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The COVID-19 pandemic, which started in Wuhan, China, has spread rapidly over the world with no known antiviral therapy
or vaccine. Interestingly, traditional Chinese medicine helped in flattening the pandemic curve in China. In this study,
molecules from African medicinal plants were analysed as potential candidates against multiple SARS-CoV-2 therapeutic
targets. Sixty-five molecules from the ZINC database subset (AfroDb Natural Products) were virtually screened with some
reported repurposed therapeutics against six SARS-CoV-2 and two human targets. Molecular docking, druglikeness, ab-
sorption, distribution, metabolism, excretion, and toxicity (ADMET) of the best hits were further simulated. Of the 65
compounds, only three, namely, 3-galloylcatechin, proanthocyanidin B1, and luteolin 7-galactoside found in almond (Ter-
minalia catappa), grape (Vitis vinifera), and common verbena (Verbena officinalis), were able to bind to all eight targets better
than the reported repurposed drugs. The findings suggest these molecules may play a role as therapeutic leads in tackling this

pandemic due to their multitarget activity.

1. Introduction

Coronaviruses (CoVs) are members of Coronaviridae family
belonging to the order Nidovirales. They are enveloped
viruses of about 60 to 140 nm in diameter with positive-sense
single-stranded RNA genome (+ssRNA) classified into four
genera, namely, alpha («), beta (), gamma (y), and delta
(8) [1]. These viruses have spikes protruding from their
surface, giving them a crown-like structure (hence, the name
corona), which makes them bind to the human lower re-
spiratory system [2]. Since the turn of the 21*' century, CoV's
have caused several pandemics that are not only of signif-
icant public health concerns but also distort socioeconomic
activities in infected regions [3]. In 2003, Severe Acute
Respiratory Syndrome (SARS) was identified in Guangdong,

China, with SARS-CoV as the causative pathogen, while the
Middle East respiratory syndrome (MERS) caused by
MERS-CoV resurfaced a decade later in Jeddah, Saudi
Arabia [4]. These zoonotic pathogens belong to the 3-CoV
genus, with pneumonia and acute respiratory distress syn-
drome (ARDS) as prominent symptoms [5]. In Wuhan,
China, a novel pandemic initially known as 2019 novel
coronavirus (2019-nCoV) was reported in December 2019. It
was later called coronavirus disease (COVID-19) by the
World Health Organization (WHO) on 11 February 2020
[6]. The disease exhibits similar symptoms with SARS,
consequently making the International Committee on
Taxonomy of Viruses (ICTV) name the viral pathogen se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) [7]. Irrespective of the numerous ways and policies to
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contain this pandemic, it has continued to spread worldwide
with an increase in its related mortality. The WHO situation
report as of 8 June 2020 shows 6,931,000 confirmed cases
with 400,857 reported deaths worldwide. In Africa, 135,412
confirmed cases with 3,236 deaths were reported with the
transmission classified majorly as community-based [8]. The
novelty of this disease means there is no antiviral therapy or
vaccine to combat it. Nonetheless, the severity of this disease
has led to its prioritisation and increased research on the
disease and the virus by researchers worldwide, leading to a
better understanding of its aetiology, pathogenesis, man-
agement, and treatment [1]. Recently, lopinavir, ritonavir,
remdesivir, chloroquine, hydroxychloroquine, camostat,
and nafamostat, to mention a few, have been proposed as
potential drug candidates that could be repurposed to
combat this pandemic [9-12]. Traditional Chinese Medicine
(TCM) and Ayurveda system of medicine have been at-
tributed to play a part in the flattening of the pandemic curve
in China with about 60,000 people treated with TCM
[13, 14]. Theoretically, the secondary active metabolites in
these natural products may have been responsible for the
attributed success of TCM against COVID-19 in China.
Computational method approaches are important
techniques which efficiently filter, screen, select, and identify
potential leads for drug development from diverse chemical
databases [15]. Numerous computational screening analyses
have been carried out to screen and identify drug candidates
with therapeutic and prophylactic potential against various
proteins of SARS-CoV-2 from the ZINC database [16-20].
Network analysis leaning algorithm (machine learning, deep
learning, and artificial intelligence (AI)) approach based on a
fully connected neural network in combination with virtual
screening methods as well as network-based meta-analysis
has been utilised in investigating potential anti-SARS-CoV-2
leads from ZINC database [21-25]. The Unites States Food
and Drug Administration- (USFDA-) approved drugs [26],
drugbank [27, 28], traditional Ayurvedic, Chinese and natural
medicine [20, 28-31], dark chemical matter, and fooDB [25]
are some of the ZINC database subsets that have been rig-
ourously screened for molecules to combat SARS-CoV-2 with
main protease, RNA-dependent RNA polymerase, and an-
giotensin-converting enzyme-2 as the major therapeutic
targets. Despite the volume of research on computational
screening analyses from different databases, there is a paucity
of information on small molecules from African medicinal
plants and other therapeutic targets that can help combat
SARS-CoV-2. Hence, this study analysed a plethora of natural
products (NPs) from African medicinal plants with known
bioactivities in human as therapeutic candidates targeting and
inhibiting SARS-CoV-2 RNA synthesis, replication, structural
protein function, and host-specific receptors/enzymes.

