPP memories 
just as it is required for consolidation, and PKA, but not 
CaMKII, activity is also required for the reconsolidation 
of the associative memory between cocaine and the con-
text of self-administration [50, 93]. Other kinase activity 
in the BLA, including ERK and glycogen synthase kinase 
3β (GSK-3β), are important for cocaine–context associative 
memory reconsolidation for self-administration and CPP, 
respectively, indicating that the mechanisms of plasticity 
regulated by these kinases play a role in reconsolidation 
in the BLA [111, 112]. Modulatory input to the BLA also 
influences reconsolidation, demonstrated by the ability of 
β-adrenergic receptor blockade to disrupt reconsolidation, 
but not retrieval, of cocaine CPP memories [113]. Interest-
ingly, reconsolidations of cocaine–context associative mem-
ories for self-administration not only relies on the DHC and 
BLA individually, but functional disconnection of the two 
regions disrupts reconsolidation, indicating that interaction 
between the two regions is essential for cocaine–context 
associative memory reconsolidation [114].

Kinase activity in the NAc is also required for recon-
solidation of cocaine–context associative memories. Inhibi-
tion of ERK in the NAc core region interferes with both the 
retrieval and reconsolidation of cocaine CPP memory by 
preventing the activation of several downstream transcrip-
tion factors that regulate the expression of IEG-regulated 
proteins important for synaptic plasticity [115]. Addition-
ally, expression of the IEG-regulated proteins Zif268 and 
Fos B is increased by cocaine CPP reactivation in several 
brain regions, including the NAc, amygdala, hippocampus, 
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PFC, and VTA [116]. This upregulated expression in the 
NAc shell in response to contextual memory reactivation 
was reduced by the infusion of NMDA or dopamine D1 
receptor antagonists, which also disrupted reconsolidation, 
suggesting the activation of these receptors and subsequent 
IEG protein expression in the NAc is a necessary mechanism 
for reconsolidation [116]. Finally, reconsolidation of CPP 
memories is also dependent on protein degradation in the 
NAc [117].

Other mechanisms appear to regulate the reconsolidation 
of cocaine–context associative memories in the PFC. Par-
ticularly in the PL, cocaine CPP training increases the intrin-
sic excitability of pyramidal neurons [118]. This plasticity 
is positively correlated with memory retrieval, and preven-
tion of this plasticity interferes with the reconsolidation of 
these memories [118]. Additionally, reconsolidation of CPP 
memories involves histone methylation-mediated regulation 
of synaptic plasticity in the mPFC [119].

Cue reactivation

Associative memories between cocaine and discrete cues, 
such as an audiovisual cue presented during infusion of 
cocaine in a self-administration paradigm, undergo similar 
consolidation and reconsolidation processes as contextual 
cues, though in some instances the brain regions and molec-
ular mechanisms regulating cocaine-cue memories do differ 
from cocaine–context memories. Cocaine cue memories can 
also be reactivated with brief re-exposure to the cues, and 
disrupting the reconsolidation of these cocaine–cue asso-
ciations learned during self-administration leads to reduced 
cue-induced cocaine-seeking behavior, which is thought to 
model a reduction in cue-induced drug craving [5, 28, 120]. 
The reconsolidation of these cocaine-cue associative memo-
ries is disrupted by both inhibition of protein synthesis or 
inhibition of HATs, but contrary to consolidation, reconsoli-
dation does not appear to rely on the activity of β-adrenergic 
receptors [120, 121]. Just as in cocaine-cue associative 
memory consolidation, the BLA is the main site of recon-
solidation of these memories. Several molecular substrates 
of plasticity are required in the BLA for reconsolidation of 
cocaine–cue associative memories, including protein syn-
thesis, DNA methyltransferase, calcium-calmodulin depend-
ent kinase II (CaMKII), and cAMP signaling that regulates 
downstream PKA and exchange protein activated by cAMP 
(Epac) activity [94, 122–126]. Additionally, reactivation of 
cocaine-cue associative memories results in increased phos-
phorylation of several proteins in the BLA and NAc, provid-
ing further evidence that mechanisms of plasticity involving 
phosphorylation cascades are required [127].

