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Background. Epithelial splicing regulatory protein 1 (ESRP1) has been described as an RNA-binding protein involved in cancer
development. However, the expression and regulatory network of ESRP1 in cutaneous malignant melanoma (CMM) remain
unclear. Methods. From the sequencing data of 103 CMM samples in The Cancer Genome Atlas database, the expression level
of ESRP1 and its correlation with the clinicopathological characteristics were analyzed using the Oncomine 4.5, Gene
Expression Profiling Interactive Analysis (GEPIA), and UALCAN tools, while LinkedOmics was used to identify differential
gene expression with ESRP1 and to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. Gene enrichment analysis examined target networks of kinases, miRNAs, and transcription factors. Finally, TIMER
was used to analyze the relationship between ESRP1 and tumor immune cell infiltration. Results. We found that ESRP1 was
lowly expressed in CMM tissues, and a low level of ESRP1 expression correlated with better overall survival. Expression of this
gene was linked to functional networks involving the condensed chromosomes, epidermal development, and translation
initiation. Functional network analysis suggested that ESRP1 regulated ribosome metabolism, drug metabolism, and chemical
carcinogenesis via pathways involving several cancer-related kinases, miRNAs, and transcription factors. Furthermore, our
results suggested that ESRP1 played an important role in regulating tumor-associated macrophage polarization, dendritic cell
infiltration, Treg cells, and T cell exhaustion. Conclusion. Our study demonstrates ESRP1 expression, prognostic value, and
potential regulatory networks in CMM, thereby shedding light on the clinical significance of ESRP1, and provides a novel
biomarker for determining prognosis and immune infiltration in CMM.

1. Introduction

Melanoma, a common malignant tumor originating from
skin melanocytes, is characterized by high invasiveness
[1–3]. According to statistics, there are approximately
200,000 newly diagnosed cases each year [4], and mela-
noma accounts for 80% of deaths related to cutaneous
cancers [5]. In the early stages of melanoma, surgery
may be an adequate treatment for patients [6]. However,
in the late stages of the disease, patients may develop local
or distant metastases with a poor prognosis [7]. Therefore,
identifying molecular targets related to tumorigenesis and
development is of great significance for the treatment of
melanoma.

Epithelial splicing regulatory protein 1 (ESRP1) was
previously called RBM35A. The gene is located on chromo-
some 8q22.1, with a sequence length of 2046 bp and a relative
molecular weight of 78 × 103, encoding 682 amino acids. As a
member of the hnRNP family, ESRP1 plays a vital role in
organ formation, including craniofacial and epidermal devel-
opment, branching morphogenesis of the lungs, and salivary
gland development. Recent studies have found that ESRP1
regulates the alternative splicing of multiple genes, including
CD44, CTNND1, ENAH, and FGFR2, thereby affecting inter-
cellular adhesion, cytoskeleton, and cell migration [8, 9].
Hence, ESRPs contribute to the loss of cell differentiation,
which is one of the underlying mechanisms of tumorigenesis.
In fact, studies have shown that in multiple tumor cell lines,
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such as those of prostate cancer, breast cancer, pancreatic
cancer, kidney cancer, and head squamous cell carcinoma,
tumor invasion is associated with a low expression of ESRPs
[10, 11]. However, the specific role of ESRP1 in cutaneous
melanoma remains unclear.

In this study, we aimed to systematically explore the gene
expression, prognostic values, immune correlations, and
potential functions of ESRP1 in CMM. The correlation
between ESRP1 levels, clinical parameters, and tumor immune
infiltration was comprehensively analyzed. Moreover, we also
explored the prognostic value and functions of ESRP1 in
CMM. These findings suggest that ESRP1 plays an important
role in the clinical prognosis and immune regulation of CMM.

2. Materials and Methods

2.1. Oncomine 4.5. Oncomine 4.5 (http://www.oncomine
.org) is a large oncogene chip database and integrated data

mining platform, containing 715 datasets and 86733 samples
that is established for collecting, standardizing, analyzing,
and delivering cancer transcriptome data [12]. In the current
study, the level of ESRP1 in melanoma was analyzed using
Oncomine 4.5, with a P value of 0.05, a fold change of 2,
and a gene rank in the top 10%.