2. Materials and Methods

2.1. Ligand Modelling. A total of 65 compounds from Af-
rican medicinal plants with known bioactivities in human
were downloaded as a subset of AfroDb Natural Prod-
ucts (http://zinc15.docking.org/catalogs/afronp/substances/
subsets/in-man/) as shown in Table S1. At the same time,
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lopinavir, ritonavir, remdesivir, chloroquine, hydroxy-
chloroquine, camostat, and nafamostat which are proposed
drug candidates in treating COVID-19 were downloaded
from PubChem (http://www.pubchem.ncbi.nlm.nih.gov) in
.sdf format and used as standards. Conversion to their three-
dimensional (3D) structures, force field generation, and the
addition of nonpolar hydrogen and Gasteiger charges were
carried out using Open Babel v2.3.2 [32], LigParGen [33],
and AutoDock4.2 [34, 35], respectively.

2.2. Protein Retrieval, Preparation, and Binding Pocket
Prediction. The protein structures of SARS-CoV-2 papain-
like protease (PLpro), main/3-chymotrypsin-like protease
(3CLpro), RNA-dependent RNA polymerase (RdRp), heli-
case, 2-O-methyltransferase (20MT), spike receptor-binding
domain (S-RBD), human angiotensin-converting enzyme 2
(ACE2), and human type-II transmembrane serine protease
(TMPRSS2) with PDB codes 6w9c, 6lu7, 6m71, 6w4h,
6m17.E, 6m17.B, and 5cel, respectively, were retrieved from
protein data bank (http://www.rcsb.org). Experimental SARS-
CoV-2 helicase structure is yet to be deposited in the protein
data bank; hence, a homology structure was modelled as
described by Iheagwam and Ogunlana [36]. Briefly, SARS-
CoV-2 helicase sequence was acquired from UniProt (http://
www.uniprot.org) via the UniProt identifier (PODTD1) with a
feature identifier (PRO_0000449630). The FASTA sequence
was inputted in SWISS-MODEL [37] to generate a theoretical
model which was evaluated using PROCHECK, ERRAT [38],
and Verify 3D [39]. 3Drefine was used to minimise the energy
levels of all protein crystal structures [40]. All therapeutic
targets were run on the DogSiteScorer server for prediction of
their molecular druggable pocket [41].

2.3. Structure Based-Virtual Screening and Molecular
Docking. iGEMDOCK v2.1 was used to screen the ligands in
the binding pockets of the proteins with population size 300,
80 generations, and 10 solutions as the set screening pa-
rameters [42]. Top ranking ligands present across all eight
proteins [8] were further subjected to molecular docking
using AutoDock Vina [43]. Gasteiger charges were com-
puted, polar hydrogen was assigned, and grid map was set at
1A space for PLpro, 3CLpro, RdRp, helicase, 20MT, S-RBD,
ACE2, and TMPRSS2 protein crystal structures using
Autodock 4.2 as shown in Table 1 before molecular docking
was carried out [34, 35].

2.4. Physicochemical, Pharmacokinetic, and Toxicity
Evaluation. Physicochemical, pharmacokinetic, and toxic-
ity parameters of the identified hit therapeutic molecules
were predicted using SwissADME [44] and ADMETIab [45].