In addition to simply using brief cue re-exposure to 
reactivate cocaine–cue associative memories, some experi-
ments have used response-contingent cue presentations in Ta
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the context of self-administration, in which cues, but no 
drug, are presented in response to active lever presses in 
the self-administration context [128–132]. Although it is 
difficult to differentiate between effects of cocaine–context 
memory reactivation, cocaine-cue memory reactivation, 
and instrumental responding in these experiments, they 
still provide additional information about the molecular 
mechanisms and circuits involved in reconsolidation of 
reactivated cocaine memories. When cocaine memories 
are reactivated in this way, β-adrenergic receptor block-
ade disrupts reconsolidation [130]. This effect is likely 
primarily due to disruption of the cocaine–context associa-
tive memory, because evidence suggests that β-adrenergic 
receptor blockade effectively disrupts reconsolidation of 
cocaine-context, but not cocaine-cue, associative memo-
ries [97, 102, 121]. In addition, NMDA receptor blockade 
in the infralimbic region of the mPFC or in the BLA dis-
rupts reconsolidation after memory reactivation by this 
brief, response-contingent cue exposure paradigm, further 
implicating these regions in cocaine memory reconsolida-
tion [128, 129]. Furthermore, both dopamine D1 and D3 
receptor blockade can disrupt reconsolidation and reduce 
subsequent cue-induced reinstatement, supporting a role 
of the dopamine modulatory system in the reconsolidation 
of cocaine-cue memories [132].

Unconditioned stimulus (US) reactivation

Due to the fact that brief exposure to a CS selectively 
destabilizes the memory of the association between the 
US and that CS, disruption of reconsolidation only affects 
the reactivated cue [120, 133]. Thus, cue reactivation may 
have limited clinical potential because of the vast number 
of cocaine-associated cues and contexts that likely exist 
for human substance users [120, 134, 135]. However, evi-
dence from both the fear conditioning and the drug self-
administration literature suggest that reactivation of the 
unconditioned stimulus, or US, can destabilize multiple 
US–CS associations, making this a potentially more effec-
tive target for disrupting a sufficient number of cocaine-
associated memories to reduce relapse [134–137]. As pre-
viously described, inhibition of HATs after reactivation of 
cocaine-cue associative memory by brief cue presentation 
selectively reduces subsequent reinstatement mediated by 
the reactivated cue [120, 135]. Alternatively, systemic 
HAT inhibition after cocaine memory reactivation with 
a priming dose of cocaine disrupts the reconsolidation of 
cocaine’s association to multiple cues, resulting in reduced 
cue-induced reinstatement to non-reactivated cues [135]. 
To date, little other research has investigated mechanisms 
for disrupting cocaine memories after US reactivation, 
leaving this as an important for future studies.

Reconsolidation and distinctions from consolidation

Overall, several of the molecular mechanisms and neural 
circuits involved in memory consolidation are also important 
for the reconsolidation of cocaine–context Pavlovian asso-
ciative memories, including kinase activity, NMDA-receptor 
mediated plasticity, expression of IEG proteins, neuromod-
ulation, and epigenetic modifications [92–94, 102, 135]. 
However, there are some distinctions in the mechanisms of 
plasticity involved between the two processes and in their 
reliance on different brain regions. For example, although 
the role of DHC activity is not immediately necessary for 
consolidation of cocaine–context associations, DHC inhibi-
tion does impair reconsolidation of cocaine–context asso-
ciations [41, 108]. Although there are few direct compari-
sons between consolidation and reconsolidation of cocaine 
associative memories, evidence from literature examining 
the consolidation and reconsolidation of other associative 
memories suggests that older memories are more resistant to 
disruption of reconsolidation than disruption of consolida-
tion and that memories being consolidated may take longer 
to stabilize than memories being reconsolidated [83]. Addi-
tionally, evidence suggests that in the hippocampus, BDNF 
is required for consolidation, but not reconsolidation, of 
fear conditioning [90]. Alternatively, Zif268 is required for 
reconsolidation, but not consolidation [90]. Taken together, 
these results support dissociable mechanisms regulating 
consolidation and reconsolidation.

