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Abstract

Background: The authors sought to forecast survival and enhance treatment decisions for patients with liver metastatic
colorectal cancer by using on-treatment radiomics signature to predict tumor sensitiveness to irinotecan, 5-fluorouracil, and
leucovorin (FOLFIRI) alone (F) or in combination with cetuximab (FC). Methods: We retrospectively analyzed 667 metastatic
colorectal cancer patients treated with F or FC. Computed tomography quality was classified as high (HQ) or standard (SD).
Four datasets were created using the nomenclature (treatment) – (quality). Patients were randomly assigned (2:1) to training
or validation sets: FCHQ: 78:38, FCSD: 124:62, FHQ: 78:51, FSD: 158:78. Four tumor-imaging biomarkers measured quantitative
radiomics changes between standard of care computed tomography scans at baseline and 8 weeks. Using machine learning,
the performance of the signature to classify tumors as treatment sensitive or treatment insensitive was trained and validated
using receiver operating characteristic (ROC) curves. Hazard ratio and Cox regression models evaluated association with over-
all survival (OS). Results: The signature (area under the ROC curve [95% confidence interval (CI)]) used temporal decrease in
tumor spatial heterogeneity plus boundary infiltration to successfully predict sensitivity to antiepidermal growth factor
receptor therapy (FCHQ: 0.80 [95% CI ¼ 0.69 to 0.94], FCSD: 0.72 [95% CI ¼ 0.59 to 0.83]) but failed with chemotherapy (FHQ: 0.59
[95% CI ¼ 0.44 to 0.72], FSD: 0.55 [95% CI ¼ 0.43 to 0.66]). In cetuximab-containing sets, radiomics signature outperformed exist-
ing biomarkers (KRAS-mutational status, and tumor shrinkage by RECIST 1.1) for detection of treatment sensitivity and was
strongly associated with OS (two-sided P< .005). Conclusions: Radiomics response signature can serve as an intermediate
surrogate marker of OS. The signature outperformed known biomarkers in providing an early prediction of treatment
sensitivity and could be used to guide cetuximab treatment continuation decisions.

Colorectal cancer (CRC) is a leading cause of cancer death glob-
ally. Liver metastasis affects more than one-half of CRC patients
(1). Anti–epidermal growth factor receptor (EGFR) therapies, in-
cluding tyrosine kinase inhibitors and monoclonal antibodies,
demonstrate activity in both CRC and other tumor types. In
metastatic CRC (mCRC) patients, the assessment of anti-EGFR
monoclonal antibody efficacy relies on computed tomography
(CT) scan response endpoints. The on-treatment shrinkage of
metastases on CT scans is considered a hallmark of EGFR sig-
naling pathway dependency (2–5) and of treatment sensitivity
(6). In unresectable mCRC, tumor shrinkage guides the clinical
decision to pursue a curative opportunity (downstage to

resection) or palliative treatment to maximize overall survival
(OS) and improve quality of life by symptom relief (1). As the de-
cision to continue EGFR-targeted therapy must balance the risks
and potential rewards of treatment, there is a pressing need for
biomarkers that can estimate the likelihood of clinical benefit in
individual patients.

We sought to meet this need for alternative biomarkers by
using artificial intelligence (AI). We utilized machine learning to
create an AI signature that evaluated a change in tumor pheno-
type between baseline and 8 weeks on CT-scan images to pre-
dict clinical outcome (OS). Radiology is undergoing rapid change
because of remarkable advances in the field of AI, particularly
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algorithms for machine learning and deep learning, which en-
able automated, high-throughput quantification of medical
images as a set of quantitative features. Traditional radiomic
features are identified according to a priori definitions (eg, tu-
mor diameter or density), and artificial neural networks adap-
tively define deep learning features as spatial hierarchies of
representations. The dataset of radiomic and deep learning fea-
tures can be mined by machine learning to identify statistically
significant associations between variables of interest, such as
clinical outcome or tumor mutational status. This big data ap-
proach is applicable to any imaging modality but requires large
and consistent datasets, which CT scanning currently best pro-
vides because of its use as a standard of care in oncology. In par-
ticular, the widespread adoption of CT measurement of tumor
diameter (eg, RECIST 1.1) as an endpoint in clinical trials has
generated an invaluable resource for AI research. The current
study leverages this resource by analyzing data from the multi-
center clinical trial NCT00154102.