3. Results and Discussion

3.1. Homology Modelling. The SARS-CoV-2 helicase FASTA
sequence (601 amino acid residues) which was inputted into
SWISS-MODEL generated five helicase homology models
from 5 templates, namely, 6jyt, 5wwp, 4non, 5ftf, and 6sje.
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TaBLE 1: Grid box coordinates and size parameters used for molecular docking.
PLpro 3CLpro RdRp Helicase 20MT S-RBD ACE2 TMPRSS2

Dimension (A)

x 20 18 28 28 22 25 60 34

y 24 34 26 24 23 20 42 40

z 26 30 32 32 23 25 26 34
Centre (A)

x =35 =20 115 415 90 175 180 9

y 30 25 115 -11 15 115 107 -1

z 33 65 127 85 25 250 255 19

PLpro: papain-like protease; 3CLpro: main/3-chymotrypsin-like protease; RdRp: RNA-dependent RNA polymerase; 20MT: 2-O-methyltransferase; S-RBD:
spike receptor-binding domain; ACE2: human angiotensin-converting enzyme 2; TMPRSS2: human type-II transmembrane serine protease.

However, the model built using 5wwp as template was se-
lected based on its global model quality estimate, QMEAN,
template resolution, sequence identity, similarity, and
coverage over other templates (Table S2, Figure S1). In
SWISS-MODEL, structural information of templates is
extracted based on OpenStructure comparative modelling
engine to provide complete stoichiometry and generate a 3D
homology model structure [37]. According to Xiang [46], if
the sequence identity similarity of 30% upward is shared
between target and template, the homology model is con-
sidered dependable and successful. With a 72.2% similarity
and QMEAN of -1.72, the selected model was not only
successful but might have structural similarity and behav-
iour with experimental models [47]. Upon energy mini-
misation of the modelled helicase, a root-mean-square
deviation (RMSD) score of 0.387 and 0.588 A was observed
when superimposed with the modelled helicase and 5wwp,
respectively (Figure S2). This observation suggests the ho-
mology model has a high similarity and structural order-
liness with the template as corroborated by studies on
TMPRSS2 and dipeptidyl peptidase 4 [17, 36]. The model
also had good stereochemical quality as conferred by the
Ramachandran plot with reduced noise as shown in Table S3
with a 3D verification score of 94.7% and quality factor of
88.14% further corroborating the reliability of the model
(Figures S3 and $4, respectively).

3.2. Structure-Based Virtual Screening and Molecular
Docking. In the course of drug discovery, structure-based
virtual screening is a computational approach utilised to
identify promising novel small chemical ligands from cu-
rated chemical compound databases with potential activity
against drug targets [48]. Table S4 shows the virtual
screening results of molecules downloaded from ZINC
database subset (AfroDb Natural Products) against multiple
SARS-CoV-2 targets using iGEMDOCK v2.1. The total
binding energy ranged from —51.3229 to —127.014, 156.29 to
-122.363, —38.3427 to -107.434, 71.1802 to -105.299,
—29.8219 to —114.424, -36.3285 to —81.2413, —35.5357 to
—91.4829, and 268.746 to —133.244kcal/mol for PLpro,
3CLpro, RdRp, helicase, 20MT, S-RBD, human ACE2, and
human TMPRSS2, respectively. Looking at the top 15
scoring ligands, only ZINC 3978503, ZINC 5085289 and
ZINC 40422816 also known as 3-galloylcatechin, proan-
thocyanidin B1, and luteolin 7-galactoside, respectively,