Clinical applications of reconsolidation disruption

Many of the studies investigating reactivation of cocaine 
memories and the disruption of their reconsolidation have 
identified several plasticity mechanisms, signaling cas-
cades, and neurotransmitter systems that may be potential 
targets for use in the treatment of substance use disorders, 
which have been extensively reviewed [91, 138–141]. 
For example, a study showing that systemic inhibition of 
β-adrenergic receptors with propranolol could somewhat 
disrupt reconsolidation following reactivation of cocaine-
cue associative memory provides evidence that this may 
be an effective treatment option [142]. Additionally, a 
meta-analysis of the few clinical experiments examining 
the disruption of memory reconsolidation to treat sub-
stance use disorders produced moderately encouraging 
results [91]. In these experiments, participants dependent 
on or currently using substances of abuse including alco-
hol, cocaine, heroin, or nicotine underwent memory reac-
tivation by exposure to drug-associated cues [91, 142]. 
Following reactivation, pharmacological, and behavioral 
interventions were performed, such as delivery of NMDA 
receptor antagonists, counter-conditioning, or extinc-
tion [91]. Findings from these clinical experiments are 
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modest, indicating that these methods may need to be 
improved upon to effectively treat substance use disor-
ders in humans [91, 142]. Preclinical evidence suggests 
that during reconsolidation of reactivated cocaine–context 
associative memories, these memories may additionally 
be more susceptible to counter-conditioning, providing 
another avenue for improving clinical treatments [138]. 
Still, several reasonable concerns have been raised about 
the ethical challenges posed by these types of treat-
ments, which could cause stress, harm, or increased risk 
of relapse if treatment is not effective, and these con-
cerns will need to be carefully considered as knowledge 
is gained from preclinical examination of reconsolidation 
and is translated into clinical practice [141].

Cocaine memory extinction

Memory retrieval can not only initiate reconsolidation 
of that memory, but can also initiate a process known as 
extinction. Extinction learning occurs when a memory is 
repeatedly retrieved in the absence of the expected out-
come. After extinction learning, the previously formed 
associative memories are less likely to guide behavior 
[143]. Although extinction was initially interpreted as 
erasure of learning, ample memory phenomena contradict 
this idea, including spontaneous recovery (the recovery 
of an extinguished memory with time), renewal (the re-
expression of the original memory outside of the extinc-
tion context, and reinstatement (the re-expression of the 
original memory when the outcome is experienced again) 
[143]. Therefore, extinction of associative memories is 
generally accepted as a process that involves new learn-
ing about a lack of association, and these new memories 
compete with previously learned associative memories to 
guide behavior (Fig. 2) [5, 87, 143]. Because extinction 
involves the formation of new memories, it is not surpris-
ing that many of the mechanisms involved in initial mem-
ory consolidation and reconsolidation are also required 
for extinction learning [144], but there are also several 
distinctions between these processes [145, 146].

Extinction can involve several types of learning. The 
molecular mechanisms of instrumental extinction, which 
describes the learning of a lack of association between a 
behavioral response and its outcome, have been thoroughly 
investigated in preclinical models of drug self-administration 
[3, 39]. Although it is a valuable tool for investigating sub-
sequent cue-induced and cocaine-primed reinstatement of 
drug-seeking behavior, it is outside the scope of this review’s 
focus on Pavlovian cocaine memories. Therefore, we will 
focus on the molecular and circuit mechanisms of the extinc-
tion of Pavlovian associations (Table 3).

Pavlovian extinction

Although brief re-exposure to a cocaine-paired context 
or discrete cue reactivates a memory and triggers recon-
solidation, extended or repeated exposure to these stimuli 
without cocaine reinforcement initiates extinction learn-
ing [5, 87]. The cocaine–context association can be extin-
guished in a cocaine CPP model by extended exposure to 
the cocaine-paired compartment without cocaine, which 
reduces preference for the cocaine-paired chamber [45, 87, 
147]. Similarly, for cocaine self-administration, extended 
exposure to the context of self-administration can extinguish 
the cocaine–context association and lead to subsequently 
reduced drug-seeking behavior [148]. Additionally, in self-
administration paradigms, repeated exposure to the cocaine-
paired discrete cue results in a learned lack of association 
between cocaine and the cue [52, 87, 149]. Subsequently, 
reinstatement of drug-seeking behavior in response to cue 
exposure is attenuated [52, 149, 150]. Investigation of 
extinction learning has revealed several molecular mecha-
nisms necessary for this memory process.

