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Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular
disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special
interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lac-
tones constitute a large and diverse group of biologically active compounds widely distributed in several
medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spec-
trum of biological activities of these compounds drew significant interests in the pharmacological applica-
tions. This review describes selected sesquiterpene lactones that have been experimentally validated for
their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of
action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that
these substances represent remarkable compounds with a diversity of molecular structure and high biologi-
cal activity, providing new insights into the possible role in metabolic syndrome management.

© 2020 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Metabolic syndrome (MetS) refers to a cluster of risk factors
related to the development of cardiovascular disease (CVD) and type
2 diabetes mellitus (T2DM) (Alberti et al., 2009). This pathological
condition represents a public health concern in most nations due to
its association with mortality caused by the cardiovascular and meta-
bolic complications (Ju et al., 2017). Indeed, MetS is recognized as a
risk factor that influences progression and prognosis of coronavirus
disease 2019, the infectious disease caused by the most recently dis-
covered coronavirus SARS-CoV-2 (Costa et al., 2020). Lifestyle modifi-
cations remain the primary component of MetS�s risk factors
reduction and pharmacological therapies are indicated in special sit-
uations to improving more than one factor (Larsen et al., 2018). In lat-
ter years, secondary plant metabolites have become of special
interest in the scientific community because of their potential role in
preventing and managing MetS (Cicero and Colletti, 2016; Francini-
Pesenti et al., 2019). Many compounds, such as sesquiterpene lac-
tones (SLns), have been isolated from medicinal plants and their
hypoglycemic, anti-inflammatory, and antioxidative properties cou-
pled with their capacity to modulate key cellular functions have been
confirmed by in vitro and in vivo methods (Chadwick et al., 2013;
Chaturvedi et al., 2016; Alonso et al., 2018). Despite these effects are
linked to the pathogenesis of MetS, the role of these compounds to
avoid its progression is not well documented compared to many
other compounds such as polyphenols into which a great deal of
research has been conducted. Therefore, in order to provide relevant
information regarding the potential benefits of SLns in preventing
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and managing MetS, this review addresses plant-derived SLns that
are potentially responsible for the positive effect in improving risk
factors associated with MetS.

2. Search strategy

An electronic literature search was conducted on SLns with hypo-
glycemic and/or hypolipidemic effects and isolated from plants used
in traditional medicine for the same purposes. The search was done
in databases of Google Scholar, Science Direct, and SciFinder until
June 2020 using the keyword sesquiterpene lactones and following
terms: metabolic syndrome, hypoglycemic, hypolipidemic, antidia-
betic, antihypertensive, and medicinal plants. Additional information
was identified from references located in the retrieved articles.
Although many SLns were screened in some of the studies, only those
considered active by the authors are included in this review. The
plants included in this review were selected based on their ethnome-
dicinal records. For each species, the currently accepted name in the
online “The Plant List” database has been checked and the reported
name has been replaced with the current one. Compound class, plant
source, biological activity and important aspects related with MetS
are summarized in the Table 1.

3. Metabolic syndrome

MetS is defined as a cluster of risk factors such as raised blood
pressure, atherogenic dyslipidemia, raised fasting glucose, and cen-
tral obesity, related to the development of CVD and T2DM
(Alberti et al., 2009). Since the World Health Organization (WHO)
reported the first formalized definition of the MetS, the diagnostic
criteria have been sequentially developed by several public health
organizations (Engin, 2017). Nowadays, the most recognized criterion
for the clinical diagnosis of MetS (Alberti et al., 2009) is based on
identifying at least three of the following risk factors: (1) elevated
waist circumference (population and country-specific definitions
determined by local organizations); (2) triglycerides (TG) � 150 mg/
Dl (<1.0 mmol/L) or on drug treatment for elevated triglycerides; (3)
high-density lipoproteins-cholesterol (HDL-C) <40 mg/dL
(<1.0 mmol/L) in men or <50 mg/dL (<1.3 mmol/L) in women or on
drug treatment for reduced HDL-C; (4) blood pressure �130/
85 mmHg or on antihypertensive medication treatment, and/or a
history of hypertension; and (5) fasting glucose >100 mg/dL
(>5.6 mmol/L) or on drug treatment for elevated glucose.

