TABLE 4.
Binary logistic regression models to investigate the variables that discriminate between “Good” and “Poor” cognitive performers.
IL-1β |
IL-6 |
|||||||
B | SE | Wald | Exp(B) | B | SE | Wald | Exp(B) | |
Sexa | –0.551 | 0.484 | 1.296 | 0.577 | –0.452 | 0.481 | 0.884 | 0.636 |
Age | 0.043 | 0.029 | 2.141 | 1.043 | 0.012 | 0.029 | 0.159 | 1.012 |
School years | –0.313 | 0.120 | 6.778** | 0.732 | –0.342 | 0.123 | 7.700** | 0.710 |
GDS | 0.506 | 0.240 | 4.452* | 1.659 | 0.594 | 0.236 | 6.344* | 1.811 |
Anti-inflammatory drugs | –0.345 | 0.625 | 0.305 | 0.708 | –0.507 | 0.626 | 0.657 | 0.602 |
IL-1β | 0.326 | 0.125 | 6.777** | 1.385 | ||||
IL-6 (log10) | 3.906 | 1.851 | 4.453* | 49.708 | ||||
χ2 (df) | 36.653 (6)*** | 36.505 (6)*** | ||||||
R2Nagelkerke (change) | 0.370 (0.074) | 0.363 (0.044) | ||||||
Total hit rates (%) | 69.000 | 68.700 | ||||||
IL-8 |
IL-13 |
|||||||
B | SE | Wald | Exp(B) | B | SE | Wald | Exp(B) | |
Sexa | –0.558 | 0.475 | 1.384 | 0.572 | –0.694 | 0.499 | 1.937 | 0.499 |
Age | 0.030 | 0.028 | 1.139 | 1.031 | 0.039 | 0.029 | 1.847 | 1.040 |
School years | –0.333 | 0.125 | 7.095** | 0.717 | –0.371 | 0.122 | 9.178** | 0.690 |
GDS | 0.558 | 0.233 | 5.706* | 1.747 | 0.498 | 0.243 | 4.213* | 1.646 |
Anti-inflammatory drugs | –0.254 | 0.614 | 0.172 | 0.775 | –0.173 | 0.634 | 0.074 | 0.841 |
IL-8 | 0.231 | 0.119 | 3.767* | 1.260 | ||||
IL-13 | 0.225 | 0.071 | 9.926** | 1.252 | ||||
χ2 (df) | 34.754 (6)*** | 40.648 (6)*** | ||||||
R2Nagelkerke (change) | 0.348 (0.035) | 0.407 (0.107) | ||||||
Total hit rates (%) | 68.7 | 70.500 |
SE, standard error; GDS, Geriatric Depression Scale. aReference category is male. *p ≤ 0.05, **p < 0.01, ***p < 0.001.