appeared across all therapeutic targets as the 3™, 10", and 5™
respective ranking molecule for PLpro; 1%, 3rd, and 9" re-
spective ranking molecule for 3CLpro; 2™, 4™, and 9™ re-
spective ranking molecule for RdRp; 4™ 1% and 3™
respective ranking molecule for helicase; 3, 4, and 1
respective ranking molecule for 20MT; 8, 2™, and 12
respective ranking molecule for S-RBD; 10, 1%, and 7™
respective ranking molecule for ACE2; and 4™, 5, and 10"
respective ranking molecule for TMPRSS2 (Table S4). These
three compounds were further docked using Autodock Vina
in the binding pocket of the therapeutic targets predicted by
DogsiteScorer, as shown in Figure S5. Pocket and subpocket
detection and analysis tools are useful for assessing the
druggability of therapeutic targets. DoGSiteScorer detects
druggable pockets using a support vector machine based on
the integration of grid-based method and Gaussian filter
difference [41]. Pocket detection is usually done prior to
molecular docking simulations. The selected hit ligands
exhibited better Autodock binding fitness than the proposed
COVID-19 treatment drug candidates in the binding pocket
of PLpro (-5.7, —4.1, and —4.6 kcal/mol, respectively), 3CLpro
(-6.3, =5.1, and —5.6kcal/mol, respectively), RdRp (-8.7,
-9.8, and —8.5kcal/mol, respectively), helicase (9.8, —10.3,
and —9.2kcal/mol, respectively), 20MT (-8.6, —10.5, and
—9.6 kcal/mol, respectively), S-RBD (-5.2, —6.4, and —6.1 kcal/
mol, respectively), ACE2 (-8.5, =9.7, and —8.9 kcal/mol, re-
spectively), and TMPRSS2 (-8.4, —8.9, and —8.9 kcal/mol,
respectively) (Table 2). Interestingly, none of them were able
to target the S-RBD-ACE?2 interface (result not shown). In
AutoDock Vina, ligands with more electronegative binding
energy are ranked higher and believed to have better binding
fitness [43]. 3-Galloylcatechin, proanthocyanidin B1, and
luteolin 7-galactoside all had lower AutoDock Vina scores
than the proposed standards in most of the targets, sug-
gesting better binding fitness, lower inhibition constant, and
better experimental activity values [49]. 3-Galloylcatechin is
an extremely weak base flavonoid with almond (Terminalia
catappa) and grapes (Vitis vinifera) as rich sources [50].
Proanthocyanidin Bl-like 3-galloylcatechin is also a flavo-
noid made up of (-)-epicatechin and (+)-catechin units,
joined by a f-interflavanyl bond. It is found in cocoa
powder and grapes at high concentration [51]. Luteolin 7-
galactoside is a flavonoid glycoside found in fruits, herbs,
and spices such as common verbena (Verbena officinalis) [52].
The antiviral activity of 3-galloylcatechin and proantho-
cyanidin Bl has previously been reported [53, 54]. Ghosh
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TaBLE 2: Docking results of ligands and standard drugs on SARS-CoV-2 therapeutic targets.

PLpro 3CLpro Helicase RdRp 20MT S-RBD ACE2 TMPRSS2

Binding energy (kcal/mol)

3-Galloylcatechin -5.7 -6.3 -9.8 -8.7 -8.6 =52 -85 -84
Proanthocyanidin B1 —4.1 5.1 -10.3 -9.8 -10.5 —6.4 -9.7 -8.9
Luteolin 7-galactoside -4.6 5.6 -9.2 -85 -9.6 -6.1 -89 -89
Camostat mesylate — — — — — — — -7
Chloroquine -4.7 -4.6 -6.4 -4.9 -6.1 -4.9 -5.1 -6
Hydroxychloroquine —-4.6 -5.3 -6.5 -5.5 -6.3 -4 -5.7 -6.2
Lopinavir -3.7 —4.1 -8.2 -7.9 -6.9 =5.1 =71 —
Nafamostat mesylate — — — — — — — -7.9
Remdesivir -3.6 -5.2 -8.1 -7.3 -7.2 -5.5 -8.1 =71
Ritonavir -4.2 —4.1 -8.4 -6.3 -6.9 —4.5 -7.9 —

The values in bold represent the best scores for each target. PLpro: papain-like protease; 3CLpro: main/3-chymotrypsin-like protease; RdRp: RNA-dependent
RNA polymerase; 20MT: 2-O-methyltransferase; S-RBD: spike receptor-binding domain; ACE2: human angiotensin-converting enzyme 2; TMPRSS2:

human type-II transmembrane serine protease.