4. Pathogenesis of MetS

The mechanisms underlying pathogenesis of MetS have not been
completely explored, but obesity-induced adipocyte dysfunction and
inflammation is associated with the progression of insulin resistance
and metabolic disorders (Kl€oting and Bl€uher, 2014). Body fat mass
accumulation in obesity depends on different factors including the
relationship of energy intake to energy expenditure and body energy
storage (Gomez-Hernandez et al., 2016). Adipose tissue (AT) plays an
important role as an energy storage organ, as well as an endocrine
organ produces adipokines such as leptin, adiponectin, monocyte
chemoattractant protein 1 (MCP1), tumor necrosis factor alpha (TNF-
a) and interleukin 6 (IL-6), which circulate and regulate systemic
metabolism and inflammation. The cell type composition of AT
includes adipocytes, fibroblasts, macrophages, stromal cells, mono-
cytes and preadipocytes (R�afols, 2014). On further AT expansion,
hypertrophy of adipocytes and increased secretion of macrophage
chemoattractants occurs, including the secretion of MCP-1, which
recruits additional macrophages. These actions in turn result in local
inflammatory state, enhanced basal lipolysis, increasing the leakage
of free fatty acids (FFA) and a dysregulated secretion of several pro-
inflammatory adipokines (Longo et al., 2019; Xu et al., 2019).
241
Subsequently, these adverse signals reach metabolic tissues (e.g. liver,
pancreatic islets, and skeletal muscle) and modify inflammatory
responses as well as glucose and lipid metabolism, thereby contribut-
ing to a global metabolic effect of insulin resistance.

Chronic low-grade inflammation in obesity results from the acti-
vation of various inflammatory mechanisms through nuclear factor
kappa B (NF-kB) and c-Jun N-terminal kinases (JNK) pathways. These
pathways represent important modulators of cytokine gene expres-
sion downstream of Toll-like receptors (TLRs) in insulin target cells
(Catrysse and van Loo, 2017; Rogero and Calder, 2018). NF-kB is an
important transcription factor involved in different processes of the
immune and inflammatory responses. It is composed of p50 and p65
subunits and is found in the cytoplasm in complex with inhibitory
proteins of the IkB family. Cytokines and lipopolysaccharide (LPS)
can stimulate cell surface receptors including Toll-like receptor
(TLR4) to initiate a signaling cascade that converge on the activation
of the inhibitor of kB kinase (IKK) complex (Baker et al., 2011). The
IKK complex phosphorylates IkBa and induces its degradation, lead-
ing to the release and nuclear translocation of NF-kB to promote tran-
scription of target genes such as TNF-a, interleukin-1beta (IL-1b), IL-
6, IL-8, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase
(iNOS) (Knab et al., 2014; Ruan et al., 2011).

On the other hand, JNK are members of the mitogen-activated
protein kinases (MAPK) that mediate cellular responses to a variety
of intra- and extracellular stresses (Zeke et al., 2016). In the context
of obesity, JNK pathways can be activated by proinflammatory cyto-
kines, FFA and reactive oxygen species (ROS), and regulate several
nuclear and extra-nuclear substrates, specially the transcription fac-
tor activator protein 1 (AP1) which controls the expression of proin-
flammatory genes and protein synthesis (e.g. TNF-a, IL-1b, IL-6 and
IL-8) (Pal et al., 2016; Feng et al., 2020). Deregulated activation of NF-
kB and JNK pathways results in increased transcription of IL-6 and
TNF-a, which reduce the sensitivity of insulin target cells towards
insulin. Thus, chronically activated NF-kB and JNK pathways leads to
the promotion of insulin resistance (Yung and Giacca, 2020).

Additionally, increased flux of FFA to the liver in the insulin resis-
tant state stimulates production TG and secretion in the form of very-
low-density lipoprotein (VLDL). The resulting hypertriglyceridemia
leads to lower HDL�C levels and normal or slightly elevated low-
density lipoprotein-cholesterol (LDL-C) levels (Iqbal et al., 2018). This
is related to the typical dyslipidemic profile in MetS.

Consistent with a potential role in the pathogenesis of MetS, SLns
interfering with these processes described above could be useful to
prevent the onset of insulin resistance and the risk of T2DM and CVD
in obese individuals.

5. Sesquiterpene lactones

SLns represent a diverse group of terpenoids with more than
5000 different elucidated structures. They are particularly diversi-
fied in the Compositae (Asteraceae) family, but also occurring in
Apiaceae, Illiciaceae, Magnoliaceae, Solanaceae, and Euphorbia-
ceae families (Padilla-Gonzalez et al., 2016). Numerous species of
these families are used in traditional medicine and SLns have been
described as their primary active constituents. These compounds
possess several biological activities such as anti-inflammatory,
antidiabetic, antimalarial, anti-proliferative, anti- parasitic and
antimicrobial (Merfort, 2011; Chadwick et al., 2013;
Chaturvedi et al., 2011).

SLns are characterized by the presence of a g-lactone ring. The
lactone ring can be fused to the remaining skeleton in either a cis or
trans configuration, being most common the trans configuration
(Fischer et al., 1979; Fischer, 1990; S€ulsen and Martino, 2018). Based
on their carbocyclic skeleton, SLns are mainly classified in four major
groups: germacranolides (10-membered ring), eudesmanolides (6�6
bicyclic compounds), guaianolides and pseudoguaianolides (5�7



Table 1
Sesquiterpene lactones with potential positive effects on MetS, biological effects and mechanisms implicated (structures illustrated in Figs. 1 and 2).

No. Compound Class Plant source Biological effects Mechanisms implicated Refs.

