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Lambin et al. introduced the term radiomics in 2012 (1) to de-
scribe the extraction of biologically relevant quantitative fea-
tures from radiological images. They suggested that radiomic
features (RFs), the invisible tissue infrastructural components
of the objects being imaged, might be a valuable way to
study cancer using computed tomography (CT) and other
modalities. Such imaging studies are easily repeated and pro-
vide in vivo visualization and quantitative analysis of RFs
throughout an imaged mass. Thus, they could support a per-
sonalized precision medicine approach to cancer diagnosis
and serial assessment and prediction of response to treat-
ment. Even so, radiomics has not evolved into a widely used,
reliable component of cancer evaluation. The complicated
nature of radiomics and its validation have raised questions,
as have the reproducibility and generalizability of texture
analysis and other fundamental components of the radio-
mics signature (2). In this issue of the Journal, Dercle et al.
(3) demonstrated progress in several aspects of cancer analy-
sis by radiomics and provided insights into future validation
work.

In oncology, radiomics analysis involves the calculation of
RFs from the images of the cancers. A wide variety of such
features can be calculated. Examples include lesion size and
shape, spatial histograms, and descriptors of the spatial ar-
rangement of pixel intensities (texture) such as gray-scale co-
occurrence matrices. These calculations are enabled by using
several available software packages (3), but did not include
pyradiomics (4). For example, in the Dercle study, the authors
reported considering 1757 RFs and a nearly equal number of
deep learning features. From these, the authors selected the
four features most closely correlated with their image findings
for analysis and validation. In 13 radiomics cancer studies
summarized by Lambin et al. in 2017 (5), the features that
proved useful varied, even in the same type of cancer. The de-
velopment of a standard group of features and criteria for
evaluating those features would be useful, although the bio-
logical variations of cancer may make this difficult.
Standardization clearly will not be achieved unless the compo-
nents of the radiomic analysis itself are more standard. To
support this, Lambin et al. (5) have recommended a rigorous
16-component radiomics quality score (RQS) and transparent

reporting of clinical radiomics study methods. This RQS was
used and reported by Dercle et al. (3).

Dercle et al. (3) reported data involving 667 patients with
metastatic colon cancer. These patients were part of a prospec-
tive blinded clinical trial comparing first-line treatment re-
sponse of patients who received chemotherapy alone or in
combination with an epidermal growth factor receptor (EGFR)
inhibitor. Repeat CT scans at baseline and after 8 weeks of ther-
apy were used to monitor change in the size and RFs of hepatic
metastases. The CT scans were acquired at several different
institutions following the same CT protocols, but the scan qual-
ity varied. Experienced radiologists blinded to outcomes were
later asked to rank all CT images as high quality or standard in
quality. In patients who received EGFR inhibitors, RFs derived
from both high- and standard-quality CTs provided statistically
significantly better prediction of treatment response and overall
survival than change in tumor size or the baseline KRAS muta-
tional status. Because these RFs were acquired from multiple
CT scanners of varying quality in several institutions, the
authors concluded that their radiomics signatures were resil-
ient to CT technological variations and likely generalizable.

Dercle et al. (3) reported in Supplementary Materials that
their RQS analysis yielded a conformity score of 78% (28 of 36
points) with the 16 components of the RQS. Reporting such
compliance with the RQS is a positive step and should be a re-
quirement of future radiomics research. CT texture phantoms,
which could have helped document and possibly compensate
for CT inconsistencies, are part of the RQS but were not avail-
able in the Dercle study. Such phantoms for CT radiomics have
been developed (6) and validated (7) and should be part of future
radiomics studies whenever possible.

Although Dercle reported results from 667 patients with
metastatic colon cancer, there were only 100 patients in the val-
idation group receiving anti-EGFR therapy. Samples of this size
can be problematic in studies that employ deep learning
approaches that are prone to overfitting. Dercle applied proper
approaches to minimize overfitting, but whether overfitting
was controlled remains uncertain. Validation of their RFs by
prospective analysis of larger independent datasets of patients
with metastatic colon cancer is warranted. In addition, retro-
spective validation of RFs from Dercle or other radiomic studies
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against large datasets with known tissue diagnoses—such as
datasets that might be available from the National Institutes of
Health, the American College of Radiology Imaging Network (8),
or other sources—also could provide opportunities for radiomic
validation.

The Dercle study shows many aspects of the rigor and atten-
tion to scan quality needed to allow radiomics to make consis-
tent contributions to personalized cancer imaging. It also shows
the complexity of radiomics analysis. Is radiomics too complex
to become generally established in the radiological community?
The work of Lambin et al. (1,5), that of the Image Biomarker
Standardization Initiative (9), and others suggests that stan-
dardization and rigorous quality control are needed for radio-
mics to succeed. Will this be sufficient, or will the complexities
of radiomics lead to it being available only in specialized imag-
ing centers that serve as analysis referral sites? Further work is
warranted to determine if the potential shown by the Dercle
study and other radiomics work can be broadly validated and to
establish the proper approach to radiomics in cancer
evaluation.
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