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Abstract

The phenomenon of chemical or conformational exchange in NMR spectroscopy has enabled 

detailed characterization of time-dependent aspects of biomolecular function, including folding, 

molecular recognition, allostery, and catalysis, on time scales from μs-s. Importantly, NMR 

methods based on a variety of spin relaxation parameters have been developed that provide 

quantitative information on interconversion kinetics, thermodynamic properties, and structural 

features of molecular states populated to a fraction of a percent at equilibrium and otherwise 

unobservable by other NMR approaches. The ongoing development of more sophisticated 

experimental techniques and the necessity to apply these methods to larger and more complex 

molecular systems engenders a corresponding need for theoretical advances describing such 

techniques and facilitating data analysis in applications. The present Review surveys current 

aspects of the theory of chemical exchange, as utilized in ZZ-exchange; Hahn and Carr-Purcell-

Meiboom-Gill (CPMG) spin-echo; and R1ρ, chemical exchange saturation transfer (CEST), and 

dark state saturation transfer (DEST) spin-locking experiments. The Review emphasizes 

theoretical results for kinetic topologies with more than two interconverting states, both to obtain 

compact analytical forms suitable for data analysis and to establish conditions for 

distinguishability between alternative kinetic schemes.
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1. Introduction

Knowledge about the dynamics of proteins and nucleic acids can assist in understanding and 

modulating their functions. A significant part of research in structural biology is devoted to 

exploration of the conformations of biomolecules. Each conformation corresponds to a 

specific energetic state; the equilibrium populations of various conformations depend on 

their conformational energies. “Conformational dynamics” describes the nature and 

distribution of various conformations of a given biomolecule. Equilibrium between 

populations is established and maintained by kinetic processes, which correspond to paths 

between the individual conformational states. For two conformations 1 and 2 with 

populations p1 and p2, the corresponding rate constants for conversion between the state 

*Voice: (212) 305-8675, agp6@columbia.edu. 

HHS Public Access
Author manuscript
Methods Enzymol. Author manuscript; available in PMC 2020 September 16.

Published in final edited form as:
Methods Enzymol. 2019 ; 615: 177–236. doi:10.1016/bs.mie.2018.09.028.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



satisfy p2/p1 = k12/k21. The sum of all populations is unity and does not contain any 

temporal information; the magnitudes of the rate constants is not defined by the energetic 

states of the conformational ensembles. The sum k21 + k12 contains temporal information 

and is defined by the energy barriers along the path connecting the two states. This kinetic 

information adds the dimension of time to the description of a biomolecule (Ban, Smith, de 

Groot, Griesinger, & Lee, 2017), which would define the term “dynamics” in a narrower 

sense. This simple example can be extended to arbitrary numbers of conformational or 

chemical states.

Dynamic processes in biomolecules occur over a wide range of time scales. This review 

focuses on NMR methods to study kinetic processes in the μs-s range, which include major 

conformational changes, molecular recognition, folding and allosteric events. Such 

phenomenal are generally classified as “chemical exchange” or “conformational exchange” 

in NMR spectroscopy. Chemical exchange in the μs-ms range is characterized by CPMG and 

R1ρ relaxation dispersion and related methods, such as CEST and DEST. Slower chemical 

exchange in the 102-103 ms range, limited by longitudinal relaxation, is characterized by 

ZZ-exchange or EXSY methods (Farrow, Zhang, Forman-Kay, & Kay, 1995; Furukawa, 

Konuma, Yanaka, & Sugase, 2016; Montelione & Wagner, 1989; A. G. Palmer, 2014). Faster 

processes in the ps-ns range mostly can be attributed to more local intramolecular motions. 

A number of other NMR techniques are used to study these processes, including 

determination of order parameters, correlation times, residual dipolar couplings, chemical 

shifts, and cross-correlated relaxation (Charlier, Cousin, & Ferrage, 2016; Kovermann, 

Rogne, & Wolf-Watz, 2016; A. G. Palmer, 2004; Salmon & Blackledge, 2015). The kinetics 

of processes too slow for application of the above methods can be studied with real-time 

NMR spectroscopy (Meier & Ernst, 1979; Rennella & Brutscher, 2013; Wagner et al., 1985).

The kinetics of protein folding occurs over a large range of timescales and protein folding 

therefore is an ideal problem for application of NMR spectroscopy (Meinhold & Wright, 

2011; Zhuravleva & Korzhnev, 2017). Unfolded states of stably folded proteins are closely 

related to the ensembles of states populated by intrinsically disordered proteins, for which 

specialized NMR techniques have been developed (Brutscher et al., 2015; Dyson & Wright, 

2004; Salvi, Abyzov, & Blackledge, 2017). NMR is an ensemble method uniquely providing 

multiple types of data that can be highly resolved in many different customized ways. 

Temperature, pressure, and solution conditions can be changed as physical parameters to 

alter the energetic landscapes of proteins to study folding kinetics (Roche, Royer, & 

Roumestand, 2017; Tugarinov, Libich, Meyer, Roche, & Clore, 2015). NMR spectroscopy is 

usually thought of an equilibrium method (Ban et al., 2017); however, it can be combined 

with transient methods in order to study protein folding intermediates. Rapid mixing 

(Fazelinia, Xu, Cheng, & Roder, 2014; Manoharan, Furtig, Jaschke, & Schwalbe, 2009; 

Roder, Elove, & Englander, 1988; Udgaonkar & Baldwin, 1988), light activation (Nash et 

al., 2011; Rubinstenn et al., 1999), and most recently pressure-jump (Charlier, Courtney, 

Alderson, Anfinrud, & Bax, 2018; Furtig et al., 2007; Kremer et al., 2011) methods, 

classical physical chemistry techniques, have been adapted to NMR spectroscopy. 

Relaxation dispersion NMR has been applied to study folding intermediates of SH3 domains 

(Roche et al., 2017; Tollinger, Skrynnikov, Mulder, Forman-Kay, & Kay, 2001; Tugarinov et 

al., 2015), PBX-homeodomain (Farber, Slager, & Mittermaier, 2012), villin headpiece (Grey 
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et al., 2006; Tang, Grey, McKnight, Palmer, & Raleigh, 2006), the FF domain from HYPA/

FBP11 (Korzhnev, Religa, Lundstrom, Fersht, & Kay, 2007), and apo-myoglobin (Dyson & 

Wright, 2017; Meinhold & Wright, 2011). While amyloid disease and misfolding is mostly 

studied by other techniques, including solid-state NMR (Chiti & Dobson, 2006), examples 

for systems that have been studied by solution NMR relaxation dispersion include human 

ADA2h (Pustovalova, Kukic, Vendruscolo, & Korzhnev, 2015), beta2-microglobulin 

(Franco, Gil-Caballero, Ayala, Favier, & Brutscher, 2017), amyloid β protofibril interactions 

(Fawzi, Libich, Ying, Tugarinov, & Clore, 2014), and transthyretin misfolding(Lim, Dyson, 

Kelly, & Wright, 2013).

For intramolecular μs-ms dynamics, circumscribed structural features causing the exchange 

process can be frequently identified. These include as examples disulfide bond isomerization 

in basic pancreatic trypsin inhibitor (Grey, Wang, & Palmer, 2003) and altered coordination 

of a Zn ion by cysteine sulfides (Deshmukh, Tugarinov, Appella, & Clore, 2018). For FGFR 

kinase 2, a major drug target, the ability of gain-of function cancer mutant K659E to 

modulate μs-ms dynamics of the DFG motif and surrounding residues has been revealed by 

CPMG relaxation dispersion (Chen et al., 2017). Differences in flexibility between S. aureus 
wild-type DHFR and the methicillin-resistant S1 DHFR mutant were identified by 

linebroadening and CPMG relaxation dispersion (Sahasrabudhe et al., 2017). The ability of 

an external allosteric agent to influence internal dynamic processes was demonstrated for 

imidazole glycerol phosphatase synthase (Lisi et al., 2016) and for dihydrofolate reductase 

(Oyen et al., 2017).

Due to extended search interactions between protein and ligands, intermolecular processes 

can occur on intermediate or slow timescales. Examples the initial formation of an X-dimer 

in the E-Cadherin dimerization process (Y. Li et al., 2013), GB1(A34F) dimerization (Jee, 

Ishima, & Gronenborn, 2008), formation of a complex between the intrinsically disordered 

protein MKK4 and MAPK p38α (Delaforge et al., 2018), profilin self-assembly (Rennella, 

Sekhar, & Kay, 2017), and amyloid β protofibril interactions (Fawzi et al., 2014).

Chemical exchange methods pioneered in applications to proteins increasingly are being 

extended to investigations of kinetic processes in nucleic acids(Xue et al., 2015). The bases 

of the experimental methods are unchanged, but the different spin systems and topologies 

must be considered in optimization of these methods for nucleic acids. For example, rapid 

imino hydrogen exchange with solvent in nucleic acids makes the imino 1H and 15N spins in 

nucleic aids less suitable than the protein 1HN and 15N amide spins in proteins as probes of 

chemical exchange and RNA completely lacks methyl groups, which also are powerful 

probes in proteins. Recent applications include a series of relaxation dispersion studies of 

base-pair rearrangement in DNA by Al-Hashimi and coworkers, and detailed 

characterization of the fluoride riboswitch by Zhang and coworkers (Kimsey et al., 2018; 

Szymanski, Kimsey, & Al-Hashimi, 2017; Zhao, Guffy, Williams, & Zhang, 2017).

Two-site exchange is the paradigmatic example of the effects of kinetic processes on NMR 

phenomena and this simple system allows derivation of exact or nearly exact theoretical 

descriptions. As consequence of both the theory and methods available, most experimental 

investigations of chemical exchange have utilized the 2-site model to interpret experimental 
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data. Beyond the 2-site assumption, the majority of established N-site processes is based on 

3-site linear kinetic schemes. Examples have been established in the area of protein folding 

(Farber et al., 2012; Grey et al., 2006; Tang et al., 2006; Tugarinov et al., 2015) as well as 

intermolecular processes (Rennella et al., 2017). Kinetically more complex models have 

been rarely studied by relaxation dispersion to date. Deshmukh and coworkers have 

suggested a 4-site star scheme for binding kinetics in HIV-1 protease - Gag interactions 

(Deshmukh, Tugarinov, Louis, & Clore, 2017) and a triangular scheme for the coordination 

of a zinc ion by thioester groups in NCp7 (Deshmukh, Ghirlando, & Clore, 2014). A 

quadratic scheme has been used for the folding of a FynSH3 triple mutant with the 

chaperonin GroEL (Libich, Tugarinov, & Clore, 2015). A recent study on Watson-Crick 

mismatches in nucleic acids features R1ρ data that was conclusively described a triangular 

scheme, but not a 4-site star scheme (Kimsey et al., 2018). Relatively few research groups 

have generated the majority of examples for N-site exchange probed by relaxation 

dispersion. This suggests that the main reason for the limited number of examples are 

practical difficulties to record or process the data, rather than rarity of interesting biological 

processes. The possibility of N-site (N > 2) exchange is being raised in some studies, 

warranting further research once appropriate methods are available (Jee et al., 2008). 

Intramolecular dynamic processes as well as an intramolecular strand-swapping have been 

identified in separate classical cadherin subtypes (Y. Li et al., 2013; Miloushev et al., 2008). 

A combination of both phenomena might occur in some cadherin proteins, yielding an N-

site exchange situation. Four-site exchange processes have been suggested for unfolding of 

carbonic anhydrase (Uversky & Ptitsyn, 1996). A theoretical study exploring the possibility 

to model synthetic data with a 4-site scheme exposed the computational challenges 

associated with numerical approaches to efficiently fit data, but also highlighted how 

coupled allostery could give rise to N-site exchange (P. Li, Martins, & Rosen, 2011). One 

candidate for this type of N-site exchange is the cSH2 domain in phospholipase Cγ1, for 

which a dynamic allosteric network involving a combination of faster and slower exchange 

processes was associated with the variable binding of an intramolecular proline-rich, long 

flexible linker, or to an externally supplied peptide ligand (Koss, Bunney, et al., 2018). A 

number of exchange processes of different timescales is also qualitatively observed in an 

NMR study of the β-adrenergic receptor, illustrating that N-site exchange is very frequent 

but still not easily quantified (Solt et al., 2017).