Context extinction

Because of the divergent mechanisms involved in Pavlovian 
cocaine–context and cocaine–cue associations, we will 
separately discuss the processes involved in the extinction 
learning of these associative memories. Given the DHC’s 
well-established role in cocaine-context associations, it is 
not surprising that inactivation of the DHC inhibits both 
CPP extinction learning and retrieval of a previously learned 
extinction memory [45]. Glutamate-dependent neuroplas-
ticity also plays a clear role, as evidenced by the ability of 
systemically administered d-serine and DCS, which both 
facilitate NMDA receptor signaling through activation of the 
glycine modulatory site [151–154], to facilitate the extinc-
tion of cocaine-context associative memories in both CPP 
and self-administration paradigms [147, 152–154]. Addi-
tionally, the mGluR5 receptor (which is coupled to NMDA 
receptors) plays a role in extinction of cocaine–context 
associations in both a CPP and self-administration paradigm 
[148, 155].

More specifically, NMDA receptor activity in the PFC 
appears to play an important role in the extinction of 
cocaine–context associative memories. Systemic or mPFC-
specific activation of NMDA receptors enhances extinction 
[156], and inhibition of vmPFC pyramidal neurons inhib-
its CPP extinction learning [157]. In the infralimbic (IL) 
region of the PFC, enhancement of GluN2B NMDA receptor 
activity by brain-derived neurotrophic factor (BDNF) activa-
tion of the tropomyosin-related kinase B (TrkB) signaling 
cascade facilitates extinction learning [158]. Furthermore, 
IL activation of β-adrenergic signaling and the β-arrestin 
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cascade, which facilitates ERK activation, promotes extinc-
tion learning [159].

In addition to the IL, the dorsally located prelimbic 
(PL) PFC has also been shown to regulate the extinction 
of cocaine–context memories. For example, overexpres-
sion of dopamine D1 receptors in the PL in juvenile male 
rats facilitates CPP extinction learning, and because the D1 
receptor increases neuronal activity through the activation 
of PKA, these results suggest that increased excitability of 
PL neurons promotes extinction learning [160]. However, 
the dopamine system may regulate extinction differentially 
based on brain region, as systemic selective D3 antagonism 
can also enhance CPP extinction [161, 162]. Moreover, there 
may be sex differences in how the dopamine system regu-
lates extinction, as knockout of the D4 receptor in females 
inhibits extinction learning, while knockout in males reduces 
cocaine-primed reinstatement of CPP memory [163]. These 
results indicate subtleties in the effects of dopamine on 
extinction learning and suggest that dopamine receptors 
positively coupled to adenylyl cyclase (i.e., D1) promote 
extinction, while receptors negatively coupled to adenylyl 
cylcase (i.e., D3 and D4) generally oppose extinction learn-
ing [164].

In addition to dopamine, other modulatory neurotransmit-
ters are involved in extinction of cocaine–context associa-
tions. First, cholinergic interneurons regulate the plasticity 
of excitatory synapses onto NAc MSNs that occurs during 
CPP extinction learning [165]. Additionally, systemic inhibi-
tion of neuropeptide Y (NPY) facilitates extinction learning 
and protects against cocaine-priming induced reinstatement 
without affecting CPP learning [166]. Finally, epigenetic 
mechanisms of cocaine–context extinction learning have 
been identified. For example, nonspecific HDAC and spe-
cific HDAC3 inhibition enhance extinction [167, 168]. How-
ever, higher doses of HDAC inhibitors may inhibit extinc-
tion, suggesting possible dose-dependent effects of histone 
acetylation or off target effects of the inhibitors [169].