and Chakraborty [55] and Nguyen and Woo [56] in their
respective studies have identified gallocatechin gallate, a
closely related molecule to 3-galloylcatechin, as a candidate
molecule against SARS-CoV 3CLpro. Competitive inhibi-
tion of this enzyme was the proposed mode of gallocatechin
gallate action. The inhibitory activity of procyanidin Bl on
SARS-CoV infection has been reported by Zhuang et al. [57].
Though procyanidin B1 mode of action was not elucidated,
transferrin receptor and ACE2 expression were found not to
play a role in the inhibitory property. Luteolin 7-galactoside,
on the other hand, does not have any reported antiviral
activity, but rather its effectiveness in treating sore throats,
respiratory tract diseases, and its anti-inflammatory activity
is well established [58, 59]. The carbohydrate moiety ste-
reoisomer, luteolin 7-glucoside, on the other hand, has been
reported to possess antiviral activity [60, 61]. Luteolin was
recently reported to possess possible strong antiviral activity
against SARS-CoV-2 as a result of its low binding energy in
the active site of some therapeutic targets [62].

Molecular docking simulation predicts the binding
properties and interactions between a ligand and its target
[63]. Looking at the binding mode and molecular interaction
of the hit ligands in the binding pocket of SARS-CoV-2
therapeutic targets (PLpro, 3CLpro, RdRp, helicase, 20MT,
S-RBD, ACE2, and TMPRSS2) as simulated by Autodock
Vina, conventional hydrogen bonds, carbon-hydrogen
bond, Van der Waal forces, and various pi (7) interactions
were responsible for stabilising the ligand interactions
(Figures 1-16). HIS1017 and CYS1015 were noteworthy
common amino acid residues that interacted via hydrogen
bond and Van der Waal interaction, respectively, with all the
hit ligands and proposed drugs in the binding site of PLpro
(Figure 1). In the binding pocket of 20MT as depicted in
Figures 9-10, ASN101 (hydrogen bond), GLY71, ASP133
(Van der Waal forces), LEU100, and MET131 (7 interac-
tions) were the common amino acid residues that interacted
with the hit molecules and proposed standards to stabilise
them in the binding site while ASP618 (Van der Waal in-
teraction) was synonymous in the binding site of RdRp
(Figures 7-8). These amino acid residues could be targeted as
possible therapeutic targets in the inhibition of these pro-
teins due to their noncovalent stabilising activity in the

druggable pocket [64]. HIS contains an imidazole side chain
with acid-base properties which is essential in the catalytic
mechanism of enzymes where it is found [65]. For 3CLpro,
helicase, S-RBD, ACE2, and TMPRSS2, the amino acid
residues responsible for stabilising the molecules in the
binding site were not consistent for the ligands and proposed
standards (Figures 3-6 and 11, 12-15, and 16, respectively).

All ligands and proposed standards were able to bind
properly in the binding pocket of the therapeutic targets as
predicted by DogSiteScorer after the docking simulation by
Autodock Vina (Figure S5). On the other hand, luteolin 7-
galactoside and ritonavir bound to the allosteric site of
PLpro with ritonavir extending into the active site while
lopinavir as well as ritonavir bound to the allosteric site of
3CLpro. This binding pose could be attributed to their
chemical structures requiring a more substantial binding
pocket. Chloroquine (S-RBD and ACE2) and hydroxy-
chloroquine (TMPRSS2) were also found to bind to allo-
steric sites after docking (Figures S6 and S7, respectively).
The binding of hydroxychloroquine in the positively charged
allosteric site of TMPRSS2 was similar to earlier findings of
remdesivir binding with TMPRSS2 where hydrogen bonds
with ASN and ARG were also formed [20]. It is of interest
that the high binding energies of 3-galloylcatechin, proan-
thocyanidin B1, and luteolin 7-galactoside to ACE2 and
TMPRSS2 could have clinical implication in the prevention
of SARS-CoV-2 transmission [66]. Various studies have
reported other phytomolecules present in African medicinal
plants that have exhibited potential activity as antagonists
against SARS-CoV-2 by interfering with different thera-
peutic targets [67, 68]. These findings further buttress the
role of NPs and their identified bioactives in tackling the
COVID-19 pandemic.