Evaluation of complex exchange phenomena in large proteins is facilitated by increasingly 

powerful experimental methods that can be applied to protein side chains. In addition to 

methyl groups (Gill & Palmer, 2011; Korzhnev, Kloiber, Kanelis, Tugarinov, & Kay, 2004; 

Skrynnikov, Mulder, Hon, Dahlquist, & Kay, 2001; Tugarinov, Sprangers, & Kay, 2004; 

Weininger et al., 2013), chemical exchange can be probed in a number of other side chains 

(Mackenzie & Hansen, 2018; Weininger, Brath, Modig, Teilum, & Akke, 2014). The 

extraction of structural features from minor conformations using relaxation dispersion 

experiments is tightly coupled to the ability to extract structural information from chemical 

shifts (Robustelli, Stafford, & Palmer, 2012), which renders dispersion experiments for 

nuclei other than 15N or 1H particularly relevant (Gopalan, Hansen, & Vallurupalli, 2018; 

Hansen, Vallurupalli, Lundstrom, Neudecker, & Kay, 2008; Korzhnev, Religa, Banachewicz, 

Fersht, & Kay, 2010). Relaxation dispersion experiments can also yield RDCs (Hansen, 
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Vallurupalli, & Kay, 2008b; Igumenova, Brath, Akke, & Palmer, 2007), CSAs (Vallurupalli, 

Hansen, & Kay, 2008a), or information about side chain conformations (Baldwin, Hansen, 

Vallurupalli, & Kay, 2009; Hansen, Neudecker, Vallurupalli, Mulder, & Kay, 2010), which 

also can be used in structure calculations (Gopalan et al., 2018; Vallurupalli, Hansen, & Kay, 

2008b).

This review begins by outlining theoretical approaches for characterizing chemical exchange 

phenomena, with an emphasis on extensions from 2 to N-site kinetic topologies. General 

approximations have recently been obtained for N-site exchange in both CPMG and R1ρ 
experiments that are valid for most experimentally accessible time scales (Koss, Rance, & 

Palmer, 2017, 2018). These results are used to examine conditions under which various N-

site kinetic schemes can be distinguished by CPMG or R1ρ experiments. The review 

concludes by discussing key aspects of the main experimental methods applied to proteins 

and nucleic acids, but is not intended as a comprehensive reference to the myriad of 

experimental techniques available. Other reviews of chemical exchange cover, among other 

aspects, the theoretical basis (Farber & Mittermaier, 2015; A. G. Palmer, 2014, 2016; 

Vallurupalli, Sekhar, Yuwen, & Kay, 2017; Xue et al., 2015), the history (A. G. Palmer, 

2014, 2016; Sauerwein & Hansen, 2015; Vallurupalli et al., 2017), applications (Farber & 

Mittermaier, 2015; Lisi & Loria, 2016; Osawa, Takeuchi, Ueda, Nishida, & Shimada, 2012; 

A. G. Palmer, 2016; Sauerwein & Hansen, 2015), practical considerations (Gopalan et al., 

2018; Ishima, 2014; Kempf & Loria, 2004; Walinda, Morimoto, & Sugase, 2018a, 2018b; 

Xue et al., 2015), comprehensive overview of existing experiments (Sauerwein & Hansen, 

2015; Vallurupalli et al., 2017; Walinda et al., 2018b), and special topics, including CEST 

(Vallurupalli et al., 2017), R1ρ (Francesca Massi & Peng, 2018; A. G. Palmer & Massi, 

2006), high-power relaxation dispersion (Ban et al., 2017), applications to nucleic acids 

(Xue et al., 2015), and structure determination from relaxation dispersion(Gopalan et al., 

2018).

2. Theory

The effects of chemical or conformational exchange kinetic process on NMR observables 

are described by the stochastic Liouville equation:

d
dt B t = L + R + K B t − R B 0 (1)

In Eq. 1, B t = B1 t B2 t ⋯ BN t T
, N is the number of interconverting sites 

or species (containing the spin of interest), Bk t  is a M × 1 column vector containing the 

time-dependent amplitudes of the M basis operators Bm for the Liouville space for the nth 
species, the elements of Bn t  are defined by Bkm t = Bm ∣ σn t  for m = 1,…,M, σn(t) is 

the density operator for the nth state, and B 0 is defined in similar fashion using the 

equilibrium density operator. The matrix L is block diagonal with elements Lnj = δnjLn, in 

which Ln is the M × M matrix for coherent evolution for the nth state (containing chemical 

shifts, scalar couplings, and radiofrequency fields, for example), the matrix R is block 
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diagonal with elements Rnj = δnjRn, in which Rn is the M × M matrix for relaxation the nth 

state from processes other than chemical exchange (dipole-dipole, chemical shift anisotropy, 

and quadrupole relaxation, for example). The exchange matrix K = K ⊗ IM, in which IM is 

an M × M identity matrix and K is an N × N kinetic matrix with elements Kij = kji, kji is the 

(pseudo-) first-order rate constant for transition from state j to state i for i ≠ j and

Kii = − ∑
j = 1
j ≠ i

N
kij (2)

The second term on the right hand side of Eq. 1 ensures that relaxation processes return the 

spin system to equilibrium or steady state at long times. Equation 1 is valid if the system is 

at chemical equilibrium and the transitions exchange coherences or populations between 

states, but do not change the coherences or populations themselves.

Equation 1 has a formal solution given by:

B t = e L + R + K t B 0 + L + R + K −1R B 0 − L + R + K −1R B 0 (3)

and clearly this expression can be evaluated numerically for any number of sites and basis 

operators. The amplitude of the mth basis operator in the nth state is obtained as

Bmn t = 0, …, δnj, …, 0 N ⊗ 0, …, δmk, …, 0 M B t (4)

in which [0,…,δjk,…,0]V is an V × 1 row vector. As noted by Allerhand and Thiele, the 

kinetic matrix K can be symmetrized by a matrix S with elements Snj = δijpn−1/2, in which 

pn is the population of the nth site, which can simplify analytic or numerical calculations 

(Allerhand & Thiele, 1966).

Many NMR experiments are designed so that the signal of interest s(T), proportional to a 

particular basis operator or function of basis operators, has simple functional dependence on 

a relaxation delay, T. for example, if the signal decay for s(T)∝<Bmn>(T) is 

monoexponential, then relaxation rate constant for the mth basis operator constant is defined 

as:

Rmn = −1
T log s T

s 0 = −1
T log Bmn T

Bmn 0 (5)

This equation also can be used to define an effective (T-dependent) relaxation rate constant 

for a multi-exponential decay process. Analytic expressions for relaxation rate constants 

Rnm′ generally have been obtained either by calculation of the evolution of the average 

magnetization (and then using Eq. 5) or by calculation of the eigenvalues of L + R + K
(Abergel & Palmer, 2004). Exact results are available only for cases in which the product 

MN is small (≤ 4, but more often 2) or in the limits of very fast or very slow kinetic 

processes. Approximate expressions applicable to all kinetic rate scales and topologies have 

been obtained for both the average magnetization and eigenvalue approaches. Analytical (if 
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MN ≤ 4) or numerical eigenvalues (for any MN) can be obtained from the roots of the 

characteristic equation (Koss et al., 2017; Koss, Rance, et al., 2018):

f λ = λE − L + R + K (6)

Approximate roots of Eq. 6 frequently provide simplified expressions. The nth Newton-

Raphson and Halley (linearized Laguerre) approximations are, respectively:

λn = λn − 1 − f λn − 1
f′ λn − 1

= λn − 1 + 1
Tr λn − 1E − L + R + K −1 (7)

λn = λn − 1 − 2f λn − 1 f′ λn − 1
2f′ λn − 1 − f λn − 1 f″ λn − 1

= λn − 1 +
2Tr H τcp − λn − 1E −1

Tr H τcp − λn − 1E −1 2 + Tr H τcp − λn − 1E −2

(8)

with λ0 = 0. If the variation in Rn is modest, the effects of R are given to first order by:

λn = λn
0 +

Tr L + K −1R

Tr L + K −1 = λn
0 + Reff (9)

in which λn
0 is calculated using Eqs. 6, 7, or 8 assuming R = 0. A sufficient condition for 

accuracy of approximations of either type is that that the equilibrium population of one state 

is much larger than for the other N −1 states. The dominant state is normally denoted as state 

1. If site 1 is not dominant, then another sufficient condition is that kinetic exchange 

amongst the states 2, …, N is fast. The above expressions frequently yield compact algebraic 

expressions that are also sufficiently accurate for analysis of experimental data; the present 

Review will emphasize results obtained using the first-order Newton-Raphson and Halley 

approaches, but both more accurate, but more complex (Koss et al., 2017; Koss, Rance, et 

al., 2018), and less accurate, but simpler (Trott & Palmer, 2004), expressions have been 

described. The recently developed geometric approximation approach, in which numerical 

solutions to Eq. 3 are pre-calculated and stored as a library of response surfaces, is an 

efficient alternative to “on-the-fly” numerical calculations and to the theoretical 

approximations that the focus of the present Review (Chao & Byrd, 2016, 2017).

2.1 Free Precession

Free precession of transverse magnetization provides a simple example of the application of 

the above theoretical description. In this situation, M = 1, 

B t = M1
+ t    M2

+ t   ⋯   MN
+ t T

, Ln = iΩn, Ωn is the resonance offset of a nuclear spin 

in the nth state, Rn = −R2n, and R2n is the transverse relaxation rate constant for a nuclear 

spin in the nth state. For N = 2 states, Eq. 1 becomes:
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d
dt

M1
+ t

M2
+ t

=
iΩ1 0
0 iΩ2

+
−R21 0

0 −R22
+

−k12 k21
k12 −k21

M1
+ t

M2
+ t

=
iΩ1 − R21 − k12 k21

k12 iΩ2 − R22 − k21

M1
+ t

M2
+ t

(10)

This equation is the Bloch-McConnell equation for transverse magnetization undergoing 2-

site jumps. In this case, the two eigenvalues of the relaxation rate matrix can be obtained 

exactly. The desired smaller of the two relaxation rate constants is given by the negative of 

the real part of the eigenvalue:

λ1 = 1
2 i Ω1 + Ω2 − R21 + R22 − kex

+ kex + ΔR21 − iΔω21
2 − 4pb ΔR21 − iΔω21 kex

1/2 (11)

in which pn is the equilibrium population of the nth site, Δωij =Ωi−Ωj, ΔRn1=R2n−R21, and 

kex = k12 + k21. In this case, the first-order Newton-Raphson estimate of the eigenvalue yield 

the estimated rate constant

R2 = R21 + p2kex
Δω21

2 + kexΔR21 + ΔR21
2

Δω21
2 + ΔR21 + kex

2

≈ R21 + p2kex
Δω21

2 + kexΔR21
Δω21

2 + kex
2

(12)

in which the second line results from the first-order treatment of ΔR21. The exact and first-

order approximate values of R2 are compared in Figure 1. The Halley approximation is 

extremely accurate for a 2-state system and results are not shown for clarity. First-order 

approximations are accurate when exchange is relatively slow (kex/|Δω21| < 1) or relatively 

fast (kex/|Δω21| >> 1); higher order approximations are required for high accuracy in the 

intermediate exchange regime (kex/|Δω21| ~ 1). Allerhand and Theile defined C-type or R-

type exchange depending upon whether the effects of differences in resonance frequencies or 

differences in relaxation rate constants, respectively, between sites have a dominant effect. In 

either limiting case, Δω21 → ∞ or ΔR21 → ∞, R2 → R21 + p2kex = k12.

2.2 Carr-Purcell-Meiboom-Gill Relaxation

The CPMG experiment consists of m repetitions of the pulse sequence element:

τcp − 180° − 2τcp − 180° − τcp (13)

applied to transverse magnetization. The effect of ideal 180° pulses is to invert the signs of 

Ωi.

Thus, evolution of magnetization through the CPMG sequence becomes:
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M+ T = M+ 4mτcp = exp Λτcp exp 2Λ*τcp exp Λτcp
mM+ 0 (14)

in which the asterisk indicates complex conjugation, Λ = L + R + K, and other variables are 

defined as for the case of free-precession. For 2-site exchange, the Carver-Richards equation 

gives the relaxation rate constant as (Carver & Richards, 1969):

Rcpmg τcp = 1
2 R21 + R22 + kex − 1

2τcp
cosh−1 D+cosh η+ − D−cos η− (15)

in which,

D± = 1
2 ±1 + ψ + 2Δω2

ψ2 + ζ2 1/2

η± = 2τcp ±ψ + ψ2 + ζ2 1/2 1/2

ψ = R21 − R22 − p1kex + p2kex
2 − Δω2 + 4p1p2kex2

ζ = 2Δω R21 − R22 − p1kex + p2kex

The Carver-Richards equation for 2-site exchange of single-quantum coherence has been 

extended to multiple-quantum relaxation (Korzhnev et al., 2004).

