Skip to main content
. 2020 Sep 2;11:1290. doi: 10.3389/fphar.2020.01290

Table 3.

Bioactions of SPMs on cytokine secretion and leukocytes activity, demonstrated in non-CF models.

Cytokines synthesis /Leukocytes activity
Conditions SPMs Models Bioactions References
In vitro studies
TNF-α treatment LXA4 Human umbilical vein endothelial cells Up-regulates miR-126-5p (related to endothelial repair and VCAM-1 expression) Codagnone et al., 2017
LXA4 and AT-LXA4 analog Human peripheral blood PMNs Inhibit TNF-α-initiated neutrophil migration, superoxide generation and IL-1β release Hachicha et al., 1999
TGF-β1-induced fibrosis LXA4 Human renal epithelial HK-2 cell line
Human mesangial cells
Rat renal fibroblast cells (NRK49F)
Up-regulates miR let-7c (reduces renal fibrosis) in human cells
Decreases miR let-7c level in rat cells
Brennan et al., 2013
Intestinal Salmonella Typhimurium LXA4 analog Human intestinal epithelium T84 cell line Inhibits IL-8 secretion Gewirtz et al., 1998
Airway P. aeruginosa AT-LXA4 analog Human primary bronchial epithelial cells Inhibits IL-8 secretion Karp et al., 2004
Chemoattractant LXA4 Human peripheral blood PMNs Inhibits LTB4/FMLP-induced PMN chemotaxis and migration Lee et al., 1989
LXA4, LXB4 Human peripheral blood PMNs, HUVEC Inhibit LTB4-induced PMN adhesion to endothelial cells and migration across endothelial cell monolayers Papayianni et al., 1996
LXA4 analog Human peripheral blood PMNs, HL-60 cells, HUVEC Inhibit PMN transendothelial migration and endothelial adhesion Serhan et al., 1995
RvD1, AT-RvD1 Human peripheral blood PMNs and microvascular endothelial cells (HMEC-1) Inhibit PMN transendothelial migration Sun et al., 2007
RvE3 Human peripheral blood PMNs Inhibits PMN chemotaxis Isobe et al., 2012
Acid lung injury LXA4 Human bronchial epithelial (HBE) and type II alveolar (A549) cell lines Inhibits IL-6 release and PMN transendothelial migration Bonnans et al., 2006
Asthma LXA4, LXB4 Human asthmatic peripheral blood mononuclear cells Inhibit IL-8 release Bonnans et al., 2002
Cigarette smoke RvD1, RvD2 Human peripheral blood monocytes and alveolar macrophages Decrease release of pro-inflammatory cytokines (IL-6, IL-8 and TNF-α) and increase release of IL-10 and TGF-β
Stimulate phagocytosis and M2 state
Decrease levels of protein carbonylation after 24h
Croasdell et al., 2015
RvE1 Murine macrophage RAW264.7cell line Stimulates phagocytic activity and reduces cell death Takamiya et al., 2012
RvD1 Human bronchial epithelial 16HBE cell line Reduces IL8 synthesis Jiajia et al., 2014
AT-RvD1 Human THP1 macrophages and alveolar epithelial A549 cell lines Reduces IL-1β secretion in macrophages and IL-6 and IL-8 secretion in alveolar cells Cox et al., 2015
Polyinosinic-polycytidylic acid RvD1 Human primary lung epithelial cells Inhibits IL-6 and IL-8 release Hsiao et al., 2014
Microbial sepsis RvD2 analog Human primary PMNs and HUVEC Stimulates NO production in HUVEC
Reduces L-selectin and CD-18 surface expression
Stimulates phagocytosis of E. Coli
Increases intracellular ROS
Spite et al., 2009
E. Coli RvD1 analog,
RvD5 analog,
PD1