AI techniques allow objective and reproducible analysis of CT
image characteristics, including imaging features not apparent to
the human eye. The overall goal of this study is to determine
whether AI techniques can offer oncologists additional clinical in-
formation regarding response assessment. Our test case is the de-
cision to continue anti-EGFR treatment. We utilized data from
mCRC patients treated with cetuximab in combination with
FOLFIRI (irinotecan, 5-fluorouracil, and leucovorin) in the ran-
domized multicenter CRYSTAL trial (NCT00154102). Data from
this trial were used to obtain regulatory approval for the clinical
use of cetuximab in mCRC. Pretreatment selection is currently
based on a biopsy sample (primary tumor or metastasis) or on liq-
uid biopsy. In approximately one-half of mCRCs patients (7), a
RAS wild-type mutational status (KRAS and NRAS exons 2, 3, 4)
guides the clinical use of cetuximab in addition to either FOLFIRI
(8–11) or FOLFOX (12). This treatment has been found to prolong
median OS by 8 months in RAS wild type (10) and increase overall
response rate, but also to increase the rate of adverse events (8).
However, several tumor biopsy–driven clinical trials have shown
the limitations of predicting clinical benefit from EGFR-targeted
therapies in mCRC and other solid tumors based on a single bio-
marker (13). The exception is the presence of EGFR mutation in
non-small cell lung cancer, which does predict a higher response
rate and prolonged survival (13).

To determine whether an AI-driven signature could guide
clinicians to continue EGFR-targeted therapies on an individual-
ized basis, we aimed to develop and validate an on-treatment
signature detecting mCRC patients sensitive to
FOLFIRIþcetuximab (FC) using quantitative assessment of tu-
mor changes between baseline and 8-week CT images.

Methods

Study Design

Our primary endpoint was to train and validate an on-
treatment signature detecting mCRC patients sensitive to FC.
Our secondary endpoint was to generalize the on-treatment sig-
nature to other datasets with different quality of imaging set-
tings and treatment types (Figures 1 and 2).

Participants and Datasets

We retrospectively analyzed one clinical trial involving two
treatment arms and 667 CRC patients. The two treatment arms

involved anti-EGFR treatment regimens (cetuximab: C) and
FOLFIRI (F). The CRYSTAL trial (NCT00154102) was a random-
ized, open-label, multicenter phase III trial comparing FC (co-
hort FC) with FOLFIRI alone (cohort F) in the first-line treatment
of mCRC (Table 2). Data were gathered up to the clinical trials
completion date. Patients with missing data were excluded.
More information on this clinical trial can be found in the
Supplementary Methods (available online).

We have evaluated the quality of CT-scan acquisition. More
information about CT-scan characteristics, CT-scan quality (14–
16), and radiomics quality score (17) can be found in
Supplementary Methods (available online). Our goal was to cre-
ate the signature in a dataset with high signal-to-noise ratio be-
cause of high imaging quality (HQ dataset) and evaluate if it can
be more universally applicable to a dataset with standard qual-
ity (SD).

Using the nomenclature (tumor type) – (treatment) – (quality
of the dataset), the two cohorts (CRC-FC, CRC-F) were divided
into four datasets and patients (patients) were randomly
assigned to training and validation sets using a 2:1 ratio (CRC-
FCHQ: 78:38 patients, CRC-FCSD: 124:62 patients, CRC-FHQ: 78:51
patients, CRC-FSD: 158:78 patients) (Table 1; Figure 1).

Reference Standard: Sensitivity vs Resistance to
Systemic Cancer Therapy

The signature was trained and validated to predict tumor sensi-
tivity to systemic anticancer treatment. All cancer patients
were divided into two groups: sensitive to treatment and not
sensitive (resistant) to treatment (Supplementary Methods,
available online).

In mCRC patients (datasets CRC-FCHQ, CRC-FCSD, CRC-FHQ,
CRC-FSD), the reference standard to determine tumor sensitivity
to treatment was OS. Patients were considered resistant if they
died before 17.7 months (median OS in the training set) and
were considered sensitive otherwise. The failure event for OS
was defined as death due to any cause. Survival time was mea-
sured from the date of random assignment to the date of death
or last follow-up (censored observation). No included patients
were censored before 17.7 months: all patients were followed
beyond 17.7 months unless they died due to any cause.

Predictors Used in the Signature: Radiomics and Deep-
Learning Features

In total, 3499 quantitative image features including 1757
radiomics features and 1742 pretrained deep-learning features
were used to characterize the early CT changes in tumor pheno-
type. The full details of lesion segmentation and feature extrac-
tions can be found in the Supplementary Methods (available
online).

To reduce overfitting, a radiomics signature integrated up to
four of these features. These four were those ranked highest by
the machine learning algorithm in terms of prediction impor-
tance (18) using the best predictive model developed in the
training set of the discovery cohort CRC-FCHQ. The full details of
model building can be found in the Supplementary Methods
(available online).

Signature Building in Cohort CRC-FCHQ

In the training set of the discovery cohort (CRC-FCHQ), we devel-
oped a multivariable prediction model (ie, the signature, to

A
R

T
IC

LE

L. Dercle et al. | 903

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djaa017#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djaa017#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djaa017#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djaa017#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djaa017#supplementary-data


predict tumor sensitivity to treatment) (see Figure 2). In the im-
plementation, a “coarse” to “fine” strategy was developed to se-
lect optimal features from the large number of extracted
quantitative image features to build the signature. The coarse
selection approach consists of three processes (reproducibility
analysis, redundancy analysis, and feature ranking) aiming to
screen many nonreproducible, redundant, and noninformative
candidate features. The fine selection approach consists of a
“forward” search and feature combination, aiming to select op-
timal features and build the final optimal model.