2.2. GEPIA. GEPIA (http://gepia.cancer-pku.cn), a freely
available comprehensive web-based tool, analyzes expression
data at the transcriptional level with 9,736 tumors and 8,587
normal samples from TCGA and GTEx projects. GEPIA was
used to analyze the expression and prognostic value of ESRP1
in melanoma.

2.3. UALCAN. UALCAN (http://ualcan.path.uab.edu) is a
newly developed interactive web server for facilitating tumor
subgroup gene expression analyses based on data from
TCGA and MET500 [13]. The correlation between the level
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Figure 1: ESRP1 expression level in CMM. (a) Increased or decreased ESRP1 in data sets of different cancers compared to that of normal
tissues (Oncomine). (b, c) The expression of ESRP1 was significantly downregulated in the CMM tissue compared to that in the normal
tissue (TCGA and GEPIA).
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of ESRP1 and clinicopathologic features of melanoma was
analyzed using UALCAN.

2.4. LinkedOmics. LinkedOmics (http://www.linkedomics
.org) is a flexible, user-friendly portal providing analysis
and comparison of cancer multiomics data across 32 TCGA
tumor types [14]. We first explored the correlated significant
genes of ESRP1 in 103 TCGA CMM samples using the Link-
Finder module. Pearson’s correlation coefficient was used to

analyze the results, which were graphically presented in vol-
cano plots, heat maps, or scatter plots. Gene set enrichment
analysis(GSEA) was performed with a minimum number of
genes of 3 and a simulation of 500.

2.5. GeneMANIA. GeneMANIA (http://www.genemania.org)
is a flexible portal that can analyze the functions of gene lists
and find neighboring genes by constructing a protein-
protein interaction (PPI) network [15]. GeneMANIA was
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Figure 2: ESRP1 expression level in subgroups of patients with CMM (UALCAN). (a–d) Box plot showing the relative expression of ESRP1 in
normal individuals or in different ages, genders, weights, and races of CMMpatients (P > 0:05). (e) Box plot showing the relative expression of
ESRP1 in normal individuals or in CMM patients in stages 1, 2, 3, or 4 (P < 0:05). (f) Box plot showing the relative expression of ESRP1 in
normal individuals or in primary or metastasis CMM patients (P < 0:01). Data are represented as mean ± SE. ∗P < 0:05; ∗∗P < 0:01.
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Figure 3: Kaplan-Meier survival curves comparing the high and low expressions of ESRP1 in CMMpatients (GEPIA). (a) The overall survival
curve for CMM patients with high or low expression of ESRP1 (P < 0:01). (b) The disease-free survival curve for CMM patients with high or
low expression of ESRP1 (P > 0:05).
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used to visualize the gene networks and predict the function
of genes that GSEA identified as being enriched in
melanoma.

2.6. TIMER. TIMER (http://www.genemania.org) is an
immune infiltrates analysis tool that can provide various
analyses with a dataset of 10,897 samples [16]. ESRP1 expres-
sion and its correlation with the abundance of immune cells
and gene marker expression were evaluated using Spear-
man’s correlation. The gene markers included markers of
various immune cells, as referenced in previous studies
[17–19]. The estimated statistical significance was analyzed
using Spearman’s correlation.

3. Results

3.1. Expression Level of ESRP1 in Patients with CMM. The
expression of ESRP1 was significantly downregulated in
CMM tissues compared to normal tissues, based on the data
from Oncomine 4.5 (Figures 1(a) and 1(b), P < 0:05). Data
from Riker et al. [20] has also revealed that ESRP1 was signif-
icantly decreased in CMM tissues with a P value of 9.12E-5
and a fold change of -4.472 (Figure 1(b)). Moreover, GEPIA
data demonstrated a significant downregulation of ESRP1 in
CMM tissues (Figure 1(c), P < 0:05). We then analyzed the
correlation between the level of ESRP1 and clinicopathologic
features in melanoma. We found no significant difference
in the subgroup analyses by age, gender, weight, and race
(Figures 2(a)–2(d)). However, there was a remarkable
downregulation of the ESRP1 mRNA expression in sub-
group analyses based on tumor stage (Figure 2(e)) and
lymph node metastasis status (Figure 2(f)).