1 Enhydrin Melampolide Smallanthus sonchifolius Hypoglycemic (in vivo) Post-prandial glucose levels (#)
Inhibition of a-glucosidase

Genta et al., 2010; Serra-
Barcellona et al., 2017

2 Polymatin A Melampolide Smallanthus macroscyphus Hypoglycemic (in vivo) Post-prandial glucose levels (#) Serra-Barcellona et al.,
2014

3 20-dehydroeu
cannabinolide

Heliangolide Helianthus annuus Antidiabetic (in vivo) Antiox-
idant (in vitro)

Fasting blood glucose level (#)
DPPH radical and NO scavenging
activities

Onoja et al., 2020

4 Eremanthin Guaianolide Costus speciosus Hypoglycemic, and hypolipi-
demic (in vivo) Antioxi-
dant (in vivo)

Blood glucose levels (#), HbA1c
(#), plasma insulin ("), tissue
glycogen (") TC, TG and LDL-C
(#); HDL-C (") TBARS levels (#),
GSH ("), SOD, CAT and GPx (")
in brain, liver, heart, kidney, and
pancreas

Eliza et al., 2009a, 2009b,
2010

5 Costunolide Germacrolide Costus speciosus
6 Alantolactone Eudesmanolide Inula helenium Antiinflammatory-associated

to glucose intolerance and
IR (in vitro) Antiinflama-
tory- obesity-induced IR
(in vitro) Attenuates lipid
accumulation (in vitro)
Antiinflamatory- associ-
ated to diabetic nephropa-
thy (in vivo)

STAT3 inhibitor. Inhibition of the
TLR4 gene expression. Inhibition
of TLR4-JNK signaling. IL-6 and
MCP-1 (#). APOC3 expression at
both mRNA and protein levels
(#) TNF-a and IL-6 (#) in dia-
betic kidney. Serum creatinine
and urea nitrogen levels (#).

Kim et al., 2017a, 2017b;
Yang et al., 2018;
Zhu et al., 2020

7 Tirotundin 3,10-
epoxygermacranolide

Tithonia diversifolia Antidiabetic (in vitro) Dual PPARa/g agonists Lin, 2012

8 Tagitinin A
9 Tagitinin G Anti-hyperglycemic (in vitro) Glucose uptake in 3T3-L1 adipo-

cytes (").
Zhao et al., 2012

10 Tagitinin I
11 1b-hydroxydiversifolin-3-

O-methyl ether
12 1b-hydroxytirotundin-3-

O-methyl ether
13 Micheliolide Guaianolide Magnolia compressa Anti-inflammatory- associ-

ated to diabetic nephropa-
thy (in vitro)
Anti-hepatic steatosis (in
vivo and in vitro)

Suppressed the glucose-stimu-
lated degradation of IkBa and
the subsequent activation of NF-
kB in rat glomerular mesangial
cells.
MCP-1, TGF-b1 and FN (#)
PPAR-g expression (")
AMPK/mTOR signaling pathway
(")
NF-kB signaling pathway (#)

Jia et al., 2013;
Zhong et al., 2018

14 Byrsonine A Guaianolide dimer Byrsonima crassifolia Hypoglycemic, hypolipi-
demic and antioxidant (in
vivo)

Blood glucose levels (#), serum
insulin and pancreatic insulin
levels (")
G6Pase activity (#) and GK
activity (")
TC, TG, LDL-C and VLDL (#);
HDL-C (")
TBARS levels (#), SOD, CAT and
GPx (") in liver, kidneys, and
pancreas
TNF-a levels (#).

Guti�errez and
Ramirez, 2016

15 Byrsonine B
16 Lactucain C Guaianolide dimer Lactuca indica Antidiabetic (in vivo) Blood glucose levels (#) Hou et al., 2003
17 8-deoxylactucin Guaianolide Cichorium intybus Anti-inflammatory Inhibition of NF-kB activation.

COX-2 inhibition.
Cavin et al., 2005

18 Artemisinin Cadinanolide Artemisia annua Vascular protection (in vivo)
Antidiabetic (in vivo)

MCP-1, IFN-g , IL-6 and TNF-a (#)
Inhibition of atherosclerotic pla-
que formation
Promote the conversion of pan-
creatic glucagon-producing a
cells to insulin-secreting b cells

Cao et al., 2020;
Li et al., 2017

19 Scoporanolide Guaianolide Artemisia scoparia Antihypertensive (in vivo) Inhibition of plasma ACE activity Cho et al., 2016
20 Estafiatin
21 Cumambrin A Guaianolide Chrysanthemum boreale Antihypertensive (in vivo)