Human peripheral blood monocyte and PMN Increase phagocytosis of E. Coli (RvD1,RvD5, PD1)
Regulate inflammatory genes (RvD1, RvD5)
Chiang et al., 2012
Mar1, 22-OH-MaR1, 14-oxo-MaR1 Human primary peripheral blood macrophages Increase macrophage phagocytosis Colas et al., 2016
PMA/Ionomycin RvD1, RvD2, AT-RvD3 MaR1 Human peripheral blood CD8+ and CD4+ T cells Inhibit TNF-α, IFN-γ, IL-2 production
Favor CD+4 T cells differentiation into regulatory T cells
Inhibit naive CD+4 T cells differentiation into TH1 and TH17 cells
Chiurchiù et al., 2016
Other RvE1, RvD1,
RVD2, PD1
Human peripheral blood mononuclear cells RvD1 regulates miR-146b, miR-21, miR-208 and miR-219-5p
RvE1 regulates miR-219-5p and miR-21 but not miR146b
RvD2 and PD1 regulate miR-146b and miR-21 but not miR-219-5p
Fredman et al., 2012
PDn-3 DPA Human peripheral blood macrophages Regulates monocyte-to-macrophage differentiation Pistorius et al., 2018
Sickle-cell disease (SCD) AT-RvD1 and RvD1 Human endothelial cell line, human SCD blood PMN and erythrocytes Inhibit neutrophil recruitment
Stimulate erythrocytes and PMN efferocytosis
Matte et al., 2019
In vivo studies
TNF-α LXA4 and AT-LXA4 analog BALB/c mice Inhibit leukocyte infiltration Hachicha et al., 1999
Chronic renal fibrosis LXA4 Male wistar rats Up-regulates miR let-7c (reduces renal fibrosis) Brennan et al., 2013
LPS-induced lung injury LXA4, RvD1 Male Sprague-Dawley rats (BAL) Reduce TNF-α, IL-6 and IL-1β secretion
Increase IL-10 secretion
Wang Q. et al., 2014,
Yang et al., 2013
Acute peritonitis RvD1, AT-RvD1 Male FVB mice Reduce leukocyte infiltration Sun et al., 2007
RvD1 C57Bl/6N mice Reduces leukocytes infiltration
Stimulates M2 differentiation and activity
Regulates corresponding genes
Recchiuti et al., 2014
RvD1 analog Male FVB mice Temporally controls miRNAs: at 12h, increases miR21 and miR146b, decreases miR208a (NF-kB signaling) and miR219 (LTB4 production) Recchiuti et al., 2011
RvE3 Male FVB mice Inhibits PMN infiltration Isobe et al., 2012
Asthma RvE1 Female BALB/c mice Lowers mucus score Aoki et al., 2008
Microbial sepsis RvD2 analog Male FVB mice, eNOS-/- & wild type (C57BL/6J) mice Reduces neutrophils recruitment, leukocyte-endothelial interactions (NO-dependent)
Reduces local and systemic bacterial burden
Increases peritoneal mononuclear cells
Increases survival
Reduces IL-6, IL-1β, IL-23, TNF-α
Spite et al., 2009
Peritoneal E. Coli & Skin S. aureus RvD1 analog,
RvD5 analog,
PD1
Male FVB mice, C57BL/6J male mice Reduces bacterial burden in blood and exudates (RvD1, RvD5)
Increase survival (RvD1, RvD5)
Amplify antimicrobial response of ciprofloxacin
Increase clearance of S. aureus with vancomycin
Reduce IL-1β, IL-6 and increase IL-10 secretion (RvD1)
Reduce KC and TNF-α secretion (RvD5)
Chiang et al., 2012
Peritoneal E. Coli PDn-3 DPA Male C57Bl/6N mice Increases macrophages' efferocytosis and bacterial phagocytosis Pistorius et al., 2018
Sickle-cell disease (SCD) AT-RvD1 SCD and healthy
(Hbatm1(HBA)Tow Hbbtm3(HBG1, HBB)Tow) mice
Reduces neutrophils adhesion & transmigration
Reduces lung and kidney injury
Reduces proinflammatory cytokine
Matte et al., 2019