3.2. Prognostic Value of ESRP1 in Patients with CMM. We
also explored the significance of ESRP1 in the prognosis of

patients with CMM. Consequently, we found that the
CMM patients in the higher ESRP1 level group had poor
overall survival, while patients in the low ESRP1 level group
had good overall survival (Figure 3(a), P = 0:0023). However,
there was no significant difference between the high ESRP1
level group and the low ESRP1 level group with regard to
disease-free survival (Figure 3(b), P = 0:18).

3.3. Enrichment Analysis of ESRP1 in CMM. As shown in
Figure 4(a), a positive correlation was obtained between
ESRP1 and 788 genes (FDR < 0:05). In contrast, 243 genes
(dark green dots) showed a negative correlation with ESRP1
(FDR < 0:05). The top 50 significant genes that positively and
negatively correlated with ESRP1 are shown in Figure 4(b)
and 4(c), respectively.

A strong positive correlation was observed between
ESRP1 and the expression of XG (Supplementary
Figure 1A, Pearson’s correlation = 0:569, P = 3:574e – 10),
DMKN (Supplementary Figure 1B, Pearson’s correlation =
0:564, P = 5:69e − 10), and GPR1 (Supplementary Figure 1C,
Pearson’s correlation = 0:486, P = 1:95e – 07). However, a
strong negative correlation was obtained between ESRP1
and the expression of RGS8 (Supplementary Figure 1D,
Pearson’s correlation = −0:577, P = 1:83e – 10), SLC22A6
(Supplementary Figure 1E, Pearson’s correlation = −0:562,
P = 6:69e − 10), and OGG1 (Supplementary Figure 1F,
Pearson’s correlation = 0:511, P = 3:57e – 08). GSEA was
performed to analyze the GO functional enrichment. The
results demonstrated that the expression of ESRP1 is
linked to functional networks involving the condensed
chromosome, epidermis development, and translational
initiation (Figures 5(a)–5(c)). Moreover, functional network
analysis suggested that ESRP1 regulates the ribosome, drug
metabolism, and chemical carcinogenesis (Figures 5(d), 6(a),
and 6(b)).
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Figure 4: Genes differentially expressed in correlation with ESRP1 in CMM (LinkedOmics). (a) A Pearson test was used to analyze
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3.4. Kinase, miRNA, and Transcription Factor Target
Networks of ESRP1 in CMM.We found that the top 5 signif-
icant kinase target networks related to ESRP1 were cyclin-
dependent kinase 1 (CDK1), G protein-coupled receptor
kinase 3 (GRK3), protein kinase cAMP-activated catalytic
subunit beta (PRKACB), protein kinase cAMP-activated
catalytic subunit gamma (PRKACG), and protein kinase,
X-linked (PRKX) (Table 1). The top 5 miRNA target net-

works were CACCAGC, miR-138; ATGAAGG, miR-205;
GACAATC, miR-219; ACAACCT, miR-453; and ACCG
AGC, miR-423 (Table 1). The top 5 transcription factor
target networks were mainly associated with the ETF,
E2F, EN, USF, and CEBPB transcription factor families
(Table 1).