Signature Calibration in Cohorts CRC-FCSD, CRC-FHQ,
and CRC-FSD

The four imaging biomarkers identified in the signature devel-
oped in the training set of CRC-FCHQ were computed in the train-
ing sets of the cohorts CRC-FCSD, CRC-FHQ, and CRC-FSD. The
signature developed in the training set of CRC-FCHQ was trans-
ferred and calibrated to predict tumor sensitivity to treatment in

the training sets of the cohorts CRC-FCSD, CRC-FHQ, and CRC-FSD

as described in Supplementary Methods (available online).

Validation of the Signature

The primary endpoint was to evaluate the performance of the
signature to predict tumor sensitivity to treatment. The perfor-
mance was measured using area under the receiver operating
characteristic curve (AUC) in the validation sets of the four
cohorts consisting of patients that were not used for training.

The methodology used for secondary endpoints is described
in Supplementary Methods I.6.1 (available online).

Statistical Analysis

Statistical analysis was conducted using Matlab (version
2016 b; Mathworks, Natick, MA) and SPSS (version 23.0; IBM;
Armonk, NY). AUC and AUC’s 95% confidence interval (CI)

Figure 1. CONSORT diagram. Patients could be excluded for multiple reasons. The withdrawal boxes show the number of patients excluded at each step. LM ¼ liver me-

tastasis; T ¼ training set; V ¼ validation set. The artificial intelligence (AI) signature was developed (training set) and validated (validation set) in the

FOLFIRIþcetuximab discovery cohort with high-quality (HQ) dataset.
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were used to indicate classification performance. Analysis of
variance was performed to compare continuous variables, and
v2 test was performed to compare categorical variables. Cox re-
gression was used to investigate the effect of survival varia-
bles, and log-rank test was used to compare survival times of
two groups. A P less than .05 was used to determine statistical
significance. All tests were two-sided.

Results

Participants

Table 2 shows that no statistically significant differences were
detected by the post hoc exploratory tests performed between
cohorts CRC-FCHQ, CRC-FCSD, CRC-FHQ, and CRC-FSD and

Figure 2. Artificial intelligence (AI) workflow. Steps 1–2: Computed tomography (CT) scans acquired at study sites are transferred to our academic core. Step 3. Image se-

lection and quality check using a computer-aided algorithm designed by machine-learning. Step 4. Segmentation of liver metastases on CT scan by an expert radiolo-

gist at baseline and 8 weeks in each patient. Step 5. Combination of all segmented lesions to compute a tumor imaging phenotype in each patient based on imaging

features extraction in each segmented liver metastasis (3499 imaging features characterizing changes between baseline and 8 weeks). Step 6. Dimension reduction us-

ing machine learning. Identification of reproducible, nonredundant and informative candidate imaging features for model building. Step 7. Candidate model building

to enhance strategic decision-making (training set). Step 8. Optimal model selection in the training set using threefold cross-validation to evaluate the performance of

candidate models in terms of area under the receiver operating characteristic curve. Step 9. Signature validation (validation set).

Table 1. Patient characteristics and cohorts in the CRYSTAL trial (NCT00154102)

Treatment arm Cohort FOLFIRI plus cetuximab Cohort FOLFIRI alone

No. Dataset CRC-FCHQ: 116 patients Dataset CRC-FHQ: 129 patients
Dataset CRC-FCSD: 186 patients Dataset CRC-FSD: 236 patients

Tumor characteristics
Tumor type CRC CRC
Stage Advanced Advanced
Lesion(s) segmented Liver metastases Liver metastases

Clinical trial characteristics
Biomarker KRAS* WT mutational status KRAS* WT mutational status

Treatment regimen
Chemotherapy FOLFIRI FOLFIRI

Anti-EGFR Cetuximab (anti-EGFR mAb) None
Primary endpoint

Outcome OS, PFS OS, PFS
Sensitivity to anti-EGFR mAb OS benefit compared with FOLFIRI alone N/A

Time of completion of CT scans Baseline and 8 weeks Baseline or 8 weeks
Clinical trial no. NCT00154102 NCT00154102

*KRAS status and not RAS status was evaluated post hoc in the CRYSTAL clinical trial. CRC ¼ colorectal cancer; F ¼ FOLFIRI; FC ¼ FOLFIRIþcetuximab; HQ ¼ High com-

puted tomography quality; SD ¼ Standard computed tomography quality; mAb ¼monoclonal antibody.
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Table 2. Patient characteristics in the CRYSTAL trial (NCT00154102)*