Vasorelaxant (ex vivo)
Normalization of blood pressure Hong et al., 1999, 2005

Reduction (#); increment ("); thiobarbituric acid reactive substances (TBARS); reduced glutathione (GSH); superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase
(GPx); insulin resistance (IR); Toll-like receptor 4 (TLR4); c-Jun N-terminal kinases (JNK); interleukin 6 (IL-6); monocyte chemoattractant protein 1 (MCP-1); Apolipoprotein C3
(APOC3); AMP-activated protein kinase (AMPK); peroxisome proliferator-activated receptors a and g (PPARa/g); nuclear factor kappa B (NF-kB); transforming growth factor
beta (TGF-b1); fibronectin (FN); glucose-6-phosphatase (G6Pase); glucokinase (GK); cyclooxygenase 2 (COX-2); interferon-gamma (IFN-g); tumor necrosis factor a (TNF-a);
angiotensin I-converting enzyme (ACE).
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bicyclic compounds) and many subtypes of SLns according to their
skeletal arrangement (Adekenov, 2017; Padilla-Gonzalez et al.,
2016). In many cases, the g-lactone ring contains an exocyclic double
bond conjugated to the carbonyl group (a-methylene-g-lactone) but
in some cases the exocyclic methylene is reduced or the double bond
can be endocyclic (Martínez et al., 2012; Padilla-Gonzalez et al.,
2016; S€ulsen et al., 2018). It has been well documented that biological
activity of the most common types of SLns is mainly attributed to for-
mation of covalent union between the a,b-unsaturated group in the
exo-methylene-g-lactone and nucleophilic biological targets (e.g. free
cysteine sulfhydryl) resulting in alkylation through Michael-type
addition (Schmidt, 2006). This chemical reaction induces steric and
chemical changes in enzymes, receptors or transcriptional factors
leading to a series of cellular events that culminate in diverse biologic
responses. The number of alkylating structural elements present on
the molecule define differences between the activity of each SLn.
Another structural influences on the biological effects are the molec-
ular size, hydrophobicity, chemical environment and the presence of
other functional groups (e.g., epoxy groups, hydroxyls or hydroxyls
esterified with acetate, propionate, isobutyrate, angelate, epoxyange-
late, and benzoate) (Chaturvedi, 2011; Ivanescu et al., 2015; Padilla-
Gonzalez et al., 2016; S€ulsen et al., 2018).

The structural diversity and the broad spectrum of biological
activities drew significant interests in the pharmacological applica-
tions of SLns (Moujir et al., 2020). Many SLns have proved to have a
Fig. 1. Chemical structure
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significant anti-inflammatory, hypoglycemic and hypolipidemic
activity therefore making them attractive for MetS therapy (Chatur-
vedi, 2011; Chaturvedi et al., 2016).

6. SLns isolated frommedicinal plants and their potential role for
MetS treatment

6.1. Enhydrin from Smallanthus sonchifolius (Poepp.) H.Rob

Smallanthus sonchifolius (Poepp.) H.Rob., commonly known as
yacon, is a perennial herbaceous plant native to the Andean regions
of South America (Caetano et al., 2016). Yacon is consumed as a safety
dietary supplement and because of its low glucose content and high
fructooligosaccharide levels putative antidiabetic effects were sug-
gested (Delgado et al., 2013). Indeed, this suggestion is supported by
the hypoglycemic (Aybar et al., 2001; Baroni et al., 2008) and hypoli-
pidemic (Miura et al., 2004; Habib et al., 2011) reported activities.
Also, a potential use in metabolic disorders could be proposed
based on the anti-inflammatory and antioxidant properties
(Feltenstein et al., 2004; Sousa et al., 2015). Besides the above men-
tioned evidences, enhydrin (1), a melampolide (cis,trans-germacrano-
lide) and the major sesquiterpene lactone component in leaves of S.
sonchifolius, has proven to be effective reducing post-prandial glucose
levels and a useful compound for blood glucose control by the induc-
tion of a late increase in plasma insulin in streptozotocin (STZ)-
s of compounds 1-13.
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induced diabetic rats (Genta et al., 2010). More recently, in vivo and in
vitro experiments showed that enhydrin (1) is effective in the man-
agement of post-prandial hyperglycemia through inhibition of a-glu-
cosidase in the small intestine (Serra-Barcellona et al., 2017). The
inhibition of this enzyme has been linked to the presence of the
a,b-unsaturatedg-lactone ring system (Yin et al., 2014), similar to
the intact exo-methylene-g-lactone group in 1 (Fig. 1). Thus, the anti-
a-glucosidase activity of enhydrin could be derived from this interac-
tion. In addition, the alkylation of nucleophilic sites of factors
involved in early stages of the inflammatory cascade described above
allows to relate the anti-inflammatory properties reported for 1
with the presence of the exo-methylene-g-lactone ring system
(Feltenstein et al., 2004; Ma et al., 2007).

Regarding toxicological studies, it has been reported that a single
oral administration of enhydrin (1) at doses of 1.6, 4 and 8 mg/kg
body weight (b.w.) did not caused deaths or acute toxic effects within
7 days in male and female rats (Genta et al., 2010). In acute study in
rats, there were no deaths or signs of toxicity observed after single
oral administration of 1 at any dose level up to the highest dose
tested (0.32 g/kg b.w.) within 14 days. In subchronic studies, after
oral administration for 90 days at daily doses of 0.4, 0.8 and 8.0 mg/
kg b.w., did not caused hematological, biochemical and histological
alterations in rats (Serra et al., 2012).