In order to provide additional insight for N-site exchange, Koss and coworkers have shown 

that M(t) obeys a coarse-grained differential equation (Koss, Rance, et al., 2018):

dM+ T
dT = 1

4τcp
eΛτcpH τcp e−Λτcp M+(T ) (16)

with an average Liouvillian matrix H(τcp) defined as:

H τcp = log exp 2Λ*τcp exp 2Λτcp (17)

The matrix logarithm is determined to high accuracy by Padé approximation. For example, 

four such approximations are:

H10 τcp ≈ − E + Z τcp = − E − exp 2L*τcp exp 2Lτcp

H11 τcp ≈ 2 −E + Z τcp E + Z τcp
−1

H22 τcp ≈ 3 −E + Z2 τcp E + 4Z τcp + Z2 τcp
−1

H33 τcp ≈ 1
3 −11E − 27Z τcp + 27Z2 τcp + 11Z3 τcp

E + 9Z τcp + 9Z2 τcp + Z3 τcp
−1

(18)

in which Z(τcp)=exp{2Λ*τcp}exp{2Λτcp} and the subscripts in the expressions Hjk(τcp) 

give the highest order power in the numerator and denominator polynomials in Z(τcp). The 

CPMG relaxation rate constant Rcpmg(τcp) then is obtained from the largest (least negative) 
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eigenvalue of the average Liouvillian H(τcp) / (4τcp), because the eigenvalues are unaffected 

by the similarity transformation in Eq. 16.

The Cayley-Hamilton theorem allows an arbitrary Padé approximation Hjk(τcp) and its 

inverse to be expressed as:

Hjk τcp = ε ∑
n = 0

N − 1
bnZn τcp ∑

n = 0

N − 1
cnZn τcp

−1
= ε ∑

n = 0

N − 1
anZn τcp (19)

in which the coefficients, an, bn, cn, and ε depend on {TrZ(τcp), … TrZN−1(τcp)} and |

Z(τcp)|. The determinant has the simple form:

Z τcp = exp 4τcpTr R + K (20)

so the main computational effort is determining the traces {TrZ(τcp), … TrZN−1(τcp)} The 

coefficients an depend on bn, cn, and ε, but not on the exact functional form of these 

parameters. Once the representation using bn, cn, and ε has been transformed to the 

representation using an, then the resulting expressions can be used with any set of bn, cn, and 

ε. Consequently, the use of higher-order Padé approximations is not computationally 

prohibitive. In addition, the inverse H−1(τcp), needed for application of the eigenvalue 

approximations, is obtained simply by replacing ε by 1/ε and exchanging bn and cn.

Application of these equations for 3-site exchange are presented in the Appendix. Low-order 

Padé approximations frequently yield compact analytical expressions. For example, using 

H11(τcp) for 3-site exchange,

Rcpmg τcp = R21 +
1 − Z τcp − TrZ τcp + Tr2Z τcp − TrZ2 τcp /2

4τcp 3 + 3 Z τcp − TrZ τcp − Tr2Z τcp − TrZ2 τcp /2
(21)

in which Z(τcp) is calculated using Λ = L − L1 + R − R1 + K and K is assumed to be 

symmetrized (vide supra).

If chemical exchange is slow, (kij + kji < |Δωij|/10), then Koss and coworkers showed that 

H10(τcp) is given by (Koss, Rance, et al., 2018):

H10 τcp ij/ 4τcp =
kijkjisinc Δωijτcp exp −iΔωijτcp i > j

Kii − ΔRi1 i = j
kijkjisinc Δωijτcp exp iΔωjiτcp i < j

(22)

For N = 2,
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H10 τcp / 4τcp =

−k12 k12k21sinc Δω21τcp exp iΔω21τcp

k12k21sinc Δω21τcp exp −iΔω21τcp −k21 − ΔR21

(23)

A further simplification of this equation is obtained by applying another similarity 

transformation:

U = 1
2

exp −iΔω21τcp/2 exp iΔω21τcp/2
−exp −iΔω21τcp/2 exp iΔω21τcp/2

(24)

which yields:

UH10 τcp U−1/ 4τcp = 1
2

2 k12k21sinc Δω21τcp − kex − ΔR21 p1 − p2 kex + ΔR21

p1 − p2 kex + ΔR21 −2 k12k21sinc Δω21τcp − kex − ΔR21

(25)

This equation illustrates an analogy between the CPMG experiment and the chemical 

exchange formalism presented above, in which

L = k12k21sinc Δω21τcp
1 0
0 −1

R = ΔR21
2

−1 1
1 −1

K = kex
2

−1 p1 − p2
p1 − p2 −1

(26)

The relaxation rate constant obtained from the above equation is:

Rcpmg τcp = R21 + 1
2 kex + ΔR21

− 4p1p2kex
2 sinc2 Δω12τcp + p1 − p2 kex + ΔR21

2 1/2

≈ R21 +
p1p2kex

2 1 − sinc2 Δω21τcp + p2kexΔR21
kex + ΔR21

(27)

in which the second line is the first-order approximation of the eigenvalue. For 3-sites in a 

linear topology B-A-C, in which the population p1 >> p2, p3 (1, 2, and 3 denote sites A, B, 

and C), the first-order approximation to the relaxation rate constant is:

Rcpmg τcp = R21 +

B0 − k12k21 k31 + ΔR31 sinc2 Δω21τcp − k13k31 k21 + ΔR21 sinc2 Δω31τcp
B1 + k12k21sinc2 Δω21τcp + k13k31sinc2 Δω31τcp

(28)
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in which B0 = (k12+k13)(k21+ΔR21)(k31+ΔR31) and B1 = (k21+ΔR21)(k31+ΔR31) + (k12+k13) 

(k21+k31+ΔR21+ΔR31). Expressions for other kinetic schemes have been presented by Koss 

and co-workers (Koss, Rance, et al., 2018). The above equations demonstrate the main effect 

of R-type relaxation for the CPMG experiment: ΔR21 becomes important only if k21 is not 

>> | ΔR21|. Essentially, the difference in relaxation rates must be large enough that relaxation 

happens efficiently within the lifetime of sites 2,…, N.

The approximations obtained above for 2-site exchange using the exact eigenvalue of 

H33(τcp) and a second-order approximation to the eigenvalue of the slow exchange 

Liouvillian (Eq. 8) are compared to the Carver-Richards equation in Figure 2. The H33(τcp) 

approximation is extremely accurate over all time scales, while the slow exchange result is 

accurate when kex < |ΔωAB|/10.

The above approximations for 3-site triangular exchange are illustrated in the left panel of 

Figure 3. In the given example, kex > |ΔωAB|/10 for all sites and the slow exchange 

approximations for H10 (Eq. 22) are not expected to be accurate. Approximations based on 

the exact matrix exponential (Eq. 17) are more appropriate, even though the second-order 

approximation based on Eq. 21 also gives a satisfactory fit in this case. As shown in the 

Figure, Padé approximations of increasing accuracy can greatly enhance accuracy, provided 

that the eigenvalue approximation also is sufficiently accurate. The right panel of Fig. 3 

illustrates CPMG dispersion curves for 4-site exchange with various kinetic schemes. In 

most cases shown here, a second-order eigenvalue approximation is sufficient to fit the exact 

solution; however, for the star scheme, a second-order (Halley’s method) eigenvalue 

approximation was required to fit data at large τcp; these more complex approximations are 

recommended if data are available at very large τcp and if a wide parameter space is being 

considered (for validity of the single eigenvalue approximation vide infra). The examples of 

4-site exchange examples in Fig. 3 also illustrate that the CPMG curve is influenced less by 

exchange processes between minor sites at large values of τcp, while those processes become 

more influential at smaller τcp (Koss et al, 2018).

Relaxation rate constants defined as the least negative eigenvalue of H(τcp) or by Eq. 5 differ 

because if T = 4mτcp is not sufficiently long, then contributions to the magnetization decay 

from other eigenvalues will not have been damped to zero. The effective relaxation rate 

constant obtained form Eq. 5 will then contains a T-dependent contribution from the residual 

multi-exponential components of the magnetization decay. This situation arises in particular 

if exchange is slow and the population of site 1 is not dominant. Baldwin has derived an 

expression for 2-site CPMG relaxation based on Eq. 5 that provides a correction the Carver-

Richards equation, which is itself the negative of the largest (least negative) eigenvalue of 

H(τcp) (Baldwin, 2014). A more formal (without reduction to explicit algebraic form) 

derivation of the effective relaxation rate constant derived from Eq. 5 for the N-site CPMG 

experiment is given in the Appendix.

Both the results of Baldwin and those presented in the Appendix (Eq. A14 and A15) show 

that the difference between the two estimates of the relaxation rate constant depends upon 1/

T = 1/(4mτcp). Thus these results support the use of constant relaxation time CPMG 

experimental methods. This correction to the Carver-Richards equation also accounts for 
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different behavior in the slow exchange limit of Eq. 27 (for ΔR21 = 1) and the expression 

obtained by Tollinger and coworkers (Tollinger et al., 2001):

Rcpmg τcp = R21 + p1kex 1 − sinc2 Δω21τcp

Figure 4 compares the Carver-Richards equation (Eq. 15) with various expressions that 

estimate Rcpmg(τcp) based on more than a single eigenvalue. “Exact” Rcpmg(τcp) rate 

constants were defined by a monoexponential fit to simulated multiexponential decays. 

Equation 29 reproduces the exact results best at extremely slow exchange (Fig. 4, left panel); 

for slow or intermediate exchange, the Carver-Richards equation and Eq 27 are more 

appropriate. Baldwin’s result for 2-site schemes, and equivalently the correction for N-site 

exchange (Eq. A14), give the effective Rcpmg(τcp) rates for experiments with constant T and 

analyzed as in Eq. 5. These Rcpmg(τcp) values fall between the results for Eq. 15 and 29. For 

exchange which is not too slow (Fig. 4, right panel), simpler approximations for this 

correction factor to Eq. 15 can be used (Eqs. A16, A17).

2.3 Rotating-Frame Relaxation

The above formalism is particularly powerful for spin-locking experiments, including R1ρ, 

CEST, and DEST, because the dimensions of the evolution matrix are 3N × 3N and even for 

2-site exchange exact analytical results cannot be obtained. For N-sites,

Ln =
0 −Ωn 0

Ωn 0 −ω1
0 ω1 0

Rn =
−R2n 0 0

0 −R2n 0
0 0 −R1n

(29)

in which the spin-locking field is assumed to have x-phase and amplitude ω1 and resonance 

offsets are relative to the frequency of the spin-locking radiofrequency field, ωrf. The 

relaxation rate constant R1ρ is the relaxation rate constant for magnetization spin-locked 

along the effective field (R2ρ relaxation of magnetization orthogonal to the effective field has 

been discussed by Garwood and co-workers (Mangia, Traaseth, Veglia, Garwood, & 

Michaeli, 2010; Michaeli, Sorce, Idiyatullin, Ugurbil, & Garwood, 2004; Traaseth et al., 

2012)). The R1ρ relaxation rate constant is obtained as the largest (least negative) eigenvalue 

of the evolution matrix, as discussed above. For N = 2 sites and assuming R1 = R2 and p1 >> 

p2, the first-order approximation to the eigenvalue gives (Trott & Palmer, 2002):

R1ρ = R1cos2θ + R2sin2θ +
sin2θp1p2Δω21

2 kex
ωA

2 ωB
2 /ωe2 + kex

2

≈ R1cos2θ + R2sin2θ +
sin2θp1p2Δω21

2 kex
Ω2

2 + ω1
2 + kex

2

(30)

in which R1 and R2 are the population-average relaxation rate constants in the absence of 

exchange tanθ = ω1/Ω, Ω is the population-average resonance offset, ωn2 = Ωn
2 + ω1

2, and 

ωe2 = Ω2 + ω1
2. The second line is obtained if p1 is sufficiently large that ωA

2 ≈ ωB
2. This 
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equation demonstrates the main advantage of spin-locking experiments compared with 

lineshape analysis and CPMG experiments: the relaxation rate constant depends on the 

resonance offset in the B site (site 2), even if the population of that site is so low that the 

resonance signal is not directly observable. In contrast, as shown by the Carver-Richards 

equation (Eq. 15), the CPMG experiment depends only on Δω21
2 and hence provides 

information on the magnitude of the resonance frequency difference between sites, but not 

on the absolute sign (vide supra).