Cue extinction

Cue extinction involves repeated exposure to drug-associ-
ated discrete cues in order to extinguish drug–cue associa-
tions. This procedure allows for the subsequent evaluation 
of cue-induced drug-seeking behavior in self-administration 
paradigms. Interestingly, compound cue extinction, or the 
presentation of multiple cocaine-associated discrete cues 
simultaneously, leads to reduced spontaneous recovery of 
cocaine seeking, suggesting there may be an advantage of 
simultaneously extinguishing multiple drug–cue associa-
tions [170]. In both adolescent and adult rats, cue extinction 
after cocaine self-administration or 1 week into abstinence 
reduces cue-induced reinstatement for up to 30 days of absti-
nence [149].Ta
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Several studies have shown that glutamate receptor activ-
ity-dependent plasticity is necessary for cue extinction learn-
ing. Inhibition of NMDA receptors in the NAc inhibits cue 
extinction learning [171]. Additionally, systemic inhibition 
of the mGlu5 receptor inhibits cue extinction learning [172]. 
Furthermore, plasticity in the lateral amygdala, which has 
been repeatedly implicated in Pavlovian cue associations, 
appears to be a critical locus for cue extinction learning [52]. 
Specifically, cue extinction induces LTD at thalamo-lateral 
amygdala synapses, and this LTD accompanies reduced cue-
induced reinstatement of cocaine-seeking behavior [52]. To 
further support the role of thalamo-amygdala synaptic plas-
ticity in cue extinction, optogenetic induction of depotentia-
tion of synapses in the LA receiving inputs from the MGN 
of the thalamus was found to mimic the physiological and 
behavioral effects of cue extinction [52].

Response‑contingent cue extinction

In several experiments, extinction sessions occur in which 
cues are presented contingently in response to lever presses 
without the delivery of cocaine. Although it is difficult 
to disentangle the effects of cue extinction learning and 
instrumental extinction learning in these experiments, 
they may provide additional insights into the extinction of 
cocaine–cue associations. Not surprisingly, evidence sug-
gests that response-contingent cue extinction may be more 
effective than cue extinction alone [173].

Inhibition of protein synthesis in the rostral BLA and dor-
sal subiculum (dSUB) of the hippocampus immediately after 
contingent cue extinction reduces extinction learning [174]. 
Additionally, functional disconnection of these regions by 
contralateral unilateral inhibition also reduces extinction 
learning, suggesting a role of protein synthesis in and inter-
action between the BLA and hippocampus during extinction 
learning [174, 175]. Additionally, response-contingent cue 
extinction increases c-Fos expression in the BLA and PL, 
suggesting increased neuronal activity in these areas during 
extinction learning [176]. NMDA receptor partial agonism 
with DCS augments consolidation of response-contingent 
cue extinction learning in mice, rats, and squirrel monkeys 
[154, 177, 178]. Contingent cue extinction also causes 
changes in the expression of the GluA1 AMPA receptor in 
the BLA and ventromedial PFC (vmPFC) and changes in 
phosphorylation in the vmPFC and NAc, but no changes in 
the DHC [179]. Contingent cue extinction leads to altered 
synaptic localization of glutamate receptor subunits and 
scaffolding proteins in the NAc and DLS [180, 181]. Over-
all, these results implicate the BLA, hippocampus, PFC, 
and NAc in response-contingent cue extinction. Particu-
larly, glutamate-related neural plasticity in several of these 
regions appears to be important for response-contingent cue 
extinction learning [179].