6.2. Polymatin A from Smallanthus macroscyphus (Baker ex Baker) A.
Grau

Smallanthus macroscyphus (Heliantheae, Asteraceae), is a peren-
nial herb commonly known as ‘‘wild yacon’’ native from the South
American region comprising from southern Bolivia to northwestern
Argentina. This species is closely related to S. sonchifolius and possibly
with similar antidiabetic properties. Polymatin A (2) is the main ses-
quiterpene lactone isolated from S. macroscyphus (De Pedro et al.,
2003). This melampolide exerts an effective inhibition of post-pran-
dial blood glucose peak and hypoglycemic activity in STZ-diabetic
rats probably by the stimulation of insulin release or due to an insu-
lin-like effect (Serra-Barcellona et al., 2014). Due to the close relation-
ship in the polymatin A (2) and enhydrin (1) structures, the
melampolide 2 could be effective in the management of postprandial
hyperglycemia through inhibition of a-glucosidase. However, no
studies of these effects were found.

In contrast to the C4�C5 epoxy group in enhydrin (1), polymatin
A (2) presents a double bond (Fig. 1). C4�C5 epoxy groups in melam-
polides such as enhydrin have been reported to hinder the ability of
these compounds to inhibit NF-kB DNA binding responsible to cyto-
kines expression (Schorr et al., 2007) commonly observed in inflam-
matory response. Conversely, the effect is favored by the presence of
a double bond between C-4�C-5 in other melampolides
(Schorr et al., 2007). Hence, hopeful results could be expected in
future studies to explore anti-inflammatory activity in polymatin A.

Acute oral toxicity of polymatin A (2) in normal healthy rats at
doses assayed (0.7, 1.4 and 2.8 g dried powder/kg b.w.) do not pro-
duced deaths or acute toxic effect (changes in behavior or posture,
presence of convulsions or occurrence of secretions) within 14 days.
The doses were well tolerated and did not produce adverse nutri-
tional effect. No gastrointestinal symptom such as diarrhea or consti-
pation were observed at the doses assayed. Volume, pH and urine
specific gravity were within normal ranges. No nitrites, protein or
blood were detected in the urine samples of the animal groups
treated (Serra-Barcellona et al., 2014).

In subchronic studies, polymatin A (2) was orally administered to
Wistar rats for 90 days at daily doses of 7, 14 and 28 mg/kg b.w. No
toxicity signs or deaths were observed. There were no changes in the
behavior, body or organ weights, hematological, biochemical or urine
parameters of the rats. No histopathological lesions were observed in
the examined organs. The results indicate that polymatin A (2) from
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S. macroscyphus leaves may be considered as nontoxic substance at a
wide range of doses (Serra-Barcellona., 2016).
6.3. 20-dehydroeucannabinolide from Helianthus annuus Linn

The common sunflower, Helianthus annuus Linn (Asteraceae), is a
well-known plant with edible seeds, flower petals and tender leaf
petioles. This plant was proposed to offer a variety of medical benefits
(Lim, 2014; Guo et al., 2017). To provide a scientific explanation for
its use in Nigerian traditional medicine, Onoja and Anaga (2014)
reported a hypoglycemic effect on the fasting blood glucose level in
alloxan-induced diabetic rats after a single dose of the methanolic
extract of H. annuus leaves. This study led to the recent isolation of
the heliangolide 20-dehydroeucannabinolide (3) (Fig. 1).
(Onoja et al., 2020). Heliangolide SLns represent an isomeric form of
germacranolides with a cyclodecadiene skeleton and double bonds at
C1=C10 and C4=C5, which stereochemical configurations are trans, cis
respectively (S€ulsen and Martino, 2018). The heliangolide 3 reduced
the fasting blood glucose level at dose of 0.2 mmol/kg in alloxan-
induced diabetic rats (Onoja et al., 2020). The authors suggested that
this sesquiterpene lactone might have reducing effects in glucose
absorption based on the heliangolide derivative structure, which
presents an intact exo-methylene-g-lactone group. As mentioned
above, a,b-unsaturated g-lactone ring system has an important rela-
tion in the inhibition of a-glucosidase activity, thus the heliangolide
3may be inhibiting this enzyme similar to enhydrin (1).

In addition to blood glucose regulation, it has also been demon-
strated the positive effects of hydromethanolic leaf extract of H.
annuus L. on other components of MetS, including reduced LDL-C and
TG levels as well as hepatoprotective and antilipid peroxidation
activities of alloxan-induced diabetic rats (Onoja et al., 2018). Since
20-dehydroeucannabinolide (3) is one of the major components of
the extract, potential activity of this molecule in managing dyslipide-
mia may be proposed. However, additional studies are needed to
ascertain the hypolipidemic property of this compound.