The above equation has been extended both to higher order of approximation and to include 

differences in relaxation rates R21 and R22 between sites (differences between R11 and R12 

are generally small enough to be ignored). In the former case, the second-order result is 

(Miloushev & Palmer, 2005):

R1ρ = R1cos2θ + R2sin2θ +
sin2θp1p2Δω21

2 kex

ωA
2 ωB

2 /ωe2 + kex
2 + sin2θp1p2Δω21

2 1 +
2kex2 p1ωA

2 + p2ωB
2

ωA
2 ωB

2 + ωe2kex2
(31)

The latter case has been treated to first order by Baldwin and Kay (Baldwin & Kay, 2013); 

the resulting equation is lengthy and not reproduced herein. The expression obtained from 

Eq. 8:

R1ρ = R11cos2θ + R21sin2θ + sin2θ
p1p2Δω21

2 kex
ωA

2 ωB
2 /ωe2 + kex

2

+ sin2θ
R21 − R11 p2ωA

2 ωe2 + p1ωB
2 ωe2 − ωA

2 ωB
2

ωA
2 ωB

2 + ωe2kex
2 +

ΔR21p2 kex
2 + ωA

2

ωA
2 ωB

2 /ωe2 + kex
2

(32)

is more compact, but less accurate. This expression is easily obtained by noting that:

−R = R11E + Diag R21 − R11, R21 − R11, 0, R21 − R11, R21 − R11, 0
+ Diag 0, 0, 0, R22 − R21, R22 − R21, 0 (33)

in which Diag[ ] is a diagonal matrix and performing the matrix manipulations term by term. 

The first term in the brackets of Eq. 32 corrects for the different effective fields for spins in 

the two states, which makes a contribution even if ΔR21 = 0, and the second term corrects for 

ΔR21 ≠ 0. If ΔR21 = 0, this equation reduces to Eq. 30 if p1 >> p2 or exchange is in the fast 

limit. As for the CPMG experiment, ΔR21 becomes important only if k21 is not >> | ΔR21|.

The behavior of the above expressions for R1ρ relaxation for 2-site exchange are illustrated 

in Figure 5. In contrast to the CPMG experiment, in which only τcp can be varied, R1ρ 
relaxation is altered by changing both ω1 and ωrf. Even in relatively fast exchange, the 

asymmetry in the profile of R1ρ relaxation rate constants for values of ωrf upfield or 

downfield of the observable resonance is significant and allows determination of Ω2 (Bothe, 

Stein, & Al-Hashimi, 2014; Kimsey, Petzold, Sathyamoorthy, Stein, & Al-Hashimi, 2015).

Koss and coworkers have illustrated results for 3- and 4-site kinetic schemes (Koss et al., 

2017). The simplest N-site cases (N > 2) are linear topologies, because the 3N × 3N 
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characteristic equations can be reduced to 3 × 3 matrix polynomials of leading order N. 

Using this approach, the linear B-A-C scheme has a first-order approximation:

R1ρ = −1
Tr Y−1X

X = LB′ LA′ + LA′ LC′ + LB′ LC′ − k12k21 + k13k31 I
Y = LB′ LA′ LC′ − k13k31LB′ − k12k21LC′

(34)

in which Ln′ = Ln + Knn ⊗ I3. The above expression does not include the contribution from 

relaxation other than chemical exchange. The effects of relaxation can be treated by 

incorporating the relaxation matrix Rn into Ln′ , approximated as , R1cos2θ + R2sin2θ or 

calculated to first order as in Eq. 9.

Higher-order Newton-Raphson approximations based on the full 3N × 3N matrices L+K+R 
give results of arbitrary accuracy, which is useful when reduction to N × N matrices schemes 

is difficult. The examples shown in Figure 6 demonstrate that for complex kinetic schemes 

(triangular, kite), a second-order Halley approximation for the eigenvalue is applicable to the 

practically relevant parameter space, and in many cases superior to the approximations of 

the Woodbury type reported previously (Koss et al., 2017).

3. Experimental Techniques and Examples

A large number of variations of NMR experimental methods for investigation of chemical 

exchange in proteins and nucleic acids have been reported. Many of these experiments have 

been developed to account for particular isotopic labeling patterns or spin topologies. The 

following sections address issues that arise in application of the above theoretical results 

when analyzing experimental data, rather than discussing particular pulse sequences; for the 

latter, see recent reviews (Francesca Massi & Peng, 2018; A. G. Palmer, 2014; A. G. Palmer, 

3rd, Grey, & Wang, 2005; Sauerwein & Hansen, 2015; Vallurupalli et al., 2017; Walinda et 

al., 2018b). Practical experimental guidelines have been discussed in other reviews (Ishima, 

2014; Kempf & Loria, 2004; Francesca Massi & Peng, 2018; Walinda et al., 2018a, 2018b; 

Xue et al., 2015).

3.1 ZZ-exchange

If chemical exchange is slow enough and populations of minor sites large enough that the 

resonances for minor sites are observable, then chemical exchange rate constants are 

conveniently obtained using ZZ-exchange experiments. These experiments are the analogues 

to the 1H NOESY experiments, but have the advantage of lacking numerous confounding 

NOE cross peaks. In proteins, for example, 15N ZZ-exchange experiments are devoid of 
15N-15N NOE cross-peaks owing to the low magnetogyric ratio of the 15N nucleus and the 

long distance between 15N atoms. ZZ-exchange experiment for uniformly 13C labeled 

molecules may contain 13C-13C NOE cross peaks, usually between directly bonded atoms. 

Pulse sequences have been described in which the chemical exchange occurs between 

longitudinal magnetization (Farrow et al., 1995; Hwang & Kay, 2005; H. Wang et al., 2002), 

longitudinal two-spin order (Montelione & Wagner, 1989; Sprangers, Gribun, Hwang, 

Houry, & Kay, 2005), and single transition operators (Y. Li & Palmer, 2009), and in which 
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detection of the signal utilizes HSQC, TROSY-detection (Hwang & Kay, 2005; Sahu, Clore, 

& Iwahara, 2007; Sprangers et al., 2005), and TROSY-selection (Y. Li & Palmer, 2009) 

methods.

For 2-site exchange,

d
dt

Mz1 t
Mz2 t =

−R11 0
0 −R12

+
−k12 k21
k12 −k21

Mz1 t
Mz2 t

=
−R21 − k12 k21

k12 −R22 − k21

Mz1 t
Mz2 t

(35)

The above equation is written for z-magnetization, but as noted ZZ-exchange experiments 

can be based on other components of the density operator, such as longitudinal two-spin 

order. The integrated solution to this equation is:

Mz1 t
Mz2 t =

a11 t a12 t
a21 t a22 t

Mz1 0
Mz2 0 (36)

in which the eigenvalues of the evolution matrix are:

λ± = 1
2 R11 + R12 + k12 + k21 ± k12 − k21 + R11 − R12

2 − 4k12k21
1/2

(37)

and the mixing coefficients are given by:

a11 t = 1
2 1 − k12 − k21 + R11 − R12

λ+ − λ−
exp −λ−t

+ 1 + k12 − k21 + R11 − R12
λ+ − λ−

exp −λ+t

a22 t = 1
2 1 + k12 − k21 + R11 − R12

λ+ − λ−
exp −λ−t

+ 1 − k12 − k21 + R11 − R12
λ+ − λ−

exp −λ+t

a12 t = k21
λ+ − λ−

exp −λ−t − exp −λ+t

a21 t = k12
λ+ − λ−

exp −λ−t − exp −λ+t

(38)

In a conventional two-dimensional ZZ-exchange experiment, t1 frequency labeling occurs 

prior to the mixing time t, resulting in two auto-peaks and two cross-peaks for each 

exchanging spin. The integrated auto- and cross-peak amplitudes resulting from this 

experiment are given by Ijk(t) = ajk(t) Mzk(0).

Direct global fitting of the time dependence of the two auto- and cross-peak intensities 

(measured as peak heights) is prone to systematic errors from the effects of differential 

relaxation during parts of the experiment other than the relation delay, t, particularly the t2 

acquisition period. Miloushev and coworkers proposed a simplified analysis (Miloushev et 

al., 2008):
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Ξ t = I12 t I21 t
I11 t I22 t − I12 t I21 t ≈ k12k21t2 (39)

that is insensitive to such effects. In addition, this equation is independent of moderate 

differences between R11 and R12, does not require iterative curve-fitting, and is easily used 

in a global analysis of multiple spins subject to the same exchange process, because the 

right-hand-side depends only on the exchange rate constants. In order to obtain k12 and k21 

individually, the equilibrium constant Keq = k12/k21 must be known independently or 

measured from integrated peak volumes using the HSQC0 approach of Markley and 

coworkers (Hu, Westler, & Markley, 2011). In an alternative method, Kloiber and coworkers 

noted that if a second experiment is recorded in which the mixing period is moved prior to 

the t1 period, then only auto-peaks are observed with amplitudes given by Ij(t) = [ajj(t) + 

ajk(t)]Mzk(0). A global analysis of the time dependence of I11(t) and I22(t), I1(t), and I2(t) 
allows determination of k12, k21, R11, and R12.(Kloiber, Spitzer, Grutsch, Kreutz, & 

Tollinger, 2011) This approach also is robust against variations in relaxation during the t2 

acquisition period. For time delays from ~0 to ~0.5/(k12+k21), simulations, such as those 

shown in Figure 7, suggest that the two methods have similar precisions (although the 

second approach requires acquiring two spectra at each mixing time). Which approach is 

optimal in a given situation then depends on whether both I12(t) and I21(t) cross-peaks are 

resolved in the ZZ-exchange spectra for a suitable number of spins, which is required for the 

convenient global analysis offered by the approach of Miloushev and coworkers.

A recent example of the use of the 1H-15N ZZ-exchange experiment investigated folding 

kinetics of autonomously folding protein domains derived from the ribosomal protein L9 

using high-pressure NMR spectroscopy (Zhang et al., 2016). Figure 8 shows results for three 

residues in the C-terminal domain of the I98A mutant of L9. As in the original work, data 

for individual peak intensities shown in Fig. 8a–c were fit simultaneously using Eq. 38 to 

give individual kinetic rate constants for each residue. Figure 8d shows the global analysis of 

data for the three residues using Eq. 39 to obtain k12k21. The simplicity of the global 

analysis is evident. However, as shown, only data at shorter mixing times should be used in 

the global analysis; at long values of T, the denominator in Eq. 39 approaches 0 and 

uncertainties in Ξ(T) are amplified.

3.2 Hahn-Echo, CPMG and R1ρ Experiments

Hahn-echo relaxation experiments measure the transverse relaxation rate constant from a 

spectrum recorded with one or two spin-echo periods, in which the total time T is as long as 

feasible (consistent with sensitivity) to mimic the free-precession relaxation rate constant. In 

the simplest approach, a second spectrum is recorded in which the spin-echo periods are 

omitted. The relaxation rate constant is obtained from the ratio of signal intensities in the 

two experiments, I(T)/I(0), using Eq. 5. As shown in Figure 9, numerical simulations for a 

single spin echo, compared with the exact free-precession R2 (given by the real part of Eq. 

11) show that the Hahn-echo experiment closely approximates the free-precession relaxation 

rate constant if exchange is fast (kex/Δω21 > 4) or T is sufficiently long (T greater than ~10/

Δω21). Differential relaxation, in which R22 ≠ R21 improves agreement between the exact 

eigenvalue and the Hahn-echo result (not shown).
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A number of Hahn-echo experimental methods have been described in the literature. 

Examples include the 1H-15N TROSY Hahn-echo (C. Wang, Rance, & Palmer, 2003), 13Cα 

Hahn-echo (O’Connell et al., 2009), and the 13CH3 methyl zero-quantum TROSY Hahn-

echo experiments (Gill & Palmer, 2011; Ollerenshaw, Tugarinov, Skrynnikov, & Kay, 2005; 

Tugarinov et al., 2004). In particular, the 13CH3 methyl zero-quantum TROSY Hahn-echo 

experiment recently has been applied to characterization of chemical exchange in the DNA-

repair enzyme AlkB (Gill & Palmer, 2011) and in Gα proteins (Toyama et al., 2017).