Clinical applications of Pavlovian extinction

There are multiple challenges in the application of Pavlovian 
extinction to clinical practice [182]. Despite strong preclini-
cal support for the use of Pavlovian extinction to reduce 
cue-induced reinstatement, cue exposure therapy has shown 
mixed results for reducing relapse to cocaine and other drug 
use [182, 183]. In these experiments, participants with his-
tories of drug use were exposed to drug-associated cues 
repeatedly, often in multiple sessions, in an attempt to repli-
cate preclinical findings that these exposures can extinguish 
drug–cue associations [182, 183]. Meta-analyses indicate 
that cue exposure treatments have only been modestly suc-
cessful and point to potential areas of improvement [182, 
183]. One prominent challenge is that its affects appear to 
be context specific, limiting the efficacy of cue extinction 
outside the clinic [150, 184, 185]. Systemic and intra-NAc 
core partial NMDA receptor agonism with DCS after cue 
extinction reduces the context specificity of cue extinc-
tion for cocaine-associated cues in rodents [150]. This is 
likely due to enhanced extinction, and indicates a possible 
avenue for overcoming the context specificity of cue extinc-
tion [150, 171]. Still, the use of DCS to enhance the effects 
of cue exposure therapy has not yielded promising results, 
suggesting other or additional strategies may be necessary 
[186–188].

Several other obstacles exist, including targeting extinc-
tion without inducing and enhancing reconsolidation, par-
ticularly because the two processes rely on very similar 
mechanisms [87]. Evidence from preclinical research sug-
gests that compounding a cocaine-associated cue with a 
food-associated cue in cue extinction may interfere with cue 
extinction, so care should be taken to prevent this effect in 
clinical studies [189]. Finally, sex differences in these mech-
anisms are largely understudied. 17β-estradiol is important 
for extinction learning in females, suggesting sex differences 
and hormone levels may be important considerations for 
clinical application [190].

Conclusions and future directions

Memory mechanisms that allow for natural reward-related 
learning can become maladaptive in the formation of sub-
stance use disorders [3, 9]. Not only do drugs affect nor-
mal memory processes, but drug-associated memories can 
contribute to craving and relapse [6, 9, 22]. A large body 
of research has focused on the molecular and circuit mecha-
nisms involved in cocaine-related Pavlovian associations. 
This research has uncovered memory mechanisms involv-
ing activity-dependent neural plasticity, phosphorylation 
and signaling molecules, expression of IEGs, and epige-
netics that occur in various brain regions associated with 
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reward-related learning, particularly corticostriatolimbic 
circuitry. These findings have contributed toward advances 
in the clinical treatment of substance use disorders, but 
many challenges still impede the efficacy and development 
of treatment options.

Age and sex considerations

Almost all of the preclinical experiments reviewed above 
were conducted exclusively in adult, male rodents. There-
fore, little is known about how consolidation, reconsoli-
dation, and extinction of drug–cue associative memories 
changes throughout development and differs between sexes. 
Evidence suggests that adolescents are more sensitive to 
cocaine reward and less susceptible to extinction [191–193]. 
Adolescent rats are quicker to acquire, take more, and have 
more inelastic economic demand for cocaine during self-
administration than adults [191, 194]. Additionally, adoles-
cent rats are less sensitive to negative consequences when 
self-administering cocaine compared to adults [192]. In both 
adolescents and adults, females acquire self-administration 
more quickly and show a higher demand for cocaine under 
progressive ratios [194, 195].

These differences in the rewarding effects of cocaine 
may result in altered formation of Pavlovian associations 
between cocaine and cues. Age and sex have a clear effect on 
cocaine–context associations formed in CPP learning, where 
females and adolescents tend to be more sensitive to CPP 
than males and adults, and adolescents are more resistant to 
extinction and adolescents and females are more susceptible 
to reinstatement [193, 196–198]. There are also established 
sex differences in cocaine-cue-induced fos expression and 
cue-induced reinstatement of cocaine-seeking, and some of 
these sex differences may be attributed at least in part to 
differential effects of gonadal hormones [199, 200]. Despite 
extensive knowledge of sex and age effects on the reinforc-
ing properties of cocaine and the formation and persistence 
of cocaine-context associations, little is known about their 
impact on the cellular and molecular mechanisms of Pavlo-
vian memory consolidation and reconsolidation, making this 
an important avenue for future research.

Combining strategies for treatment

As discussed above, there are several similarities between 
the molecular mechanisms and neural circuits involved in 
the consolidation, reconsolidation, and extinction of cocaine 
memories. Targeting these processes may provide novel strate-
gies for the treatment of cocaine use disorders as well as other 
substance use disorders. Particularly, both the disruption of 
reconsolidation and facilitation of extinction learning have 
shown promising results preclinically. However, applying 
these concepts to clinical practice has been more challenging. 