Moreover, GeneMANIA was used to construct a protein-
protein interaction (PPI) network to reveal correlations
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Figure 5: GO annotations and KEGG pathways of ESRP1 in CMM (LinkedOmics). (a) Cellular components. (b) Biological processes.
(c) Molecular functions. (d) KEGG pathway analysis.
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among genes for the kinases CDK1, miRNA-138, and ETF_
Q6. As a result, the gene set enriched for kinase CDK1 was
involved in the regulation of mitosis, nuclear division,
organelle fission, microtubule cytoskeleton organization,
and chromosome segregation (Figure 7). The gene set
enriched for miR-138 was responsible for the regulation of
membrane depolarization, regulation of membrane poten-
tial, monovalent inorganic cation transport, monovalent
inorganic cation transmembrane transporter activity, and
inorganic cation transmembrane transporter activity (Sup-
plementary Figure 2). In addition, the gene set enriched for
ETF_Q6 was mainly involved in amino acid regulation,
cellular response to amino acid stimulus, negative regulation
of intracellular signal transduction, cellular response to
acids, TOR signaling, and positive regulation of CREB
transcription factor activity (Supplementary Figure 3).

3.5. The Potential of ESRP1 as an Immune Biomarker in
CMM. As shown in Figure 8, the expression of ESRP1 was
negatively associated with the infiltration abundance of B
cells (Cor = −0:262, P = 1:76e − 08), CD8+ T cells (Cor =
− 0:195, P = 3:83e − 05), CD4+ T cells (Cor = −0:165, P =
4:51e − 04), macrophages (Cor = 0:301, P = 5:68e − 151),
neutrophils (Cor = 0:289, P = 3:69e − 10), and dendritic cells
(DCs; Cor = −0:281, P = 1:54e − 09).

In order to analyze the potential of ESRP1 as an immune
biomarker in CMM, we further analyzed the association
between ESRP1 and immune cells. As expected, after adjusting
for purity, the data demonstrated a strong association between
ESRP1 levels and most immune biomarkers of a variety of
immune cells and different T cells in CMM (Table 2).

Specifically, the expression level of ESRP1 was signifi-
cantly associated with most marker sets of monocytes,

Ribosome

(a)

Drug metabolism - cytochrome P450

(b)

Figure 6: KEGG pathway (LinkedOmics). (a) KEGG pathway annotations of the ribosome metabolism. (b) KEGG pathway annotations of
the drug metabolism. Red marked nodes are associated with the leading edge gene.

Table 1: The kinase, miRNA and transcription factor target networks of ESRP1 in CMM (LinkedOmics).

Enriched category Gene set Leading edge no. P value

Kinase target

Kinase_CDK1 85 0.0001

Kinase_GRK3 51 0.0001

Kinase_PRKACB 28 0.0001

Kinase_PRKACG 27 0.011

Kinase_PRKX 27 0.011

miRNA target

CACCAGC, miR-138 45 0.0001

ATGAAGG, miR-205 38 0.015

GACAATC, miR-219 26 0.033

ACAACCT, miR-453 12 0.034

ACCGAGC, miR-423 3 0.007

Transcription factor target

V$ETF_Q6 48 0.0001

V$E2F_Q2 32 0.0001

V$EN1_01 40 0.0001

V$USF2_Q6 27 0.0001

V$CEBPB_01 24 0.012
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TAMs, and M2 macrophages, revealing that ESRP1 may
mediate macrophage polarization in CMM. Moreover, low
ESRP1 expression is related to high infiltration levels of
DCs in CMM. A significant correlation was obtained
between ESRP1 expression and expression of DC biomarkers

such as HLA-DPB1, BDCA-1, BDCA-4, and CD11c, thus
demonstrating a strong relationship between ESRP1 and
DC infiltration. In addition, ESRP1 expression negatively
correlated with FOXP3, CCR8, STAT5B, and TGFB1 in
CMM for Treg cells. Furthermore, ESRP1 expression
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negatively correlated to PDCD1 (PD-1), CTLA4, LAG3,
TIM-3, and GZMB in CMM for T cell exhaustion. Previous
studies have demonstrated the significant role of PD-1,
CTLA4, and TIM-3 in the immunotherapy of various types
of cancers [21–23]. Thus, these results suggested the impor-
tant role of ESRP1 in tumor immune microenvironment.