Patient characteristics

LM mCRC patients with liver metastases

SD quality

Cohorts CRC-FC
SD

and CRC-F
SD

No. (%)

HQ quality

Cohort CRC-FCHQ-FC Cohort CRC-FHQ FOLFIRI

Training
No. (%)

Validation
No. (%)

Training
No. (%)

Validation
No. (%)

Patients, no. 78 38 78 51 288
Gender

Male 50 (64.1) 29 (76.3) 51 (64.1) 31 (60.8) 184 (63.9)
Female 28 (35.9) 9 (23.7) 27 (34.6) 20 (39.2) 104 (36.1)

Primary site
Right colon 20 (25.6) 14 (36.8) 20 (25.6) 17 (33.3) 70 (24.3)
Left colon 58 (74.4) 24 (63.2) 58 (74.4) 34 (66.7) 217 (75.3)

Prior adjuvant chemotherapy
Yes 9 (11.5) 6 (15.8) 10 (12.8) 6 (11.8) 40 (13.9)
No 69 (88.5) 32 (84.2) 68 (87.2) 45 (88.2) 248 (86.1)

Leucocytes
Low 65 (83.3) 35 (92.1) 65 (83.3) 34 (66.7) 234 (81.3)
High 12 (15.4) 3 (7.9) 10 (12.8) 15 (29.4) 45 (15.6)

LDH baseline
Low 41 (52.6) 18 (47.4) 28 (35.9) 21 (41.2) 147 (51.0)
High 29 (37.2) 15 (39.5) 36 (46.2) 21 (41.2) 111 (38.5)
Unknown 8 (10.3) 5 (13.2) 14 (17.9) 9 (17.6) 30 (10.4)

Maximum staining intensity
Low 13 (16.7) 1 (2.6) 12 (15.4) 7 (13.7) 48 (16.7)
High 65 (83.3) 37 (97.4) 65 (83.3) 44 (86.3) 238 (82.6)

Histology of primary tumor
Adenocarcinoma 72 (92.3) 35 (92.1) 76 (97.4) 50 (98.0) 283 (98.3)
Mucinous adenocarcinoma 6 (7.7) 3 (7.9) 2 (2.6) 1 (2.0) 5 (1.7)

Histological differentiation
Well differentiated 10 (12.8) 4 (10.5) 15 (19.2) 7 (13.7) 33 (11.5)
Moderately differentiated 51 (65.4) 24 (63.2) 50 (64.1) 33 (64.7) 191 (66.3)
Poorly differentiated 15 (19.2) 6 (15.8) 12 (15.4) 8 (15.7) 44 (15.3)

KRAS BRAF mutation status
KRAS mutant 25 (32.1) 19 (50.0) 26 (33.3) 17 (33.3) 75 (26.0)
KRAS and BRAF WT 50 (64.1) 15 (39.5) 46 (59.0) 31 (60.8) 129 (44.8)
BRAF mutant 3 (3.8) 4 (10.5) 6 (7.7) 3 (5.9) 8 (2.8)
Unknown 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 76 (26.4)

Target lesions at baseline, no.
0 0 (0.0) 1 (2.6) 0 (0.0) 1 (2.0) 2 (0.7)
1 5 (6.4) 5 (13.2) 12 (15.4) 3 (5.9) 31 (10.8)
2 9 (11.5) 10 (26.3) 13 (16.7) 11 (21.6) 45 (15.6)
3 14 (17.9) 7 (18.5) 18 (23.1) 11 (21.6) 44 (15.3)
4 13 (16.7) 4 (10.5) 5 (6.4) 6 (11.8) 43 (14.9)
5 24 (30.8) 7 (18.5) 16 (20.5) 10 (19.6) 70 (24.3)
>5 14 (17.9) 4 (10.5) 14 (17.9) 10 (19.6) 53 (18.4)

Nontarget lesions at baseline, no.
0 17 (21.8) 16 (42.1) 20 (25.6) 16 (31.4) 77 (26.7)
1 35 (44.9) 8 (21.1) 25 (32.1) 16 (31.4) 90 (31.3)
2 10 (12.8) 4 (10.5) 22 (28.2) 11 (21.6) 50 (17.4)
3 6 (7.7) 6 (15.8) 6 (7.7) 4 (7.8) 19 (6.6)
4 2 (2.6) 1 (2.6) 2 (2.6) 1 (2.0) 13 (4.5)
5 4 (5.1) 2 (5.3) 2 (2.6) 1 (2.0) 18 (6.3)
>5 4 (5.1) 1 (2.6) 1 (1.3) 2 (3.9) 21 (7.3)

Only liver metastasis 57 (73.1) 27 (71.1) 49 (62.8) 37 (72.5) 211 (73.3)
Only liver and lung metastasis 63 (80.8) 33 (86.8) 73 (93.6) 45 (88.2) 253 (87.8)