3.3. Physicochemical, Pharmacokinetic, and Toxicity Evalu-
ation of Hit Ligands. The physicochemical properties of the
hit ligands are presented in Table 3. Interestingly, none of the
hit molecules were able to pass Lipinski’s druglikeness test
with 3-galloylcatechin, proanthocyanidin B1, and luteolin 7-
galactoside violating 1, 3, and 2 rules, respectively. They also
violated Ghose, Veber, Egan, Muegge, and leadlikeness
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FIGURE 1: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of PLpro. Hydrogen, carbon-hydrogen, and 7 bonds are
depicted as green, light blue, and any other coloured (purple, magenta, orange, turquoise blue, pink, and yellow) lines, while Van der Waal
interactions appear as light green circles.
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FIGURE 2: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of PLpro.



Scientifica 7

GLU
A:14

VAL
A:73

A:97
GLY
A:71
ASN
A:72
(a)
TRP
PRO A:31

A:96

MET
A:17

THR
A:93
PRO
A:122
GLY. SER
A:15 A:121
(d) (£)
VAL
A:35
ILE
A:78
LYS
A:88
GLY.
A:79
PRO
A:122 A
SER HIS
A:121 &
Ros
4 VAL :
&2 THR\  A:73
= A:93
A:72 A:82
(8 (h)

FIGURE 3: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of 3CLpro. Hydrogen, carbon-hydrogen, and
unfavourable and 7 bonds are depicted as green, light blue, red, and any other coloured (purple, magenta, orange, and pink) lines, while Van
der Waal interactions appear as light green circles.
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FiGure 4: Continued.
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FIGURE 4: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of 3CLpro.
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FIGURE 5: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of helicase. Hydrogen, carbon-hydrogen, and
unfavourable and 7 bonds are depicted as green, light blue, red, and any other coloured (purple, magenta, orange, turquoise blue, pink, and
yellow) lines, while Van der Waal interactions appear as light green circles.

parameters except for 3-galloylcatechin and luteolin 7-ga-
lactoside, which passed Ghose filters. Synthetic availability
score (4.16, 5.32, and 5.17, respectively) and 10% bioavail-
ability score (0.55, 0.17, and 0.17, respectively) were pre-
dicted for 3-galloylcatechin, proanthocyanidin BI, and
luteolin 7-galactoside. Lipinski’s rule of 5 and its variants are
used to predict if small chemical compounds detected as
pharmaceutical leads are orally active [69-72]. 3-Galloyl-
catechin could be ascertained to be orally active based on a
consensus that only one parameter is violated in Lipinski’s

RO5 [36]. The druglikeness failure exhibited by the com-
pounds is not surprising as NPs have been reported to fail
Lipinski’s druglikeness test, which is attributed to their
mechanism of absorption [73]. NPs have been reported to be
bioavailable by exploiting complex mechanisms such as
active transport unlike synthetic drugs that utilise passive
diffusion [74]. This is because NPs look a lot like biosynthetic
intermediates and endogenous metabolites than synthetic
compounds [75]. They also differ in terms of elemental
composition and stereochemical complexity [76].
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FIGURE 6: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of helicase.
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FIGURE 7: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of RdRp. Hydrogen, carbon-hydrogen, unfavourable, and
7 bonds are depicted as green, light blue, red, and any other coloured (purple, magenta, orange, turquoise blue, pink, and yellow) lines, while
Van der Waal interactions appear as light green circles.



12 Scientifica

(a) (b)

(© (d)

FIGURE 8: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of RdRp.
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FIGURE 9: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydrox-
ychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of 20MT. Hydrogen, carbon-hydrogen, unfavourable,
and 7 bonds are depicted as green, light blue, red, and any other coloured (purple, magenta, orange, turquoise blue, pink, and yellow) lines,
while Van der Waal interactions appear as light green circles.
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FIGURE 10: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin Bl, (c) luteolin 7-galactoside, (d) chloroquine, (e)
hydroxychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of 20MT.
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FIGURE 11: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydroxy-
chloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of S-RBD. Hydrogen, unfavourable, and 7 bonds are depicted
as green, red, and any other coloured (purple, magenta, orange, and pink) lines, while Van der Waal interactions appear as light green circles.
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(d)

FIGURE 12: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin Bl, (c) luteolin 7-galactoside, (d) chloroquine, (e)
hydroxychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of S-RBD.