No in vivo toxicity studies on 20-dehydroeucannabinolide (3)
have been reported to date.
6.4. Costunolide and eremanthin from Costus speciosus (J. Koenig) Sm

Costus speciosus (J. Koenig) Sm is a plant used in traditional medi-
cine in South Asia to treat diabetic patients by eating one leaf of this
species per day to regulate blood glucose levels (Waisundara et al.,
2015). Also, the hypoglycemic effect of C. speciosus root crude
extracts have been reported (Daisy et al., 2008). Eremanthin (4)
(Fig. 1) is a guaianolide sesquiterpene lactone present in C. speciosus
and other plants such as Pterodon pubescens (Benth.) Benth., Ereman-
thus elaeagnus (Mart. ex DC.) Sch.Bip. and Laurus nobilis L. (Eliza et al.,
2009a; Waisundara et al., 2015). Another sesquiterpene lactone
reported to be present in C. speciosus is the germacrolide (a trans,
trans-germacranolide) costunolide (5) (Fig. 1) (Eliza et al., 2009b),
which has been also isolated from Magnolia spp, Laurus nobilis and
Saussurea costus (Falc.) Lipsch (Koo et al., 2001).

Studies in STZ-induced diabetic rats showed that oral administra-
tion of 4 and 5 decreased plasma glucose level, glycosylated hemo-
globin (HbA1c), total cholesterol (TC), TG, LDL-C and at the same time
markedly increased plasma insulin, tissue glycogen and HDL-C
(Eliza et al., 2009a, 2009b). The specific mechanism of eremanthin (4)
bioactivity is not completely characterized, but the experimental
model used in both works allowed the authors to suggest that this
molecule might exert an insulin-like effect on peripheral tissues by
either promoting glucose uptake metabolism, by inhibiting hepatic
gluconeogenesis or by absorption of glucose into the muscle and adi-
pose tissues through the stimulation of a regeneration process and
revitalization of the remaining b cells (Eliza et al., 2009a, 2009b).
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In addition, costunolide (5) has shown to suppress LPS-induced
NF-kB activation that leads to the suppression of iNOS and a conse-
quent nonproduction of NO. This activity was stronger than the
observed for parthenolide, a germacranolide sesquiterpene lactone
(Koo et al., 2001). Thus, the anti-inflammatory activity exhibited by 5
serve as a promising and expanding strategy for treatment of meta-
bolic disease-associated inflammation.

On the other hand, the possible inhibition of inflammatory pro-
cesses has not been studied in eremanthin (4). However, this com-
pound has a rigid skeleton and an intact exo-methylene-g-lactone
group, previously related to anti-inflammatory properties
(Simonsen et al., 2013). Additionally, the absence of free hydroxyl
groups in 4 could help to improve anti-inflammatory properties since
an increasing number of free hydroxyl groups are reported to dimin-
ish NF-kB inhibition activity (Simonsen et al., 2013). Taking together
these structural characteristics, we suggest that eremathin (4) is a
candidate to be tested for inhibition of inflammatory processes
related to metabolic diseases.

Acute oral toxicity of eremanthin (4) and costunolide (5) in nor-
mal healthy male Wistar rats at doses assayed (10, 20, 40, 80 and
160 mg/kg b.w.) do not produced behavioral changes on the rats and
mortality was not observed during acute toxicity test (10 days)
(Eliza et al., 2010).

Finally, the antioxidant activity of eremanthin (4) and costunolide
(5) has been demonstrated by significantly decreasing of the thiobarbi-
turic acid reactive substances (TBARS) and lipid peroxidation markers
levels as well as by increasing reduced glutathione (GSH) levels and
enzymatic antioxidants (Eliza et al., 2010). This activity could indicate
a protective effect of both on oxidative stress in diabetes.

6.5. Alantolactone from Inula spp

Inula (Asteraceae) is one of the most popular herbs in Traditional
Chinese Medicine. This genus comprises more than one hundred spe-
cies widely distributed throughout Asia, Africa, and Europe, and many
of these have been used to treat a wide range of diseases such as bron-
chitis, diabetes, obesity, hypertension, and inflammation (Seca et al.,
2014). Extracts of Inula spp. such as Inula britannica L., Inula viscosa
[the accepted name is Dittrichia viscosa (L.) Greuter.], Inula racemosa
Hook.f., Inula helenium L., etc., have been documented for their poten-
tial effects on some components of MetS, especially hypoglycemic,
hypolipidemic and antioxidant activities (Kobayashi et al., 2002;
Zeggwagh et al., 2006; Shan et al., 2006; Ajani et al., 2009) as well as
inhibition of a-glucosidase enzyme (Orhan et al., 2017). Regarding bio-
active secondary metabolites, SLns represent the largest group of com-
pounds occurring in Inula spp. Many of these compounds were
isolated from plants mentioned above and demonstrated to exert
diverse biological activities (Seca et al., 2014; Wang et al., 2014). The
anti-inflammatory mechanisms of some SLns have been related to
their influence on directly inhibit the MAPK and block the activation of
NF-kB, thus achieving the prevention of pro-inflammatory signaling
(Han et al., 2001; Park et al., 2013).