*Liver metastatic patients included in the HQ cohorts have similar characteristics. The only difference is the quality of the CT scan acquisition protocol and reconstruc-

tion settings. The distribution of clinical characteristics for each subgroup of patients was compared using analysis of variance and v2 (P values) and did not demon-

strate any statistically significant difference between the cohorts. CT ¼ computed tomography; CRC ¼ colorectal cancer; F ¼ FOLFIRI; FC ¼ FOLFIRIþcetuximab; HQ ¼
High computed tomography quality; SD ¼ Standard computed tomography quality.
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between training and validation sets for each treatment arm.
Supplementary Figures 2 and 3 (available online) show tumor
imaging-phenotyping using unsupervised analysis.
Supplementary Table 3 (available online) shows that features
were different between HQ and SD datasets; hence there was a
need for a calibration in each cohort.

Performance of the Signature in Cohort CRC-FCHQ

Of 116 patients, 95 patients died during the follow-up. The me-
dian follow-up duration was 21.8 months overall and
46.7 months (range ¼ 22.4–55.0) in censored patients. All
patients with censored survival data had follow-up longer than
17.7 months and belonged to the low-risk group.

In the training set, the best predictive model was built using
a Random Forest algorithm (18) and 4 Radiomics features
(Figures 3). The performance of the signature to diagnose
treatment-sensitive tumors was AUC ¼ 0.83 (95% CI ¼ 0.75 to
0.92); sensitivity ¼ 0.77, and specificity ¼ 0.85. 4 Radiomics fea-
tures were included in the signature (Table 3; Figures 3): Shape
SI4, LoG Z Entropy, LoG X Entropy, and GTDM Contrast. These
four features were transferred to all cohorts. Shape SI4 charac-
terizes the local curvatures in surface shape of a three-dimen-
sional object. Entropy is a metric of the disorder or
heterogeneity of the signal that is computed after the applica-
tion of a Gaussian smoothing filter to reduce noise and a

Laplacian operator to highlight regions of rapid gray-level
change in images. Gray Tone Difference Matrix features de-
scribe visual properties of texture based on gray-tone difference
between a pixel and its neighborhood. Definitions are presented
in Supplementary Methods (available online).

In the validation set, the performance of the signature (AUC
¼ 0.80, 95% CI ¼ 0.69 to 0.94, sensitivity ¼ 0.80, and specificity ¼
0.78) statistically significantly (two-sided P< .001) outperformed
both KRAS mutational status at baseline (AUC¼ 0.67, P< .001)
and 8-week tumor shrinkage (AUC¼ 0.75 using either RECIST
1.1-like unidimensional tumor shrinkage or volumetric tumor
shrinkage) (P< .001 using bootstrap; Supplementary Figure 6,
available online). There was no biological or clinical phenotype
of failure (Supplementary Table 2, available online).

In the cohort CRC-FCHQ, the signature showed good prognostic
discrimination for OS (P< .001) by univariate Cox regression analy-
sis. High-risk signature (signature> 0.5) was associated with
shorter OS than patients with low-risk signature in the training
set, the validation set, KRAS wild-type patients, and KRAS mutant
tumors (Figure 4) (P< .001). The signature measured at 8 weeks in
KRAS wild-type patients can be used to predict survival at any time
(nomogram, Supplementary Figure 7, available online). The signa-
ture provided incremental value over existing benchmarks for the
prediction of OS because univariate Cox regression analyses ad-
justed for KRAS mutational status demonstrated that the signature
had a statistically significantly better fit for the prediction of

Table 3. Performance of the AI signature in the validation sets*

Analysis

Anti-EGFR treatment No anti-EGFR treatment

FOLFIRI þ cetuximab FOLFIRI only

mCRC mCRC

CRC-FCHQ CRC-FCSD CRC-FHQ CRC-FSD

Reference standard OS OS OS OS
No. patients

Total 116 186 129 236
Training 78 124 78 159

Sensitive 48 71 42 85
Resistant 30 53 36 74

Validation 38 62 51 78
Sensitive 23 34 32 42
Resistant 15 28 19 36

Signature
Algorithm Random Forest Random Forest Random Forest Random Forest
Features Shape SI4 Shape SI4 Shape SI4 Shape SI4

LoG Z Entropy LoG Z Entropy LoG Z Entropy LoG Z Entropy
GTDM Contrast GTDM Contrast GTDM Contrast GTDM Contrast
LoG X Entropy LoG X Entropy LoG X Entropy LoG X Entropy

Performance
Tumor sensitivity OS >17.7 mo OS >17.7 mo OS >17.7 mo OS >17.7 mo
AUC, training 0.83 (95% CI ¼ 0.75 to 0.95) 0.84 (95% CI ¼ 0.76 to 0.89) 0.75 (95% CI ¼ 0.63 to 0.85) 0.75 (95% CI ¼ 0.67 to 0.82)
AUC, validation 0.80 (95% CI ¼ 0.69 to 0.94) 0.72 (95% CI ¼ 0.59 to 0.83) 0.59 (95% CI ¼ 0.44 to 0.72) 0.55 (95% CI ¼ 0.43 to 0.66)