4. Discussion

CMM is a highly malignant cancer, and metastatic mela-
noma often leads to a poor prognosis. Nevertheless, its
immunogenicity allows intervention via immunotherapeutic
strategies such as cytotoxic T lymphocyte-associated antigen
4 (CTLA4) and programmed death-1 (PD-1) inhibitors,
which are considered important for the treatment of
malignant melanoma [21, 24]. Recently, it has been reported
that patients with advanced melanoma achieved a partial
response to immunotherapy. Increasing research proved that
the levels of tumor-infiltrating lymphocytes (TILs) are asso-
ciated with response rates to checkpoint blockade in many
cancers [25]. Therefore, it is urgent to elucidate the immuno-
phenotypes of tumor-immune interactions as well as
immune-related therapeutic targets in CMM.

ESRP1, as a member of an RNA-binding protein family,
is an exquisitely epithelial cell-type-specific splicing factor
that regulates splicing genes involved in tumor progression
[26, 27]. Early onset of an aggressive subgroup of prostate
cancer was found to be associated with the expression of
ESRP1, indicating that ESRP1 is a potential prognostic
marker in prostate cancer [28]. According to Mager LF, the
reduced ESRP1 level leads to impaired intestinal barrier
integrity, increases susceptibility to colitis, and alters colorec-
tal cancer development [29].

To gain more information about the potential functions
of ESRP1 and its regulatory network, we performed target
gene analyses of tumor data from public databases. We found
that ESRP1mRNA levels were significantly downregulated in
CMM tissues compared to those in normal tissues. Patients
with low ESRP1 expression had relatively good overall sur-
vival. Related functional networks are involved in epidermal
development, translation initiation, ribosome metabolism,
drug metabolism, and chemical carcinogenesis. This is con-
sistent with the physiological function of ESRP1 [30]. ESRP1
significantly reduces the growth of tamoxifen-resistant
cells and changes epithelial-mesenchymal transition protein

markers by affecting metabolic pathways [31], which is
consistent with the findings of bioinformatics analysis.

Enrichment analysis found that ESRP1 in CMM is asso-
ciated with a network of kinases, including CDK1, GRK3,
and PRKACB. These kinases regulate mitosis, cell cycle,
and cell proliferation [32, 33]. In fact, CDK1 is the main reg-
ulator of the cell cycle. CDK1 overexpression in melanoma
cells increases carcinogenic potential and tumor initiation
ability. Knocking out Sox2 in CDK1-overexpressed cells can
significantly inhibit CDK1; hence, the CDK1-Sox2 interac-
tion is a potential therapeutic target in cancer [34].

miRNAs are small noncoding ribonucleic acid molecules
that affect biological processes, including cell proliferation,
differentiation, and migration [35, 36]. Our study revealed
several miRNAs that were associated with ESRP1, including
miRNA-138. Researchers have found that miR-138, miR-
155, and miR-221/222 can be used as the diagnostic and
prognostic markers of CMM [36–38]. Some studies have
reported that miR-138 has tumor-suppressive effects in
malignant diseases of the lung, kidney, tongue, head, and
neck [39–41].

We found that the top five important transcription factor
target networks are ETF, E2F, EN, USF, and CEBPB. ETF,
E2F, and SP-1 participate in the cytokine-independent prolif-
eration of mouse hepatocytes [42]. Furthermore, MDM2
relies on the regulation of transcription factor E2F1 to pro-
mote the invasion and motility of melanoma cells [43].

Another important aspect of our study is that ESRP1 is
negatively related to infiltration of DCs and Treg cells
such as FOXP3. It is well known that DCs can promote
tumor metastasis by upregulating Treg cells and downreg-
ulating CD8+ T cell cytotoxicity [44]. FOXP3 plays a very
important role in Treg cells, preventing cytotoxic T cells
from attacking tumor cells [24]. Thus, ESRP1 might have
the potential to inhibit tumor development by regulating
the immunosuppressive microenvironment. Furthermore,
in our study, we found that ESRP1 expression was nega-
tively related to T cell exhaustion. T cell exhaustion refers
to the loss of functional potential of TILs in the presence
of chronic antigens in the tumor microenvironment [45].
Many studies have shown that cellular immune function
is decreased when TILs in melanoma tissues express high
inhibitory receptors, such as PD-1, CTLA4, and TIM-3
[46–49]. Thus, we speculated that ESRP1 could reflect
the immune cell status of tumor patients and could be a
predictive target for immunotherapy.
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Table 2: Correlation analysis between ESRP1 and related genes and biomarkers of immune cells in CMM (TIMER).