Interestingly, many NPs that violate RO5 have been reported
to remain bioavailable by Lipinski [77]. Advances in syn-
thetic biology and organic synthesis methodology such as
biosynthetic gene cluster manipulation, total synthesis,
semisynthesis, or a combination of these methods have
identified a new generation of natural product scaffolds that
can be systematically targeted, to increase the activity, de-
crease the toxicity, and/or improve the physicochemical and
pharmacokinetic properties [78]. This can also be applied as
done in other natural leads during synthesis and lead op-
timization to improve the druglikeness of the compounds
[79, 80]. The synthetic accessibility score of the compounds
ranged from 4.16 to 5.32. The score which ranges from 1 to

10 is based primarily on the assumption that molecular
fragment frequency in easily obtainable molecules actually
correlate with the ease of synthesis [44]. The observed values
for the hit ligands suggest their fragmental contribution and
chemical moieties should be moderately favourable for
synthetic synthesis in the pharmaceutical industry leading to
potential drug discovery outcome [81-83].

In the course of drug discovery, compounds with pre-
dicted favourable pharmacokinetic and toxicity properties
have the potential to pass standard clinical trial criteria’s
making them drug candidates [84]. Looking at the ab-
sorption properties presented in Table 4, none of the hit
compounds were permeable to Caco-2 and human intestine.
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FIGURE 13: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) chloroquine, (e) hydroxy-
chloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of ACE2. Hydrogen and 7 bonds are depicted as green and any
other coloured (purple, magenta, orange, turquoise blue, pink, and yellow) lines, while Van der Waal interactions appear as light green circles.
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FIGURE 14: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin Bl, (c) luteolin 7-galactoside, (d) chloroquine, (e)
hydroxychloroquine, (f) lopinavir, (g) remdesivir, and (h) ritonavir in the binding pocket of ACE2.
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(g)

FIGURE 15: 2D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) camostat, () chloroquine, (f)
hydroxychloroquine, and (g) nafamostat in the binding pocket of TMPRSS2. Hydrogen, carbon-hydrogen, and 7 bonds are depicted as
green, light blue, and any other coloured (purple, magenta, orange, turquoise blue, pink, and yellow) broken lines, while Van der Waal
interactions appear as light green circles.
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FIGURE 16: 3D representation of (a) 3-galloylcatechin, (b) proanthocyanidin B1, (c) luteolin 7-galactoside, (d) camostat, (e) chloroquine, (f)
hydroxychloroquine, and (g) nafamostat in the binding pocket of TMPRSS2.
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TaBLE 3: Predicted physicochemical and druglikeness properties of potential SARS-CoV-2 multitarget hit ligands.

3-Galloylcatechin Proanthocyanidin Bl Luteolin 7-galactoside

Molecular weight (g/mol) 442.37 578.52 448.38
Hydrogen bond donor 7 10 7
Hydrogen bond acceptor 10 12 11
LogP 0.05 -0.26 -2.10
LogS -3.7 -5.14 -3.65
Topological polar surface area 177.14 220.76 190.28
#Rotatable bonds 4 3 4
Molar refractivity 110.04 146.71 108.13
Bioavailability (10%) 0.55 0.17 0.17
Synthetic accessibility 4.16 5.32 5.17
#Heavy atoms 32 42 32
#Lipinski violation 1 3 2
#Ghose violation 0 2 0
#Veber violation 1 1 1
#Egan violation 1 1 1
#Muegge violation 2 3 3
#Leadlikeness violation 1 1 1

LogP: molecular lipophilicity; LogS: aqueous solubility.

TaBLE 4: Predicted ADMET properties of potential SARS-CoV-2 multitarget hit compounds.

3-Galloylcatechin Proanthocyanidin B1 Luteolin 7-galactoside

Absorption

Caco-2 permeability (cm/s) —(-6.782) —(-6.782) —(—6.393)

Pgp-inhibitor ++ — —

Pgp-substrate — — —

Blood-brain barrier ++ + —

Human intestinal absorption — — —

Faou + — +

F309 — — —
Distribution

Plasma protein binding (%) 87.287 76.369 78.270

Volume distribution (L/kg) -1.129 -0.720 -1.028
Metabolism

CYP1A2 inhibitor — — _
CYP1A2 substrate — — _
CYP3A4 inhibitor + — _
CYP3A4 substrate — — _
CYP2C9 inhibitor — — _
CYP2C9 substrate — — _
CYP2C19 inhibitor + — _
CYP2C19 substrate — — _
CYP2D6 inhibitor — — _
CYP2D6 substrate — — _