Association with OS
Cox regression

Hazard ratio 44.3 (95% CI ¼ 6.4 to 307.7) 6.5 (95% CI ¼ 1.8 to 23.6) 1.9 (95% CI ¼ 0.4 to 8.4) 0.96 (95% CI ¼ 0.2 to 4.3)
Death 31/38 53/62 42/51 69/78
P .0001 .005 .43 .96

*The performance of the AI signature to detect treatment sensitivity was evaluated in all cohorts. AI ¼ Artificial Intelligence; AUC ¼ Area Under the Curve; CT ¼ com-

puted tomography; CRC ¼ colorectal cancer; F ¼ FOLFIRI; FC ¼ FOLFIRIþcetuximab; HQ ¼ High computed tomography quality; SD ¼ Standard computed tomography

quality.
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patients’ OS than tumor shrinkage (P< .001) (Supplementary
Figure 6; Supplementary Tables 1, 3, and 4, available online).

Generalizability of the Signature to CRC-FCSD, CRC-FHQ,
and CRC-FSD

The Random Forest algorithm (18) using the 4 Radiomics features
signature developed and used in the CRC-FCHQ analysis
(Supplementary Figure 4, available online) was applied to the
other training datasets for calibration. The performance of the
signature (Table 3; Figure 5; Supplementary Figure 8;
Supplementary Tables 5 and 6, available online) in the validation
sets consisting of unseen data was calculated. AUC was 0.72 (95%
CI ¼ 0.59 to 0.83), sensitivity ¼ 0.82, and specificity ¼ 0.61 in CRC-
FCSD. AUC was 0.59 (95% CI ¼ 0.44 to 0.72), sensitivity ¼ 0.37, and
specificity ¼ 0.84 in CRC-FHQ. AUC was 0.55 (95% CI ¼ 0.43 to 0.66),
sensitivity ¼ 0.81, and specificity ¼ 0.33 in CRC-FSD.

Discussion

Using standard-of-care CT scans acquired in multicenter clini-
cal trials, AI successfully identified on-treatment imaging

biomarkers associated with tumor sensitivity to anti-EGFR ther-
apy in CRC patients. These four imaging biomarkers enabled de-
velopment of a signature, which offered high sensitivity and
specificity, to guide the clinical decision to continue EGFR tar-
geted therapies. The innovation of our work compared with the
existing literature was that the signature was dynamic, general-
ized to four datasets acquired in multicenter studies, used a
limited subset of features to reduce overfitting, and considered
image quality according to new quality control tools (17,19,20).
Because it is based on routinely acquired CT scans, such a tool
could be widely incorporated into clinical practice at minimal
cost to detect EGFR-resistant tumors due to clonal acquisition of
resistance mechanisms through alternate pathways and down-
stream events.

The signature features can be understood as noninvasive
in vivo surrogates of treatment-induced biological changes and
generally fall into two categories: indicators of heterogeneity of
the metastatic burden and evaluation of tumor-parenchyma
interactions. In patients with both KRAS wild-type or mutated
tumors, the imaging features identified by our signature pro-
vided incremental value over 8-week tumor shrinkage (6) in a
multifactorial prediction model. Although KRAS wild-type sta-
tus at baseline was associated with better outcome to

Figure 3. Visual representation of the four imaging features included in the signature. The changes in the radiomics features in the patients with the lowest and the

highest probability of insensitivity to treatment according to the radiomics signature are presented on this graph (most sensitive 1–4 vs most insensitive 1–4). The

changes in tumor imaging phenotype of the patient “most sensitive 1” is displayed below. As demonstrated, CT-scan images are transformed to other mathematical

spaces for feature extraction, for example, CT image is transformed to LOG space for computing the entropy value (spatial heterogeneity), and tumor pixels within seg-

mentation contour are transformed to GTDM matrix for computing the contrast value.
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treatment, adding this mutational status to the signature did
not contribute to the incremental value. The capacity of the
complete RAS mutation status to improve predictability was not
assessed in our research. Although this finding is consistent
with the literature suggesting that on-treatment markers of effi-
cacy are better predictors of outcome than baseline variables, it
also indicates that imaging biomarkers can overcome two
weaknesses associated with the use of a single genomic bio-
marker to predict outcome to targeted therapies: tumor hetero-
geneity and pathways complexity.