Description Gene markers
CMM

None Purity
Cor P value Cor P value

CD8+ T cell
CD8A -0.223 ∗∗∗ -0.143 ∗∗

CD8B -0.201 ∗∗∗ -0.114 ∗

T cell (general)

CD3D -0.215 ∗∗∗ -0.125 ∗∗

CD3E -0.227 ∗∗∗ -0.139 ∗∗

CD2 -0.226 ∗∗∗ -0.139 ∗∗

B cell
CD19 -0.196 ∗∗∗ -0.128 ∗∗

CD79A -0.185 ∗∗∗ -0.105 ∗

Monocyte
CD86 -0.352 ∗∗∗ -0.272 ∗∗∗

CD115(CSF1R) -0.37 ∗∗∗ -0.325 ∗∗∗

TAM

CCL2 -0.357 ∗∗∗ -0.314 ∗∗∗

CD68 -0.179 ∗∗∗ -0.121 ∗∗

IL10 -0.371 ∗∗∗ -0.325 ∗∗∗

M1 macrophage

INOS (NOS2) -0.057 0.219 -0.046 0.326

IRF5 -0.279 ∗∗∗ -0.214 ∗∗∗

COX2(PTGS2) -0.292 ∗∗∗ -0.273 ∗∗∗

M2 macrophage

CD163 -0.363 ∗∗∗ -0.317 ∗∗∗

VSIG4 -0.346 ∗∗∗ -0.294 ∗∗∗

MS4A4A -0.326 ∗∗∗ -0.266 ∗∗∗

Neutrophils

CD66b (CEACAM8) -0.042 0.361 -0.054 0.251

CD11b (ITGAM) -0.366 ∗∗∗ -0.317 ∗∗∗

CCR7 -0.215 ∗∗∗ -0.137 ∗∗

Natural killer cell

KIR2DL1 -0.156 ∗∗ -0.074 0.113

KIR2DL3 -0.197 ∗∗∗ -0.119 ∗

KIR2DL4 -0.167 ∗∗∗ -0.085 0.068

KIR3DL1 -0.188 ∗∗∗ -0.11 ∗

KIR3DL2 -0.232 ∗∗∗ -0.152 ∗∗

KIR3DL3 -0.046 0.317 -0.012 0.795

KIR2DS4 -0.12 ∗∗ -0.052 0.268

Dendritic cell

HLA-DPB1 -0.253 ∗∗∗ -0.174 ∗∗∗

HLA-DQB1 -0.259 ∗∗∗ -0.191 ∗∗∗

HLA-DRA -0.276 ∗∗∗ -0.206 ∗∗∗

HLA-DPA1 -0.256 ∗∗∗ -0.186 ∗∗∗

BDCA-1(CD1C) -0.227 ∗∗∗ -0.161 ∗∗∗

BDCA-4(NRP1) -0.414 ∗∗ -0.388 ∗∗∗

CD11c (ITGAX) -0.242 ∗∗∗ -0.171 ∗∗∗

Th1

T-bet (TBX21) -0.242 ∗∗∗ -0.159 ∗∗∗

STAT4 -0.204 ∗∗∗ -0.122 ∗∗

STAT1 -0.144 ∗∗ -0.075 0.111

IFN-g (IFNG) -0.22 ∗∗∗ -0.144 ∗∗

TNF-a (TNF) -0.151 ∗∗ -0.055 0.241
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Our study provides a multilevel evidence for the role and
potential of ESPR1 as a molecular marker in CMM. However,
further studies are required to validate our findings and thus
promote the clinical utility of ESRP1 serving as a prognostic
indicator or immunotherapy target in CMM.