Alantolactone (6) (Fig. 1) is the most known eudesmanolide pres-
ent in several Inula species, including Inula helenium L. used for hypo-
glycemic and antiobesity purposes (Seca et al., 2014; Wang et al.,
2014). This compound has been extensively studied for its antitumor,
antioxidant and anti-inflammatory effects (Moujir et al., 2020).
Regarding anti-inflammatory activity, the eudesmanolide 6 sup-
presses NO, PGE2 and TNF-a production in LPS-stimulated RAW
264.7 cells by modulating the activity of the NF-kB and MAPK signal-
ing pathways (Chun et al., 2012), and it also suppresses TNF-a and
interferon gamma (IFN-g)-induced production of chemokines by
blocking the Signal Transducer and Activator of Transcription 1
(STAT1) phosphorylation in HaCaT cells (Lim et al., 2015).

As previously mentioned, it is recognized the fact that TLRs are
responsible for the activation of inflammatory pathways in obesity
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state. In vitro trials confirmed that alantolactone (6) prevents the
increase of IL-6 levels and regulates macrophage infiltration by
reduction of MCP-1 concentrations via inhibition of the TLR4-JNK
pathway in both, lean (adipocytes) and obese (adipocyte-macro-
phage) states (Kim et al., 2017a, 2017b).

Besides the effect on adipocytes, alantolactone (6) can also act in
skeletal muscle and liver cells. In this context, the compound 6 inhib-
its IL-6-induced insulin-stimulated glucose intolerance and insulin
resistance in the skeletal muscle through blockade the activation of
STAT3 and the abnormal expression of TLR4 (Kim et al., 2017a,
2017b). In L02 cells, alantolactone (6) also inhibits oxLDL-induced
lipid accumulation trough regulating the apolipoprotein C3 (APOC3)
expression partly by decreasing the activation of STAT3 (Yang et al.,
2018). Thus, may be relevant to explore further its role in managing
metabolic complications on e.g. modulating hepatic IL-6/STAT3 sig-
naling in high-fat diet-induced metabolic disorder in animal models,
since the physiological metabolic response to IL-6 depends on the
specific source of IL-6 in vivo (Han et al., 2020)

Concerning to in vivo experiments, no hypoglycemic effect was
observed on STZ-induced diabetic mice after oral administration of
alantolactone. However, inflammation and renal abnormalities were
suppressed via inhibition of NF-kB gene expression and the high glu-
cose-induced overexpression of pro-inflammatory cytokines and
macrophage adhesion in renal NRK-52E cells were inhibited.
(Zhu et al., 2020). These results led the authors to propose a beneficial
use for the treatment of diabetic neuropathy. Taking together all evi-
dences mentioned for alantolactone (6) activity, it is probably that
this compound could reduce some components of MetS by the regu-
lation of inflammatory processes.

Alantolactone (6) did not induced significant hepatotoxicity and
nephrotoxicity after daily administration (100 mg/kg b.w.) for 5
weeks in mice (Khan et al., 2012). This compound also is a contact
allergen, and in vitro is cytotoxic in cancer cells and induces apoptosis
(Tisserand and Young, 2014).

6.6. 3,10-Epoxygermacranolides from Tithonia diversifolia (Hemsl.) A.
Gray

Tithonia diversifolia (Hemsl) A. Gray, commonly known as tree
marigold or Mexican sunflower (Asteraceae: Heliantheae), is a shrub-
like perennial or annual invasive plant, native from North and Central
America. Traditionally, its leaves are widely used by indigenous peo-
ple for treating a wide spectrum of diseases, including diabetes melli-
tus. Several in vitro and in vivo studies have stated the antioxidant
antidiabetic, hypolipidemic and antiobesity effects of T. diversifolia
(Ajao and Moteetee, 2017; Tagne et al., 2018). Germacranolides,
eudesmanolides and guaianolides are some of the major components
occurring in this plant (Ajao and Moteetee, 2017; Tagne et al., 2018)
and because of their previously described activity, they apparently
are involved in the important spectrum of bioactivity reported for T.
diversifolia. Tirotundin (7) and tagitinin A (8) (Fig. 1) isolated from
the ethyl acetate soluble fraction of T. diversifolia are related to the
activation of peroxisome proliferator-activated receptors (PPARs)
(Lin, 2012). PPARs are members of nuclear hormone receptors super-
family involved in the metabolic regulation of lipid and lipoprotein
levels, blood glucose, and abdominal adiposity. In mammals, three
isoforms of PPARs have been recognized namely PPAR-a, PPAR-b/d
and PPAR-g . Activation of PPAR-a by hypolipidemic fibrate class of
drugs decreases TG levels and raises HDL-C in dyslipidemic individu-
als, whereas activation of PPAR-g by antidiabetic thiazolidinedione
agents causes insulin sensitization to enhance glucose metabolism
(Botta et al., 2018). Currently, dual PPARa/g agonists, which stimu-
late both PPARa and PPAR-g isoforms to similar extents, are gaining
popularity since it is believed that they are able to ameliorate the
unwanted side effects of selective PPAR-a and PPAR-g agonists; and
may also be used to treat dyslipidemia and T2DM simultaneously
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(Balakumar et al., 2019). Tirotundin (7) and tagitinin A (8) have been
suggested being dual PPARa/g agonists after the evaluation of their
agonistic activity against PPARs employing a transient transfection
reporter assay in HepG2 cells (Lin et al., 2012).