Elimination
Ty (h) 1.534 211 1.483
Clearance rate (mL/min/kg) 1.204 1.015 1.232
Toxicity
hERG blocker + + —
Human hepatotoxicity — — —
AMES mutagenicity + — —
Skin sensitisation — — —
LDs, (mg/kg) 538.011 357.539 418.453
Drug-induced liver injury ++ ++ +
FDAMDD + ++ ++

Pgp, F0/30%> T1/2» hERG, and FDAMDD represent P-glycoprotein, bioavailability, half-life time, human ether-a-go-go-related gene, and U.S. Food and Drug
Administration Maximum Recommended Daily Dose, respectively. “—,” “=,” “+,” “++,” and “+++” signify the level of the predicted property.
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They were also not P-glycoprotein substrates, inhibitors,
and bioavailable at 30%. However, 3-galloylcatechin was
predicted to inhibit the P-glycoprotein, permeate the
blood-brain barrier, and become bioavailable at 20%. In
contrast, proanthocyanidin B1 and luteolin 7-galactoside
could permeate the blood-brain barrier and become
bioavailable at 20%, respectively. These compounds are
not P-glycoprotein substrates, ensuring their bioavail-
ability and intracellular concentration are not affected
[85]. A look at the distribution properties showed 87.287,
76.369, and 78.270% as the plasma protein binding and
-1.129, —0.720, and —1.028 L/kg as the volume distribu-
tion for 3-galloylcatechin, proanthocyanidin Bl, and
luteolin 7-galactoside, respectively. These hit compounds
were predicted to be neither inhibitors nor substrate of the
various cytochrome P50 (CYP,s,) isoforms. 3-Galloyl-
catechin was nonetheless the only exception inhibiting
CYP3A4 and CYP2C19 isoforms (Table 4). This inhibition
could lead to the accumulation of drugs metabolised by
these CYP isoforms and, hence, drug toxicity may occur
[86]. A half-life of 1.534, 2.11, and 1.483 hours as well as a
clearance rate of 1.204, 1.015, and 1.232 mL/min/kg were
the respective elimination properties of 3-galloylcatechin,
proanthocyanidin B1, and luteolin 7-galactoside (Table 4).
Toxicity property presented in Table 4 showed these
compounds met the maximum recommended daily dose
by the U.S. Food and Drug Administration without being
hepatotoxic, skin sensitisers, and mutagenic. They were
found to be human ether-a-go-go-related (hERG) gene
blocker with the ability to induce drug liver injury. On the
other hand, 3-galloylcatechin was found to be mutagenic,
while luteolin 7-galactoside was not a predicted hERG-
related gene blocker. Compounds identified as inhibitors
of CYP isoforms, hERG blockers, and AMES mutagen can
be optimised by the addition of analogues to their cores
during optimization process to avoid the development of
long QT syndrome and mutagenicity and overcome the
tew lapses in the pharmacokinetic properties [78]. These
identified hits, however, possess good ADMET properties
while meeting the maximum recommended daily dose of
USFDA.

4. Conclusion

In this study, computer-aided analysis was utilised to
identify 3-galloylcatechin, proanthocyanidin B1, and
luteolin 7-galactoside (ZINC 3978503, ZINC 5085289,
and ZINC 40422816, respectively) found in some me-
dicinal plants (almond (Terminalia catappa), grape (Vitis
vinifera), and common verbena (Verbena officinalis)) of
African flora as hit compounds against multiple SARS-
CoV-2 targets. These compounds could be possible leads
and nutraceuticals involved in the treatment or as pro-
phylaxis of COVID-19. The scaffolds of these compounds
can be optimised to improve the few lapses in its meta-
bolism and toxicity. The results further suggest these
compounds will help to overcome in some degree the old
paradigm “one gene, one drug, one disease” of drug
discovery. Nonetheless, further in vitro, in vivo, and
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clinical research is required to validate the pharmaco-
therapeutic significance of these hit compounds as anti-
SARS-CoV-2 therapy.
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