As with treatments for other psychiatric disorders, it is likely 
that the most effective treatments for substance use disorders 
will involve a combination of strategies.

One interesting proposal is the combination of extinc-
tion learning with reconsolidation disruption in a para-
digm termed retrieval-extinction. The effects of performing 
extinction during the reconsolidation window after retrieval 
of drug–cue and other associative memories have been 
extensively reviewed [201–203]. Preclinical evidence shows 
that cocaine CPP context extinction following reactivation 
of the cocaine–context associative memory further inhibits 
cocaine-primed CPP reinstatement, and retrieval-extinction 
can also decrease reinstatement, spontaneous recovery, and 
renewal in animals that self-administered cocaine or meth-
amphetamine [204–206]. However, some preclinical evi-
dence indicates that retrieval-extinction does not enhance 
extinction for cocaine, and may even inhibit extinction for 
nicotine [207]. Although these discrepancies could be due 
to methodological differences, there is significant evidence 
against extinction-retrieval for other types of memory as 
well [201, 208]. However, clinical applications of retrieval-
extinction for substance use disorders have yielded moder-
ately promising results [91, 205]. Overall, retrieval-extinc-
tion should be further investigated as a potential strategy to 
improve treatment outcomes.

Additionally, combining pharmacological manipulations 
with behavioral interventions could further enhance effects. 
The possibility of pharmacologically enhancing extinction 
learning while simultaneously disrupting reconsolidation of 
the original drug memory has been proposed [28]. Because 
of the mechanistic overlap between reconsolidation and 
extinction, many pharmacological interventions, such as the 
partial NMDA receptor agonist DCS, would simultaneously 
enhance extinction and reconsolidation, producing poten-
tially deleterious effects [28, 146, 209]. However, there are 
distinctions between reconsolidation and extinction [145, 
146]. Proteomic analysis of protein phosphorylation has 
been used to identify a phosphorylation site on calcium-
calmodulin-dependent kinase II α (CaMKIIα) that is bidirec-
tionally regulated by reconsolidation and extinction [126]. 
Furthermore, inhibition of CaMKII in the BLA facilitates 
extinction and disrupts reconsolidation, providing evidence 
that these processes can be inversely regulated by a single 
intervention [126]. Further investigation into regulators of 
reconsolidation and extinction learning would likely provide 
a basis for enhancing the combination of these strategies 
when applied clinically.

Expansion of animal models to model more cocaine 
memories

Along with the challenges of context specificity of extinc-
tion and the difficulty in identifying biological differences 
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between reconsolidation and extinction, other factors may 
complicate the treatment of cocaine use disorders. Exten-
sive cocaine use can result in weakened executive control, 
impaired working memory, and the development of habitual 
behavior [210–213]. Unlike human cocaine use disorder, 
much of the preclinical research described involves experi-
menter-administered cocaine or short-term drug self-admin-
istration that facilitates goal-directed drug-seeking behav-
ior, which cannot fully encompass the long-term effects of 
cocaine on memory functions and behavior [212]. Therefore, 
continued research should evaluate how Pavlovian associa-
tions may guide the development of increasingly habitual 
or compulsive drug use. Additionally, the formation and 
extinction of cocaine-associated Pavlovian memories should 
be examined in animal models that focus on under-studied 
aspects of addiction, such as extended drug self-administra-
tion and habitual and compulsive drug use.

Manipulation of cocaine memories

The finding that optogenetic induction of depotentiation 
in thalamo-amygdala synapses mimics the effects of cue 
extinction provides evidence that more specific interventions 
may be possible [52]. Although optogenetic and chemoge-
netic tools are currently only suitable for answering preclini-
cal questions, expansion in the fields of genetics and medi-
cal technology suggests that similar tools may eventually 
be suitable for clinical applications. Continued preclinical 
research expanding our understanding of the circuits under-
lying how cocaine memories are consolidated, reactivated, 
and extinguished will allow for the continued application of 
this knowledge to clinical practice.
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