Because CT scans can provide information regarding the en-
tire tumor burden and be repeated noninvasively, they are bet-
ter suited to address the spatial and temporal heterogeneity of
tumors than genomic analysis of tissue from a single biopsy
site. First, although KRAS mutations are early driving events in
colorectal tumorigenesis and progression, substantial spatial
heterogeneity exists in KRAS status. Despite good concordance
between the primary tumors and matched distant metastases,

KRAS status shows 8% intratumoral heterogeneity in the pri-
mary tumor, up to 10% variability between the primary tumor
and metastases, and up to 12% heterogeneity among multiple
metastatic lesions (21). Second, the limitations of genomic bio-
markers are further demonstrated by the fact that failure of
anti-EGFR therapy is observed in one-half of the patients with
wild-type RAS CRC. Although downstream mutations in genes
(eg, BRAF and PI3KCA mutations) are not predictive biomarkers
for anti-EGFR therapy, they seem to predict a poor prognosis in-
dependent of treatment. Third, temporal heterogeneity may
also emerge from the inherent dynamic evolution and adapta-
tion of clones acquiring distinct resistance mechanisms, espe-
cially in the presence of selection pressure from anti-EGFR
targeted therapies (22).

Decrease in heterogeneity of the metastatic burden (eg, en-
tropy) on CT scan following cetuximab treatment was the best
predictor of tumor sensitivity to anti-EGFR therapies. The signa-
ture can be understood as an AI analysis of CT image

Figure 4. Risk stratification using the signature in the discovery cohort. The discovery cohort included mCRC patients treated with FOLFIRIþ cetuximab. Kaplan-Meier

graphs depicting overall survival in patients stratified at high-risk (signature >0.5) or low-risk (signature �0.5) at 8 weeks by the signature. P values are based on data-

set-stratified two-sided log-rank tests. A, B) Survival probability in the training and in the validation sets. C, D) Survival probability in KRAS wild-type and KRAS mutant

groups. CRC ¼ colorectal cancer; F ¼ FOLFIRI; FC ¼ FOLFIRIþcetuximab; HQ¼ High computed tomography quality; SD ¼ Standard computed tomography quality.
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heterogeneity (23) capturing a key hallmark of cancer (24): the
heterogeneity of an expanding aberrant and distorted neo-
vasculature supplying tumor growth. These macroscopic pat-
terns of neovascularization are marked by heterogeneous and
excessive blood flow, microhemorrhage, and leakiness, which
produce a heterogeneous accumulation of iodine on contrast-
enhanced CT scans. Radiomics signature can therefore capture
neovascularization patterns (14,25–27) associated with reduced
treatment efficacy (25,28), poor outcome because of reduced
drug delivery (29–32), hypoxia, and promotion of immune eva-
sion, tumor progression, and metastasis (24). From a broader
perspective, there is a rationale that even basic CT features
such as size changes are associated with pathologic response
(ie, the percentages of residual tumor) and OS in mCRC patients
treated with chemotherapy regimens containing molecular tar-
geted therapies targeting such as anti-EGFR or anti-VEGF (33).

The second weakness of the single genomic biomarker is the
complexity of cancer pathways. Following blockade of onco-
genic pathways by targeted therapies, the Darwinian selection
process will tend to select cancer cells that exploit alternative
pathways. AI analysis of CT scans can identify signatures asso-
ciated with downstream events linked to favorable outcomes
with anti-EGFR therapy. Several tumor biopsy–driven clinical
trials (13) demonstrated that inhibition of the EGF receptor acti-
vation alone did not confirm clinical benefit in mCRC and other
solid tumors. This is explained by the selection of clones with
downstream mutations allowing the tumor to continue to pro-
liferate (eg, EGFR, then RAS, then RAF or PI3K). A radiomics sig-
nature can dynamically assess features associated with
efficient blockade of the full range of oncogenetic pathways,
and their interconnections promise to accelerate the develop-
ment of molecularly targeted therapies.

Figure 5. Performance of the signature in the validation sets of the three independent testing cohorts. CT quality was classified as high (HQ) or standard (SD). The

Random Forest algorithm using the 4 Radiomics features signature developed and used in the FCHQ analysis was applied to the other training data sets for calibration.

Then, its performance was validated in the four validation sets. Area under the receiver operating characteristic curve (AUC) and AUC’s 95% confidence interval (CI)

were used to indicate classification performance. The signature (AUC [95CI]) used temporal decrease in tumor spatial heterogeneity plus boundary infiltration to suc-

cessfully predict sensitivity to anti-EGFR therapy (FCHQ [A], FCSD [B]) but failed with chemotherapy (FHQ [C], FSD [D]). F ¼ FOLFIRI; FC ¼ FOLFIRIþcetuximab; HQ¼ High

computed tomography quality; SD ¼ Standard computed tomography quality.
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Tumor shape (eg, shape SI4) and boundary sharpness (eg,
Sigmoid Slope Energy) features were strongly associated with
OS and capture complex patterns of macroscopic changes at
tumor-liver interfaces in mCRC that reflect both infiltrative tu-
mor growth and perfusion change. A pushing interface in which
tumor cells directly compress the liver has a poorer prognosis
than interfaces in which a desmoplastic lymphocytic stroma
separates the tumor cells from the liver or in which tumor cells
replace liver parenchyma without pushing or desmoplastic
reaction (34). Conversely, the presence of a peritumoral
contrast-enhancement rim region surrounding liver tumors is
biologically relevant as a reflection of recruitment of hepatic
artery branches by vascular endothelial growth factor and/or a
reduced peritumoral portal flow (mechanical tumor compres-
sion and/or vessel lumen-narrowing secondary to fixed leuko-
cyte adherence) (16,35–40).