The CPMG experiment depends on acquisition of a relaxation dispersion curve in which the 

relaxation rate constants for spins of interest are measured as functions of τcp. In coupled 

spin systems, the evolution of scalar coupling interactions also varies as τcp is changed. This 

results in deleterious τcp-dependent averaging of relaxation rate constants of in-phase and 

anti-phase magnetization. The first solution to this difficulty was the relaxation-compensated 

CPMG experiment, in which in-phase and anti-phase magnetization components are 

interchanged halfway through the CPMG pulse train in order to exactly average the in-phase 

and anti-phase relaxation rate constants, rendering the average independent of τcp (Loria, 

Rance, & Palmer, 1999a). Since the original description of the relaxation-compensated 15N 

CPMG experiment, numerous variants have been developed for applications to a variety of 

spin systems in both proteins and nucleic acids (Sauerwein & Hansen, 2015; Walinda et al., 

2018b). The second solution to this difficulty employs spin-decoupling methods to prevent 

evolution of the scalar coupling. Decoupling must be carefully executed to avoid interfering 

with proper refocusing of the CPMG spin echoes, but has the advantage of avoiding 

averaging between in-phase and anti-phase magnetization (Hansen, Vallurupalli, & Kay, 

2008a) TROSY(Loria, Rance, & Palmer, 1999b) and BEST-TROSY (Franco et al., 2017) 

versions of this experiment that improve sensitivity also have been reported.

Only chemical exchange on a time scale covered by the τcp range of the CPMG experiment 

can be detected. For slow exchange, τcp therefore has to be large. For large τcp, oscillations 

in the CPMG curve can be observed for slow exchange. Tollinger et al. have found that the 

oscillations can be described by a functional form depending on sinc(Δω21τcp) for very slow 

exchange (Eq 2 in (Tollinger et al., 2001)). Recently, Koss and coworkers derived analytical 

expressions for slow N-site exchange (N ≥ 2) that include sinc2(Δωijτcp) terms (Eqs. 27 and 

28 for example) (Koss, Rance, et al., 2018). These expressions approximate the dominant 

single eigenvalue of the average magnetization evolution matrix; higher-order eigenvalue 

eigenvalue approximations yield results which are very similar to those obtained from the 

Carver-Richards equation (for N = 2). The maxima for sinc(Δω21τcp) and sinc2(Δω21τcp), 

are identical, at τcp = nπ/|Δω21|; the integral for both functions (0 < τcp < ∞) is π/2. The 

sinc(Δω21τcp) functional dependence describes oscillations in the dispersion profile better 

for very slow exchange and very large minor populations (Tollinger et al., 2001); in these 

special cases, exchange cannot be described using the dominant single eigenvalue. For slow-

to-intermediate exchange or smaller minor site populations, the sinc2(Δω21τcp) functional 

dependence gives more accurate results. Analysis of the oscillatory region might be useful to 

distinguish kinetic schemes: For two-site exchange, sinc2(Δω21τcp) (or sinc(Δω21τcp)) 

depends on Δω21τcp and directly describes the oscillations, while N-site (N > 2) exchange 

gives more complex oscillatory patterns. For kinetic schemes with increasing complexity, 

approximations based on a single dominant eigenvalue become more reliable because the 
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single-eigenvalue model only become invalid for large τcp when the number of sites 

connected to the major site is 1 or 2, in combination with exclusively very slow exchange, 

including very slow exchange between minor sites. CPMG data at large τcp can be obtained 

be obtained either by increasing T without changing the number of CPMG cycles, which 

reduces sensitivity, or by reducing the number of CPMG cycles during a given T. 

Relaxation-compensated CPMG experiments, however, require a minimum number of 2 

cycles. CPMG experiments using 1H continuous wave decoupling during the relaxation 

element can be used to overcome this problem by maintaining in-phase magnetization 

throughout the relaxation delay (Hansen, Vallurupalli, et al., 2008a).

A drawback of the CPMG experiment is that only the magnitude and not the sign of Δωn1 is 

obtained from analysis of CPMG relaxation dispersion curves. This disadvantage of the 

CPMG experiment, compared to the R1ρ experiment, is offset by the number of available 

experimental methods and relative ease of CPMG methods. For 2-site exchange, Kay and 

coworkers have shown that differences in F1 resonance frequencies between HSQC and 

HMQC experiments are indicative of the sign of chemical shift difference between states, 

provided exchange is not too fast (Skrynnikov, Dahlquist, & Kay, 2002). Thus, this 

technique is an important complement to 15N and 13C CPMG experiments.

As described above, the main strength of R1ρ measurements over other approaches for 

characterizing chemical exchange when ZZ-exchange measurements are not feasible, 

compared with Hahn-echo and CPMG methods, is the sensitivity of the R1ρ relaxation rate 

constant to the resonance frequencies of otherwise unobservable sparsely populated states. 

In many cases, experimental methods for R1ρ measurements are similar to those used for 

CPMG relaxation dispersion studies, except that the CPMG pulse train is replaced by a spin-

locking sequence, which in the simplest case is continuous-wave radiofrequency field, but 

might be phase-modulated or applied as an adiabatic sweep. Particular experimental 

methods differ in how the desired spin magnetization is aligned with the effective field in the 

rotating frame and in how the effects of scalar coupling interactions are treated. As for other 

experiments, TROSY and non-TROSY versions of many sequences have been reported 

(Francesca Massi & Peng, 2018). More recently, R1ρ measurements for methyl groups 

(Weininger et al., 2013) or aromatic side chains (Weininger et al., 2014) have come into 

focus, as well as experiments to characterize slow dynamics in nucleic acids (Xue et al., 

2015; Zhao, Hansen, & Zhang, 2014).

3.3 CEST and DEST

As originally described by Allerhand and Thiele, the limiting effect of chemical exchange on 

spin relaxation can be described as C-type or R-type, depending on whether the differences 

in chemical shifts or relaxation rates between states dominates (Allerhand & Thiele, 1966). 

These two cases have been exemplified in modern CEST (Bouvignies & Kay, 2012; 

Vallurupalli, Bouvignies, & Kay, 2012) and DEST (Fawzi, Ying, Ghirlando, Torchia, & 

Clore, 2011) experiments, respectively. Both experiments record changes in resonance signal 

intensities as functions of the resonance offset and amplitude of a spin-locking 

radiofrequency field. As such, both CEST and DEST experiments can be considered as 

variants of the general R1ρ experiment and are described by the same theory as described 
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above for R1ρ relaxation (A. G. Palmer, 2014; Zhao et al., 2014). Methods for improving the 

time efficiency of CEST experiments have been developed that use multi-site excitation with 

DANTE (Yuwen, Kay, & Bouvignies, 2018) or appropriately designed shaped pulses 

(Leninger, Marsiglia, Jerschow, & Traaseth, 2018). For 1H-CEST experiments, a 

longitudinal relaxation optimized sequence has been developed (Yuwen & Kay, 2017).

More specifically, CEST or DEST experiment measures I(T)/I(0) for values of the resonance 

frequency of the radiofrequency field, ωrf, stepped through the spectral region of interest, 

and usually repeated for at least two values of ω1. As a consequence of the above 

considerations, the observed intensity signal in the CEST or DEST experiments is:

I T /I 0 = cos2θexp −T ⋅ R1ρ (40)

in which T is the length of the irradiation period. In contrast to conventional R1ρ 
experiments, the spin magnetization is not rotated to the tilted reference frame prior T and 

back to the rotating after T. Thus, in Eq. 40, one factor of cosθ results from projection of the 

initial longitudinal magnetization onto the tilted reference frame (this factor rapidly 

approaches unity for weak radiofrequency fields off-resonance with respect to the 

population-average chemical shift) and a second factor of cosθ results from projection of the 

magnetization locked along the direction of the effective field during T back onto the z-axis 

after the end of the irradiation period T (transverse magnetization after the irradiation period 

is dephased by a z-filter gradient pulse). This analysis does not consider the contribution 

near resonance from evolution of magnetization components orthogonal to the tilted z-axis; 

for long irradiation times used in CEST and DEST experiments, these components dephase 

owing to R2ρ relaxation. An alternative, equally valid, approach treats CEST and DEST 

experiments as modifications of the classic saturation transfer method introduced by 

Hoffman and Forsén (Forsén & Hoffman, 1963). In this approach, data analysis requires 

curve-fitting by numerical integration of the Bloch-McConnell equations, for example Eq. 1 

with parameters defined in Eq. 29, rather than direct application of the analytical expression 

Eq. 40.

In support of the above interpretation, Figure 10 illustrates the approach of the evolving 

magnetization towards the state described by Eq. 40. Large oscillations arising from 

magnetization components orthogonal to the effective field are observed when the spin-

locking field is on-resonance with the major state (Fig. 10b). The magnetization decays 

toward zero through a combination of R1ρ and R2ρ processes, while B1 inhomogeneity 

accelerates the damping process. Off-resonance from the major state, the contribution of 

orthogonal magnetization is reduced (Fig. 10a and c). Importantly, the effects of orthogonal 

magnetization are reduced on-resonance with the minor state (Figure 10d). In the example 

shown, T ≥ 0.25 s assures that Eq. 40 is applicable. The effects of B1 inhomogeneity are 

reduced off-resonance from the major state, when resonance offset dominates ω1, but 

become more significant as ω1 is increased. Thus, R2ρ relaxation contributes to damping of 

orthogonal magnetization components in the “transient regime” (unless B1 inhomogeneity or 

ω1 is large), but once these components decay to zero at times T commonly employed in 

practice, Eq. 40 is accurate description of the CEST profile.
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Equation 40 assumes that either spin-spin interactions are decoupled, or the applied 

radiofrequency field has amplitude ω1 >> πJ, in which J is the scalar coupling constant. If 

these conditions are not satisfied, then each multiplet component in the irradiated spin 

system experiences a different resonance offset, and hence different relaxation decay profile. 

This situation has been investigated for R1ρ relaxation by Igumenova and Palmer and for 

CEST by Zhou and Yang (Igumenova et al., 2007; Zhou & Yang, 2014). In the simplest case 

of an IS spin system in which the S spin is irradiated,

Iα T /Iα 0 = cos2θαexp −T ⋅ R1p
α

Iβ T /Iβ 0 = cos2θβexp −T ⋅ R1ρ
β (41)

In these expressions “α” refers to the S spin magnetization for which the coupling partner is 

in the α spin state (and similarly for “β”). The offset frequencies used to calculate the tilt 

angle and effective fields becomes Ωi ± πJ, depending on the sign of the scalar coupling and 

whether the α or β spin states were being considered. The resulting CEST profiles then 

depend on whether coupled or decoupled in-phase magnetization is detected, as in an HSQC 

or HMQC experiment, or a single multiplet component is detected, as in a TROSY-selected 

experiment. Note that decoupling or spin-state selection may be infeasible for homonuclear 

scalar coupling interactions. Simulations of these cases are shown in Figure 11. In addition, 

as discussed by Igumenova and Palmer, in the spin-locked tilted frames of reference, cross-

relaxation between these magnetization components can occur (Igumenova & Palmer, 2006). 

The cross relaxation rate constant is dominated by dipole-dipole interactions with remote 

spins. Thus, cross-relaxation is reduced in molecules in which remote sites are highly 

deuterated.

The conceptual simplicity of the CEST experiment can be complicated further by effects 

other than chemical exchange. As a prominent example, conventional 1H CEST experiments 

contain contributions from 1H-1H dipole-dipole cross relaxation as well as the effects of the 

desired chemical exchange phenomena. Yuwen and Kay have described an elegant approach 

to suppress the artifacts from 1H-1H dipole-dipole cross relaxation for amide and methyl 

groups that makes use of the difference between R1ρα and R1ρβ (Yuwen, Sekhar, & Kay, 

2017). When the amplitude of the 1H radiofrequency field used for CEST irradiation 

satisfies ω1 < πJXH, then 1H components of the density operator in which the attached 

heteronuclear spin is in the α or β state are differentially affected by exchange during T, as 

shown by Eq. 41. As a result, longitudinal two-spin order, 2IzSz, is created during T. 

Subsequently, this two-spin order, rather than z-magnetization as in conventional CEST 

experiments, is selected and detected. The resulting spectra yield CEST profiles free of 

dipole-dipole artifacts, because dipole-dipole cross relaxation cannot generate two-spin 

order. CSA-dipole cross-correlated relaxation does lead to build-up of two-spin order, and 

can be eliminated by a more complex irradiation scheme, as shown by Yuwen and Kay, but 

appear to be negligible in practice. An example CEST profile arising from this approach is 

shown in Fig. 11c.