5. Conclusion

In summary, our study highlights the potential utility of
ESRP1 status in predicting response to checkpoint blockade
immunotherapy and could be a prognosis biomarker in
patients with CMM.

Data Availability

The analyzed data sets generated during the study are avail-
able from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Baihe Wang designed the study and wrote the manuscript.
Yang Li and Caixia Kou helped to analyze the data. Jianfang
Sun and Xiulian Xu are involved in manuscript review and
editing and supervision of the entire work. All authors read
and approved the final manuscript.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (81772916), Jiangsu Natural Science
Foundation (BK20171132), and the CAMS Innovation Fund
for Medical Sciences (CIFMS-2017-I2M-1-017).

Supplementary Materials

Supplementary Figure 1: gene expression correlation analysis
for ESRP1 and significant correlated genes (LinkedOmics).
The scatter plot shows Pearson’s correlation of ESRP1
expression with expression of XG (A), DMKN (B), GPR1
(C), RGS8 (D), SLC22A6 (E), and OGG1 (F). Supplementary
Figure 2: PPI network of miR-138 miRNA target networks
(GeneMANIA). PPI network and functional analysis indicat-
ing the gene set that was enriched in the target network of
miR-138. Different colors of the network edge indicate the
bioinformatics methods applied: coexpression, website pre-
diction, pathway, physical interactions, and colocalization.
The different colors for the network nodes indicate the bio-
logical functions of the set of enrichment genes. Supplemen-
tary Figure 3: PPI network of ETF_Q6 transcription factor
target networks (GeneMANIA). PPI network and functional
analysis indicating the gene set that was enriched in the target
network of ETF_Q6. Different colors of the network edge
indicate the bioinformatics methods applied: coexpression,
website prediction, pathway, physical interactions, and colo-
calization. The different colors for the network nodes indi-
cate the biological functions of the set of enrichment genes.

Table 2: Continued.

Description Gene markers
CMM

None Purity
Cor P value Cor P value

Th2

GATA3 -0.16 ∗∗∗ -0.03 0.522

STAT6 -0.327 ∗∗∗ -0.341 ∗∗∗

STAT5A -0.206 ∗∗∗ -0.221 ∗∗∗

IL13 -0.057 0.217 -0.023 0.617

Tfh
BCL6 -0.276 ∗∗∗ -0.27 ∗∗∗

IL21 -0.183 ∗∗∗ -0.132 ∗∗

Th17
STAT3 -0.196 ∗∗∗ -0.153 ∗∗

IL17A -0.119 ∗∗ -0.141 ∗∗

Treg

FOXP3 -0.226 ∗∗∗ -0.145 ∗∗

CCR8 -0.254 ∗∗∗ -0.187 ∗∗∗

STAT5B -0.14 ∗∗ -0.14 ∗∗

TGFb (TGFB1) -0.393 ∗∗∗ -0.355 ∗∗∗

T cell exhaustion

PD-1 (PDCD1) -0.193 ∗∗∗ -0.103 ∗

CTLA4 -0.321 ∗∗∗ -0.273 ∗∗∗

LAG3 -0.206 ∗∗∗ -0.121 ∗∗

TIM-3 (HAVCR2) -0.331 ∗∗∗ -0.278 ∗∗∗

GZMB -0.232 ∗∗∗ -0.147 ∗∗
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Supplementary Table 1: significantly enriched CDK1 kinase
target network of ESRP1 in skin cutaneous melanoma (Lin-
kedOmics). Supplementary Table 2: significantly enriched
miR-138 miRNA target networks of ESRP1 in skin cutaneous
melanoma (LinkedOmics). Supplementary Table 3: signifi-
cantly enriched ETF_Q6 transcription factor target networks
of ESRP1 in skin cutaneous melanoma (LinkedOmics).
(Supplementary materials)
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