There are several innovative aspects of our work. Although
AI techniques are increasingly proposed to aid drug discovery
and clinical imaging, none have yet been identified and ro-
bustly validated in heterogeneous datasets such as large mul-
ticenter clinical trials. Our innovative methodology (41–43) lies
in combining the deep-learning feature set (ImageNet
pretrained VGG-16) and radiomics feature set (engineered fea-
tures) and applying them using a dynamic approach (two time
points) to response assessment in cancer therapies. Our
results suggest that the performance of imaging-based re-
sponse assessment could progressively increase by moving
from unidimensional size, to volume (44), and finally by inte-
grating radiomics features. Another innovation—compared
with other radiomic signatures in CRC patients (45–47)—is
that we tightly controlled the quality (17) of image acquisition
through robust reconstruction settings (15), reproducible seg-
mentation (16), and selection of optimal contrast enhance-
ment at the portal venous phase (14). This was by design to
increase the signal-to-noise ratio because of the heterogeneity
in acquisition protocols and image quality in a landmark his-
torical multicenter clinical trial with “real-life” heterogeneous
image quality. Finally, we reduced the risks of type I error and
overfitting by using only four imaging biomarkers in the sig-
nature and by evaluating the generalizability of these imaging
biomarkers to four validation sets.

This work has limitations but opens numerous perspectives
and opportunities for improvement. First, future research could
assess the performance of CT scan evaluation earlier than
8 weeks or pool data from multiple timepoints and modeling
the growth and decay of radiomics features for all available pa-
tient scans beyond week 8. Second, before prospectively imple-
menting this decision tool in RAS wild-type patients, we expect
to calibrate the signature to all generations of CT scanners and
fine-tune convolutional neural network models in external and
larger datasets (48). Third, we will evaluate the possible tempo-
ral within-patient heterogeneity of responses to identify ther-
apy-resistant clones. Fourth, there is a need to determine if
these imaging biomarkers uncover a prognostic effect rather
than predictive (to anti-EGFR therapy), specifically in certain
subpopulations. As an ancillary study, AI could not identify a
phenotype associated with the sensitivity of tumors in the
FOLFIRI-only group in a clinically significant manner. Because
CRC is known to evolve by a reiterative process of genetic diver-
sification and clonal evolution, a targeted therapy efficient in
only some patients might indeed produce greater interpatient
variability in terms of depth of response than chemotherapy
(49). This is explained by the fact that sensitive tumors will be
more homogeneous than insensitive tumors because resistant

mutation events will develop heterogeneous resistant tumor
niches.

Temporal changes in the spatial heterogeneity of metastatic
tumor burden were linked to outcome. Heterogeneity was
defined by the conversion of a per-lesion phenotype to a per-
patient phenotype. First, we calculated the spatial heterogene-
ity between neighboring voxels in each metastatic lesion. Then,
we aggregated all metastatic lesions through a weighted
average. Of note, each liver metastatic lesions may theoretically
behave differently from metastatic disease in peritoneum and
lungs. Nonetheless, several facts support our methodology.
First, liver metastasis affects greater than one-half of CRC
patients (1). Second, a modeling framework (22)—considering
resistance development and clonal selection—demonstrated
similar dynamics among individual lesions within the same tu-
mor site location and different dynamics in only 35% of patients
with lesions in different anatomic locations (22).

Although there was no apparent selection bias, the signature
was designed for CRC patients with liver metastases with
known KRAS status in a landmark trial (48–51). The architecture
of the liver parenchyma differs from other tissues such as the
lung parenchyma. Therefore, some imaging features (ie, shape
and boundary sharpness features) might intuitively need to be
calibrated for each malignant site, whereas surrogates of het-
erogeneity may generalize. We anticipate that features identi-
fied in this historical landmark clinical trial can be easily
generalized and fine-tuned to analyze newer datasets. First, fea-
tures were generalizable from the HQ cohort to patients with SD
quality imaging settings. Second, response evaluation on CT
scan has not fundamentally changed over the last decades
since new technologies focused on increasing the speed and re-
ducing radiation dose (50). The main advantage of using an
“old” trial is the extended follow-up of patients that allowed
only 18% of data to be censored for the OS. Most newer clinical
trial datasets are not yet mature or available from sponsors;
nevertheless, groups are actively attempting to make these pub-
licly available (51). In conclusion, AI-derived support tools could
give clinicians an early prediction of the success of treatment
with FC using conventional standard-of-care CT scans.
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