Equation 32 or the expression obtained by Baldwin and Kay both are accurate for the CEST 

experiment, provided that ΔR21 is not large (Baldwin & Kay, 2013). However, the DEST 

experiment relies on ΔR21 >> 0, as for a protein or other molecule interacting with a very 
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large particle, such as a fibril. Equation 32, which is first-order ΔR21, is inaccurate in this 

limit. The expression obtained by Baldwin and Kay remains accurate, as does the simple 

result obtained from perturbation theory:

R1ρ = R11cos2θ + R21sin2θ + sin2θk12
Δω21

2 + ΔR21
2 k21 + ΔR21 ωA

2 + k21
2

k21 ωB
2 + k21 + ΔR21

2 + ΔR21ω1
2

= R11cos2θ + R21sin2θ + sin2θk12

(42)

in which the second line is obtained as ΔR21 → ∞. In this limit, nearly instantaneous 

relaxation of spins in site 2 prevents back transfer of magnetization from site 2 to site 1; 

essentially, the two sites become non-secular in the sense of relaxation theory (vide supra). 

This result is identical to the the result obtained for C-type exchange if Δω21 → ∞. In 

addition, if ΔR21 >> Δω21, then Eq. 41 becomes insensitive to C-type exchange and 

relaxation dispersion arises from R-type relaxation only. Thus, if ΔR21 > 0, chemical 

exchange can be characterized by R1ρ relaxation dispersion even if Δω21 = 0 (Yuwen, Brady, 

& Kay, 2018). Examples of DEST profiles calculated using the above expressions or by 

numerical integration of the Bloch-McConnell equations (Eq. 1 with parameters as defined 

in Eq. 29) are shown in Figure 12. The R1ρ-based approach is seen to be highly accurate in 

describing the DEST experiment as well as the CEST experiment.

Zhang and coworkers have reported a very complete comparison of ZZ-exchange, R1ρ, and 

CEST methods applied to the fluoride riboswitch (Zhao et al., 2014). The CEST data were 

originally analyzed by numerical integration of the Bloch-McConnell equations. The 13C 

CEST data reported for the C8 position of guanine 8 of the riboswitch are shown in Figure 

13a. The solid lines show the fit to Eqs. 40 and 42 to highlight the facility of the above 

interpretation of the CEST experiment. The data analysis using Eqs. 40 and 42 (or the 

combination of Eqs. 40 and 32) is more efficient than integration of the Bloch-McConnell 

equations. Of course, R1ρ can be calculated from the CEST data by inversion of Eq. 40 and a 

graph of the results obtained by this approach are shown in Figure 13b. The R1ρ data 

obtained independently also are shown in Fig. 13c for comparison. The overall profiles are 

similar, but quantitative differences arise because the initial magnetization in the R1ρ 
experiment was selected as the magnetization of the dominant state, as opposed to the CEST 

experiment, in which the initial magnetization was proportional to the equilibrium 

magnetization (Xue et al., 2015; Zhao et al., 2014).

3.4 Determination of Rex from relaxation dispersion experiments

In many situations, differentiating between the effects on relaxation rates or linewidths from 

chemical exchange, Rex, and other relaxation mechanisms, such as dipole-dipole and CSA 

interactions, R0, is of interest. Thus, a given relaxation rate constant, R, might be partitioned 

as:

Rex = R − R0
= R ω 0 − R ω ∞ (43)

in which ω = ωe for R1ρ -type experiments and 1/(4τcp) for CPMG-type experiments. Thus, 

relaxation experiments generally do not directly measure the exchange contribution to 
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relaxation, Rex, because dipole-dipole and CSA relaxation processes, R1j and R2j, also 

contribute to spin relaxation through R0 (vide supra). Because R or R(ω → 0) usually can be 

approximated in a relatively straightforward manner, as in a Hahn-echo experiment, R0 or 

R(ω → ∞) must be measured separately to obtain Rex. Information on R0 or R(ω → ∞) 

also can usefully constrain fitting algorithms for relaxation dispersion data (Grey et al., 

2006; O’Connell et al., 2009).

One way to estimate R0 involves extrapolation of relaxation data that have been recorded at 

different field strengths to B0 = 0 (Millet, Loria, Kroenke, Pons, & Palmer, 2000). For 

example, the static magnetic field dependence of Hahn-echo relaxation rate constants, 

provided CSA values are available, allows separation of chemical exchange, dipole-dipole, 

and CSA contributions to relaxation (O’Connell et al., 2009; Phan, Boyd, & Campbell, 

1996; Toyama et al., 2017). A second approach estimates the desired R0 from a relaxation 

rate constant, such as a cross-correlation relaxation rate constant, that is insensitive to 

chemical exchange effects but has a similar dependence on other relaxation mechanisms 

(Kroenke, Loria, Lee, Rance, & Palmer, 1998; F. Massi, Wang, & Palmer, 2006).

Chemical exchange effects also can be suppressed in a reference relaxation dispersion 

experiment performed very high spin-lock power in R1ρ experiments or very small τcp in 

CPMG experiments to obtain R(ω → ∞). The realization that modern cryogenically cooled 

probeheads can withstand 6.4 kHz 15N-spin lock fields with durations of 20 ms has led to 

the development of high-power relaxation dispersion experiments, which facilitate 

determination of R20 (Ban et al., 2017). Thus, the spin-lock based HEROINE experiment 

can be used as a reference for constant-time relaxation-compensated CPMG experiments 

(Ban et al., 2013). An analogous approach has been reported for multi-quantum Hahn-Echo 

experiments (Toyama, Osawa, Yokogawa, & Shimada, 2016). A related approach, suited as a 

reference experiment for in-phase magnetization relaxation dispersion experiments, has been 

developed previously by Hansen et al. to obtain exchange-free values R2 from a linear 

combination of relaxation rate constants for a specific set of longitudinal and spin-locked 
1H-15N coherences (Hansen et al., 2007). R20 also can be determined from CPMG by setting 

τcp to be sufficiently small. However, when the duty cycle (ratio of 180° pulsing time to τcp) 

is more than 1/10, as rough approximation, evolution during the pulses may become relevant 

and complicates data analysis. Reddy et al. have demonstrated in the “extreme CPMG” 

experiment that Rcpmg(τcp) estimates can be obtained at a CPMG frequency of up to 1/(τcp) 

= 6.4 kHz for 15N nuclei, which is essentially equivalent to τcp → 0 (Reddy et al., 2018); an 

intensive cooling regime is required to protect sample and probe from overheating in this 

limit. Such a “windowless” extreme-CPMG experiment is equivalent to an R1ρ experiment 

with phase jumps (due to the x,x,y,−y phase cycle). Simulations show that relaxation rates 

are, however, not dramatically changed in comparison to a phase cycle with x-phases only 

(equivalent to a continuous wave spin-lock). “Extreme-CPMG” experiments can cover a 

broad chemical shift range, while R1ρ experiments have the advantage of avoiding 

complicated evolution of magnetization during 180° pulses, either due to pulse 

imperfections or phase changes from pulse to pulse.
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3.5 Choosing appropriate relaxation dispersion experiments

The complexity of the kinetic schemes and the large number of parameters for N-site kinetic 

models might suggest that available data would be insufficient to characterize 4-site models 

like the kite or the quadratic scheme. However, CPMG and R1ρ/CEST experiments yield an 

enormous amount of data. First, the static magnetic field B0 can be varied in all of these 

experiments (and indeed is essential even for 2-site exchange) (Millet et al., 2000). In 

addition, these experiments typically simultaneously record data for a number of spins with 

different chemical shifts. For CPMG experiments, theoretical calculations illustrated in 

Figure 14 suggest that various 2- and 3-site models often can be distinguished as long as 

data are recorded at two different B0 fields, and as long as data for a sufficient number of 

spins (preferably > 15) are analyzed (Koss, Rance, et al., 2018). For R1ρ/CEST experiments, 

data should be recorded preferably at 2 different B0 fields and at two ω1 fields. In an R1ρ 
experiment, theoretical calculations suggest that a combination of spins with different shifts, 

in the given example five, can be sufficient to drastically enhance distinguishability between 

two- and three-site (triangular/BAC) models for a wide range of parameters (Figure 15). 

Interestingly, a combination of a small and large ω1 fields generally performs well, but in 

particular also for cases in which exchange between sites A and B and between sites A and 

C is slow, but between minor sites B and C is fast. Based on these simulations, complicated 

N-site schemes may be distinguishable, for example by the combination of the following 

experiments, all at two different B0 fields: CEST experiments for at least 3 spins, and an R1ρ 
experiment at a higher ω1 field (to complement the CEST data); additional CPMG data can 

also be useful in many cases.

Conclusion

The 2-site model in which a molecule or system of molecules interconverts reversibly 

between two states at chemical equilibrium is powerful in descriptions of chemical exchange 

in NMR spectroscopy (and other areas of biophysics) because it is analytically tractable, 

allowing both qualitative insight and facile data analysis. More complex biological systems 

are becoming accessible to NMR spectroscopy, for example due to techniques focusing on 

the side chains of large proteins, or embedment of membrane proteins into nanodiscs. In 

those systems, multiple states may interconvert on multiple timescales. The complexity of 

the resulting Bloch-McConnell or stochastic Liouville equations obscures insight and 

complicates data analysis. The examples surveyed in this review illustrate theoretical 

advances leading to improved experimental methods, formulations facilitating global 

analysis of experimental data for improved power, and analytical approximations 

generalizing the simple 2-site model to arbitrary kinetic schemes.
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Appendix

A.1: Cayley-Hamilton theorem

The Cayley-Hamilton theorem states that a matrix A satisfies its own characteristic equation. 

Thus, for a 2 ×2 matrix,

A2 − ATrA + E A = 0 (A1)

in which 0 is the zero matrix. Any matrix equation containing powers of A > 1 can be 

reduced by repeated use of the above expression. For example,

H22 τcp ≈ 3 −E + Z2 τcp E + 4Z τcp + Z2 τcp
−1

= 3 −E + Z τcp TrZ τcp − E ∣ Z τcp E + 4Z τcp + Z τcp TrZ τcp − E Z τcp
−1

= 3 − 1 + Z τcp E + Z τcp TrZ τcp
1 − ∣ Z τcp E + 4 + TrZ τcp Z τcp

−1

(A2)

which has the form of Eq. 19:

H22 τcp ≈ ε E + b1Z τcp E + c1Z τcp
−1

(A3)

with

ε = − 31 + Z τcp
1 − Z τcp

b1 = −TrZ τcp
1 + Z τcp

c1 = 4 + TrZ τcp
1 − Z τcp

(A4)

The equation

E + b1Z τcp E + c1Z τcp
−1 = a0E + a1Z τcp (A5)

is formally solved for a0 and a1 by diagonalizing Z(τcp) (this matrix is Hermitian and 

consequently has real eigenvalues) to obtain the algebraic equations:

1 + b1Λ1
1 + c1Λ1
1 + b1Λ2
1 + c1Λ2

=
1 Λ1
1 Λ2

a0
a1

(A6)

in which Λn is an eigenvalue of Z(τcp). The solution to this equation gives:
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a0 = 1 + c1 Λ1 + Λ2 + b1c1Λ1Λ2
1 + c1 Λ1 + Λ2 + c1

2Λ1Λ2
= 1 + c1TrZ τcp + b1c1 Z τcp

1 + c1TrZ τcp + c1
2 Z τcp

a1 = b1 − c1
1 + c1 Λ1 + Λ2 + c1

2Λ1Λ2
= b1 − c1

1 + c1TrZ τcp + c1
2 Z τcp

(A7)

in which the relationships between the eigenvalues, the trace and determinant have been 

used. This expression can be used with any Padé approximation to the Liouvillian for 2-site 

exchange. Using the above example,

H22 τcp

= 3
−1 + TrZ τcp 4 + TrZ τcp + Z τcp

2 E + 2 2 + TrZ τcp + 2 Z τcp Z τcp

1 + TrZ τcp 4 + TrZ τcp + 2 Z τcp 7 + 2TrZ τcp + Z τcp
2

(A8)

As noted in the text, this approach allows the inverse matrix to be easily obtained as:

H22
−1 τcp

=
−1 + Tr2Z τcp + 4TrZ τcp Z τcp + Z τcp

2 E − 2 2 + TrZ τcp + 2 Z τcp Z τcp
3 1 + Z τcp − TrZ τcp 1 + Z τcp + TrZ τcp

(A9)

and the lowest-order approximation to the relaxation rate constant is given by:

Rcpmg τcp = R21 + 3 1 + Z τcp − TrZ τcp 1 + Z τcp + TrZ τcp

8τcp 1 − Z τcp
2 − 2 Z τcp TrZ τcp + 2TrZ τcp

(A10)

For 3-site exchange, the evolution matrices have dimensions 3 ×3 and the Cayley-Hamilton 

theorem is:

A3 − A2TrA + 1
2A Tr2A − TrA2 − E A = 0 (A11)

The same approach as outlined for 2-site exchange, but more complicated algebraically, 

allows the Hamiltonian H11(tcp) to be expressed using an = dn/D with:
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D = 1 +
c2

2

4 Tr2Z − Tr2Z2 2 + c1c2
2 TrZ +

c1
2

2 Tr2Z − TrZ2 + c1TrZ

+ c2TrZ2 + Z c1
3 − 3c1c2 + c1

2 − 2c2 c2TrZ +
c1c2

2

2 Tr2Z − TrZ2 + c2
3 Z

2

d0 = 1 +
c2

2

4 Tr2Z − Tr2Z2 2 + c1c2
2 TrZ +

c1
2

2 Tr2Z − TrZ2 + c1TrZ

+ c2TrZ2 + Z −b2c1 + b1 c1
2 − c2 − c1c2 − b2 − b1c1 + c2 c2TrZ

+
b1c2

2

2 Tr2Z − TrZ2 + b2c2
2 Z

2

d1 = b1 − c1 + b2 − c2
2 c2TrZ + b2c1

2 Tr2Z − TrZ2 + c1 b1 − c1 TrZ

+ b1 − 2c1
2 c2Tr2Z + b1c2

2 TrZ2 + Z b2 c1
2 − c2 + c2 c2 − b1c1

+ b2c1 − b1c2 c2TrZ

d2 = b2 − b1c1 + c1
2 − c2 + c2 − b2

2 c2 Tr2Z − TrZ2 + c2 c1 − b1 TrZ + Z

b1c2 − b2c1

(A12)

A.2: Effective relaxation rate constant in CPMG experiments

A formal solution for N-state CPMG obtained from Eq. 14 is (with detection of the major 

species):
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M+ 4mτcp / M+ 0 = p1
−1 0 ⋯ 0

S e L + R + K τcpe L* + R + K 2τcpe L + R + K τcp mS−1
p1
⋮

pN

= p1
−1/2 δ1n e L + R + K τcpe L* + R + K 2τcpe L + R + K τcp m p1/2

= p1
−1/2 δ1n e L + R + K τcp e L* + R + K 2τcpe L + R + K 2τcp me− L + R + K τcp

p1/2

= p1
−1/2 δ1n e L + R + K τcpeH4mτcpe− L + R + K τcp p1/2

= p1
−1/2 δ1n e L + R + K τcpeH4mτcpe− L + R + K τcp p1/2

= p1
−1/2 ∑

j = 1

N
δ1n e L + R + K τcp ψj ψj e− L + R + K τcp p1/2 eΛj4mτcp

= p1
−1/2 ∑

i = 1

N
∑
j = 1

N
∑

k = 1

N
δ1n ∣ ui ui ∣ ψj ψj ∣ uk uk ∣ p1/2

eΛj4mτcpe λi − λk τcp

(A13)

in which <δ1n| is a 1 × N vector with values δ1n for n = {1,..,N}; S is diagonal with 

Sii = pk
12;|uj> and {λj} are the eigenvectors and eigenvalues of (symmetrized) evolution 

matrix L + R + K, in which |uj> is the jth column of U and < uj| is the the jth row of U−1; |

ψj> and Λj are the eigenvectors and eigenvalues of the symmetrized average Liouvillian 

H(τcp), in which <ψj| is the complex transpose of ψj > ; < p1/2 = p1
1/2p2

1/2 ; and H(τcp) is 

defined in Eq. 17.

From Eq. 5, an effective relaxation rate constant is defined as:
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Rcpmg τcp = −1
4mτcp

log M+ 4mτcp
M+ (0)

= −1
4mτcp

log p−1/2 ∑
i = 1

N
∑
j = 1

N
∑

k = 1

N
δ1n ∣ ui ui ∣ ψj ψj ∣ uk uk ∣ p1/2

eΛj4mτcpe λi − λk τcp

= −1
4mτcp

log p−1/2eΛ14nτcp ∑
i = 1

N
∑
j = 1

N
∑

k = 1

N
δ1n ∣ ui ui ∣ ψj ψj ∣ uk uk ∣ p1/2

e Λj − Λ1 4mτcpe λi − λk τcp

= − Λ1 − 1
4mτcp

log p−1/2 ∑
i = 1

N
∑
j = 1

N
∑

k = 1

N
δ1n ∣ ui ui ∣ ψj ψj ∣ uk uk ∣ p1/2

e Λj − Λ1 4mτcpe λi − λk τcp

= − Λ1 − 1
4mτcp

log ∑
j = 1

N
∑

k = 1

N
∑
l = 1

N
uk p ui ui Ψj uk e Λj − Λ1 4mτcpe λi − λk τcp

= − Λ1 + Rcorr

(A14)

in which

p = p1
−1/2|p1/2 δ1n

Ψj = |ψj ψj|
(A15)

and pn, j = δ1j pn/p1
1/2. On the last line of the above equations, Λ1 is the least-negative 

eigenvalue of H(τcp), which is approximated as described in Section 2.2, and Rcorr gives the 

difference between the eigenvalue estimate of the relaxation rate constant and the effective 

relaxation rate constant obtained from Eq. 5.

The matrix H(τcp) is Hermitian, so the eigenvalues Λj are real and the factors exp[(Λj

−Λ1)4mτcp] are pure exponential decays. The eigenvalues λi are complex and the factors 

exp[(λi−λk)τcp] are oscillatory. These contribute significantly when τcp is long (or exchange 

is very slow). If T = 4nτcp is sufficiently long, as is usually the case if significant 

magnetization decay occurs during T, then |(Λ2 − Λ1)|4mτcp >> 1, exp[(Λj−Λ1)4mτcp]→0 

and the j > 1 terms vanish:

Rcorr = 1
4mτcp

log ∑
j = 1

N
∑

k = 1

N
∑
l = 1

N
uk p ui ui Ψj uk e Λj − Λ1 4mτcpe λi − λk τcp

≈ 1
4mτcp

log ∑
k = 1

N
∑
l = 1

N
uk p ui ui Ψ1 uk e λi − λk τcp

(A16)

In addition, if the correction is small, then the logarithm can be expanded to first-order:
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Rcorr ≈ −1
4mτcp

1 − ∑
k = 1

N
∑
l = 1

N
uk p ui ui Ψ1 uk e λi − λk τcp (A17)

The correction term Rcorr vanishes as T = 4nτcp becomes large. The correction term also will 

vanish as pn→0 for n > 1, or exchange becomes fast.

The eigenvalues and eigenvectors of L + R + K are obtained at low computational cost by 

standard methods. If the approximations of Eqs. A16 or A17 are appropriate, the eigenvector 

ψ1 can be estimated efficiently by inverse iteration:

z m + 1 = H τcp − Λ1
0E −1ψ1

m

ψ1
m + 1 = Z m + 1 /‖Z m + 1 ‖∞

(A18)

with z(0) = [0 … 1]T and the approximate largest (least negative) eigenvalue of H(τcp), Λ1
0, 

as described in Section 2.2, Numerical calculations suggest that ψ1
(2) or ψ1

(3) are 

sufficiently accurate. Note that for N = 2, the eigenvalue Λ1 and the eigenvector ψ1 can be 

calculated exactly, leading to the result reported by Baldwin (Baldwin, 2014). Additional 

considerations arising from detection when exchange occurs on the intermediate time scale 

also have been discussed by Baldwin.

Abbreviations

CEST Chemical exchange saturation transfer

CPMG Carr-Purcell-Meiboom-Gill

DEST Dark state exchange saturation transfer
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Figure 1. 
Free-precession transverse relaxation rate constant for 2-site chemical exchange with p2 = 

0.08 and R21 = 0. R2 obtained from (black, solid) exact eigenvalue and (blue, dashed) first-

order approximation assuming ΔR21 = 0. R2 obrtained from (orange, dotted) exact 

eigenvalue and (green, dash-dotted) first-order approximation ΔR21/Δω21 = 0.1.
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Figure 2. 
CPMG relaxation dispersion curves for 2-site chemical exchange for p2 = 0.05, and R22 = 

R21 = 0. (a) Δω21 /kex = 5: (black solid lower curve) Carver-Richards equation, (blue, 

dotted) exact eigenvalue of H33(τcp), (orange, dashed), second-order slow exchange 

equation. Δω21 /kex = 10: (black, solid, upper curve) Carver-Richards equation, (blue, dash-

dotted) exact eigenvalue of H33(τcp) , (reddish-purple, dash-dot-dotted), second-order slow 

exchange equation. (b) Δω21 /kex = 2: (black, solid, lower curve) Carver-Richards equation, 

(blue, dotted) exact eigenvalue of H33(τcp) ; Δω21 /kex = 1: (black, solid, middle curve) 

Carver-Richards equation, (orange, dashed) exact eigenvalue of H33(τcp) ; Δω21 /kex = 0.2: 

Palmer and Koss Page 40

Methods Enzymol. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(black, solid, lower curve) Carver-Richards equation, (reddish-purple, dash-dotted) exact 

eigenvalue of H33(τcp) ; curves for Δω21 /kex = 0.2 have been multiplied by 10 for clarify.
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Figure 3. 
Approximations for N-site kinetic schemes in CPMG experiments. Left: 3-site triangular 

exchange (see Fig. 6 for the respective R1ρ figure). (Solid, black) Exact solution; (not black) 

Hnn(τcp) approximations, eigenvalue approximated to second order (Halley’s method), with 

(reddish-purple, dashed-dotted) n = 1, (blue, dashed) n = 2; (orange, dotted) n = 3; (black, 

not solid) slow exchange approximations from matrix exponential series truncation, with 

eigenvalue approximation of order k, with (dashed-dotted) k = 1; (dashed) k = 2 (Halley’s 

method). Parameters (in analogy to parameters in Fig. 1, Koss et. al. 2018): k12 + k21 = 200 

s−1; k13 + k31 = 300 s−1; k23 + k32 = 600 s−1; ΔωAB = 1800 s−1; ΔωAC = −2600 s−1; pA = 

0.85; pB = 0.08; pC = 0.07. Right: CPMG curves can help to differentiate between various 4-

site schemes. A schematic illustration of 4-site schemes is shown within the figure. Exact 

solutions (not grey), Hnn(τcp) approximations with n = 2 (grey) for CPMG curves for a 

variety of four-site schemes: kite (blue, dotted), star (reddish-purple, dashed), quadratic 

(green, dashed-dotted) and linear (black, solid). Eigenvalue approximations to first order 

almost overlap with the exact solutions, except for the star scheme; however, a second-order 

eigenvalue approximation (Halley’s formula) gives a perfect overlap in this case. 

Parameters: k12 + k21 = 200 s−1; k13 + k31 = 20 s−1; k14 + k41 = 70 s−1; k24 + k42 = 400 s−1; 

k34 + k43 = 150 s−1; ΔωAB = 1000 s−1; ΔωAC = −2900 s−1; ΔωAD = 1100 s–1; pA = 0.88; pB 

= 0.05; pC = 0.03; pD = 0.04.

Palmer and Koss Page 42

Methods Enzymol. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Exact solutions two-site CPMG experiments for Rcpmg obtained from more than one 

eigenvalue, and/or at constant T. (Solid black) Exact solution, calculated from 

multiexponential decays from two eigenvalues of Hnn(τcp). Rcpmg was extracted from 

monoexponential fits to the decays, by evenly sampling the curve along the magnetization 

axis; (red, dense-dashed) Carver- Richards equation / single eigenvalue exact solution; 

(cyan, dense-dotted) Eq. 29 (Tollinger et al., 2001) for extremely slow exchange; (gray, 

sparse-dotted) exact solutions for various constant T, based on Eq. A14, equivalent to 

Baldwin’s expressions (Baldwin, 2014); (blue, sparse-dashed) approximations for constant T 
expressions (Eq. A16). Left panel: T = {0.05 s, 0.2 s, 0.5s, 1 s, 5s}; labels in figure. 

Parameters, equivalent to Tollinger et al.: k12 + k21 =2 s−1; ΔωAB = 6 ppm for 15N at 800 

MHz (1H frequency); pA = 0.7; pB = 0.3. Right panel: (dotted) T = {0.002 s, 0.05 s, 0.2 s, 

0.5 s, 2 s}; labels in figure. Parameters: k12 + k21 = 30 s−1; ΔωAB/(2π) = 100 Hz; pA = 0.9; 

pB = 0.1.
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Figure 5. 
R1ρ relaxation dispersion curves for 2-site chemical exchange. (black, solid) Numerical 

eigenvalue, (orange, dashed), Trott-Palmer expression, Eq. 30, (blue, dotted), Eq. 32. 

Parameters common to all calculations are ω21/(2π) = 200 Hz, p2 = 0.05, and R11 = R12 = 

2.5 s−1. Other parameters are (a) kex = 250 s−1, ω1/(2π) = 25 Hz, R21 = R22 = 6 s−1; (b) as in 

(a) except kex = 1200; (c) ωrf/(2π) = 0 Hz, kex = 400 s−1, R21 = R22 = 6 s−1; (d) as in (c) 

except R22 = 60 s−1; (e) ωrf/(2π) = 0 Hz, ω1/(2π) = 100 Hz, R21 = R22 = 6 s−1; and (f) as in 

(e), except R22 = 60 s−1.
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Figure 6. 
Approximations for N-site kinetic schemes for the Rex contribution in R1ρ experiments. 

(Solid) Numerical calculation of Rex=−λ/sin2θ from the least negative real eigenvalue of the 

12 × 12 evolution matrix, (dashed) calculation from the first order approximation from Eq. 

11 in Koss et al., 2017, (dotted) calculation from the Woodbury approximation from Eq. 50 

in Koss et al., 2017, (dashed-dotted) calculation from the new second-order eigenvalue 

(Halley) approximation from Eq. 27 in this paper and Eq. 11 in Koss et al, 2017. This 

(dashed-dotted) approximation overlaps almost perfectly with the numerical solution. Left: 

Approximations for the triangular scheme (see Fig. 3 for the respective CPMG figure). k12 + 

k21 = 200 s−1; k13 + k31 = 300 s−1; k23 + k32 = 600 s−1; ΔωAB = 1800 s−1; ΔωAC = −2600 s
−1; pA = 0.85; pB = 0.08; pC = 0.07. Right: Approximations for the 4-site kite scheme. The 

insets exemplify regions in which the results of the calculations differ. Parameters used for 

all calculations were used for all calculations were ω1 = 1250 s−1; k12 + k21 = 140 s−1, k13 + 

k31 = 350 s−1, k34 + k43 = 700 s−1 and k14 + k41 = 350 s−1, ΩB − ΩA = −850 s−1, ΩC − ΩA = 

2550 s−1, and ΩD − ΩA = −4250 s−1. pA = 0.79, pB = 0.08, pC = 0.06, pD = 0.07.
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Figure 7. 
ZZ-exchange relaxation. (top) Normalized amplitudes (black, solid) I11(t), (blue, dashed), 

I22(t), (reddish-purple, dotted) I12(t), and (orange, dash-dotted) I21(t). (middle) Normalized 

amplitudes (black, solid) I11(t), (blue, dashed), I22(t), (reddish-purple, dotted) I1(t), and 

(orange, dash-dotted) I2(t). (bottom) Ξ(T) with (black, solid) calculated from best fit values 

from the analysis of the middle figure and (reddish-purple, dotted) calculated from Eq. 39. 

Circles, with same color coding as lines, show one of the simulated data sets and lines are 

calculated from best fit values. Simulations used R11/kex = 0.5, R12/kex = 1.5, p1 = 0.6, p2 = 

0.4. Five hundred simulations were performed assuming a standard deviation for amplitudes 

of 0.01.

Palmer and Koss Page 46

Methods Enzymol. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
ZZ-exchange spectroscopy for the C-terminal domain of the I98A mutant of L9 protein for 

residues (a) 70, (b) 71, and (c) 72 at a static pressure of 300 bar. Solid lines in each panel are 

fits of the auto-peaks for (black, solid, circles) folded and (blue, dashed, circles) unfolded 

states and two cross peaks for (reddish-purple, dotted, squares) folded → unfolded and 

(orange, dashed, squares) unfolded → folded states using Eq. 38. (d) Global fit of Ξ(T) for 

residues (black) 70, (blue) 71, and (orange) 72 fit to Eq. 39. The fitted value of k12k21 = 2.08 

± 0.16 in (d) agrees well with the average value 2.16 ± 0.23 obtained from the fits in (a-c). 

Data were obtained from Zhang et al (Zhang et al., 2016).
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Figure 9. 
Hahn-echo transverse relaxation rate constant for 2-site chemical exchange with p2 = 0.08 

and R21 = R22 = 0. (black, solid) Exact R2 given as the real part of eigenvalue for free-

precession (Eq. 11) and Hahn-echo for single spin-echo with total time (blue, dashed) t = 

25/Δω21, (orange, dotted) t = 10/Δω21, and (green, dash-dotted) t = 5/Δω21.
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Figure 10. 
Time evolution of magnetization in CEST experiments. Parameters used for calculations 

were Δω21/2π = 200 Hz, ω1/2π = 50 Hz, kex = 100 s−1, R11 = R12 = 2.0 s−1, R21 = R22 = 20 

s−1, and T = 0.3 s. (reddish-purple or gray, oscillating) Numerical integration of the Bloch-

McConnell equations for the nominal value of ω1, (black, oscillating) numerical integration 

of the Bloch-McConnell equations for a Gaussian distribution of spin-lock field strengths 

centered on the nominal value of ω1 with a standard deviation of 3%, and (green or light 

gray) Eq. 40 using a numerical eigenvalue of L+K+R. Panels show decay curves for ωrf/2π 
= (a) −100 Hz, (b) 0 Hz (on-resonance with major state), (c) 100 Hz, and (d) 200 Hz (on-

resonance with minor state).
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Figure 11. 
CEST profiles. Parameters used for calculations were Δω21/2π = 300 Hz, ω1/2π = 50 Hz, 

kex = 100 s−1, R11 = R12 = 2.0 s−1, R21 = R22 = 20 s−1, T = 0.3 s, and J = 33 Hz. (reddish-

purple or grey, solid) Numerical integration of the Bloch-McConnell equations for the 

nominal value of ω1, (black, solid) numerical integration of the Bloch-McConnell equations 

for a Gaussian distribution of spin-lock field strengths centered on the nominal value of ω1 

with a standard deviation of 3%, and (green, dotted) Eq. 40 using a numerical eigenvalue of 

L+K+R. (a) Results are calculated (a) detection of total longitudinal magnetization with 

decoupling of scalar coupling interactions during T (using Eq. 40) (b) detection of total 

longitudinal magnetization with no decoupling of scalar coupling interaction during T (using 
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Eq. 42) and (c) detection of longitudinal two-spin order without decoupling of scalar 

coupling constants (using Eq. 42).
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Figure 12. 
DEST profiles. (a) Parameters used for calculations were Δω21/2π = 200 Hz, ω1/2π = 200 

Hz, kex = 1200 s−1, R11 = R12 = 2.5 s−1, R21 = 6 s−1, and ΔR21 = 20,000 s−1. Thick lines 

show calculations for p2 = 0.05 and thin lines show calculations for p2 → 0. (black, solid) 

Numerical integration of the Bloch-McConnell equations, (blue, dotted) Baldwin-Kay 

equation,(Baldwin & Kay, 2013) and (orange, dashed) Eqs. 40 and 42. (b) Results are 

calculated with ΔR21 = 200,000 s−1 and other parameters as in (a). Lines are drawn as in (a) 

except that the dashed orange line is the limit of Eq. 42 as as ΔR21 → ∞.
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Figure 13. 
13C CEST profiles and R1ρ dispersion for the C-8 position of Guanine 8 in the fluoride 

riboswitch. (a) Data were recorded for ω1/2π = (black, circles) 17.7 Hz, (reddish-purple, 

squares) 27.9 Hz, and (blue, diamonds) 48.2 Hz. Solid lines represent fits to Eqs 40 and 42. 

(b) CEST data shown in (a) were converted to R1ρ values using Eq. 40. Solid lines are 

calculated from Eq. 42 using fitted parameters from (a). Color scheme as in (a). (c) R1ρ 
relaxation dispersion measured using ω1/2π = (blue, squares) 48.2 Hz and (black, circles) 

102.4 Hz. Solid lines are fit with Eq. 42. Data were obtained from Zhao, et al. (Zhao et al., 

2014).
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Figure 14: 
Distinguishability of the triangular kinetic scheme from the two-state model for CPMG 

experiments. Left: General conditions for distinguishability between triangular and linear 

schemes. In each of the 16 subpanels, 25 points with different values of k12/k23 were 

analyzed by globally fitting synthetic three-state curves to a two-state model, with a 1/(4τcp) 

range 20–1000 s−1. For each point, 20 RMS values, comparing the synthetic and the fitted 

data set, were obtained. For the global fitting procedure, a set of 3 × 32 CPMG curves was 

used, with 32 randomized ΔωAB (700–2000 s−1 at 11.7 T) and ΔωAC(±700–2000 s−1), and 

with 3 magnetic fields (11.7 T, 18.7 T, 22.2 T). The median, which was obtained from the 20 

RMS values, is shown. pb was set to 0.04. To aid in convergence, some variables were 

constrained between upper and lower bounds during fitting: pb between 0.005 and 0.25; k12 

+ k21 between 10 s−1 and 400 s−1; ΔωAB between 450 s−1 and 2500 s−1. Right: Example 

plot for fits of synthetic triangular data to a two-state model (slow exchange approximations 

from truncation of the matrix exponential series, with eigenvalue approximation of 2nd order, 

Halley’s method), point of interest labeled in left panel. (solid) Synthetic triangular scheme 

data; (dotted) best fits. In this global fit, 32 randomized spin sets (see left panel) were used; 

plots are shown for a single spin set, ΔωAB (1892 s−1) and ΔωAC(−722 s−1), at three 

magnetic fields, as indicated in the figure. Other parameters: k12 + k21 = 100 s−1; k13 + k31 = 

130 s−1; k23 + k32 = 150 s−1; pA = 0.88; pB = 0.04; pC = 0.08. The RMS deviation in this 

example is 1.38 s−1for the 1/(4τcp) region 20–300 s−1.
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Figure 15. 
Distinguishability of the 3-state linear and triangular kinetic scheme from the two-state 

model in R1ρ experiments. Left panel: General conditions for distinguishability. Each 

subpanel has been created from 90 data points; each corresponds to the median of 20 

separately calculated RMS values. For each RMS value, five sets of spins with randomly 

generated chemical shifts ΔωAB (200–800 s−1 at 11.7 T) and ΔωAC (±200–800 s−1) were 

included. In addition, two B0 fields (11.7 T, 18.7 T) and various combinations of one to three 

ω1 fields (see figure) were used. This yielded 10 to 30 numerically generated R1ρ curves for 

three sites. These curves were globally fit to a two-site model (ΔΩ range: −1300 to 1300 s
−1). The RMS for each of the synthetic and fitted curve combinations was calculated. The 

results are shown in the contour plot. The points from which the sample fits in the right 

panels were generated are marked. Multiple parameters are shown in the plot, other 

parameters are: pB = 0.05; pC = 0.02. To aid in convergence, some variables were 

constrained between upper and lower bounds during fitting: pB between 0.005 and 0.23; k12 

+ k21 between 5 s−1 and 7000 s−1; ΔωAB between 100 s−1 and 1200 s−1. Right panel: 

Example curves corresponding to various kinetic situations marked in the right panel (top: 

k12 + k21 = 50 s−1; k13 + k31 = 100 s−1; k23 + k32 = 10 s−1; ω1/(2π) = 25 and 200 Hz; 

bottom: k12 + k21 = 1000 s−1; k13 + k31 = 50 s−1; k23 + k32= 1000 s−1; ω1/(2π) = 25 and 200 

Hz). Numerical three-state solutions (solid lines) are shown alongside the best two-state fits 

(dotted lines). The fits result from global fits of 20 curves: five spins (in plot only shown: 

ΔωAB = 536 s−1; ΔωAC = −312 s−1); B0 = 11.7 T, black; B0 = 18.7 T, grey; ω1/(2π) = 50 Hz 

and 200 Hz, as indicated in the figure. The RMS deviation for the given examples are 0.74 s
−1 (top) and 3.48 s−1 (bottom).
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