On the other hand, the germacranolides tagitinin G (9), tagitinin I
(10), 1b-hydroxydiversifolin-3-O-methyl ether (11) and 1b-hydroxy-
tirotundin-3-O-methyl ether (12) (Fig. 1) isolated from the aerial
parts of T. diversifolia were found to significantly elevate glucose
uptake in 3T3-L1 adipocytes without any toxicity (Zhao et al., 2012).
The authors suggested that these compounds had PPARg agonist
activity on glucose uptake, similar to pioglitazone, a PPAR-g agonist
used as a control compound in the study. No in vivo acute, subchronic
or chronic toxicity studies on 3,10-epoxygermacranolides described
above have been reported to date.

The increasing abundance of Tithonia diversifolia in conservation
and agricultural areas over the past ten years in South Africa has been
of concern. This plant is considered as a scrub resulting in the initiation
of a biological control program against its propagation (Simelane et al.,
2011). Therefore, utilization for medicinal purposes of this invasive
plant could be important before major eradication takes place.

6.7. Micheliolide fromMagnolia compressa (Maxim.) Sarg

The genus Magnolia, previously known as Michellia, reported to
exert various biological effects, including anti-cancer, anti-anxiety,
Fig. 2. Chemical structures
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antidepressant, antioxidant and anti-inflammatory (Lee et al., 2011).
In later years, Magnolia species and their components have been
related to ameliorate characters of obesity and diabetes, such as
hyperglycemia, hyperlipidemia, and other complications (Zhao et al.,
2016). Since terpenoids are one of the principal substantial com-
pounds in Magnolia species, SLns may be related with its medicinal
properties (Sun et al., 2015). Anticancer activity investigation lead to
the isolation of the guaianolide micheliolide (13) (Fig. 1) from M.
compressa (Maxim.) Sarg. (Ogura et al., 1978). This compound has
also been obtained in a semi-synthetic way from a BF3-mediated
rearrangement of parthenolide (Casta~neda-Acosta et al., 1993;
Zhai et al., 2012), presenting enhanced stability and remarkable anti-
inflammatory effect by suppressing activation of the NF-kB through
inhibition of IkBa degradation as well as for the inhibition of p65
translocation to the nucleus (Viennois et al., 2014). The compound
also influenced the MAPK and PI3K/Akt signaling pathways in LPS-
stimulated BV-2 cells (Sun et al., 2017). Further, an in vitro assay has
revealed that 13 attenuate the high glucose-stimulated activation of
NF-kB, the degradation of IkBa, and the expression of MCP-1 in rat
mesangial cells (Jia et al., 2013).

In addition, the dimethylamino Michael adduct of 13 known as
dimethylaminomicheliolide is a pro-drug of this sesquiterpene lac-
tone approved for clinical trials for glioblastoma treatment
(Guo et al., 2019). This compound protects the kidneys against pro-
teinuria, renal failure, histopathological injury, and inflammation by
of compounds 14-21
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suppressing activation of the NF-kB signaling pathway in db/db mice
(Liu et al., 2019). These results showed that dimethylaminomichelio-
lide intervention mitigated diabetic kidney disease in db/db mice
without directly affecting hyperglycemia.

Furthermore, it has been demonstrated that micheliolide (13) alle-
viates hepatic steatosis in obese db/db mice, and the molecular mecha-
nisms driving the therapeutic effects of this compound might involve
PPAR-g upregulation to consequently inhibit NF-kB mediated inflam-
mation and activate AMPK/mTOR-dependent autophagy (Zhong et al.,
2018). Thus, it will be interesting to future work evaluate if this effect
in hepatic steatosis impacts glucose metabolism. No in vivo toxicity
studies on micheliolide (13) have been reported to date.

6.8. Byrsonines A and B from Byrsonima crassifolia (L.) Kunth

Byrsonima crassifolia (Malpighiaceae), commonly known as
“nanche”, is a tropical tree widely distributed in Mexico, Central and
South America. This tree is commonly harvested, both for its edible
fruit and for its health benefits (B�ejar and Malone, 1993; Duarte, 2011).
In folk medicine, the fruit or bark infusion have been used as hypogly-
cemic remedy (Andrade-Cetto and Heinrich, 2005) and according to
ethnomedicinal reports, the antihyperglycemic activity of hexane and
chloroform extracts from fruits and seeds of B. crassifolia in STZ-
induced diabetic rats was reported (Perez-Gutierrez et al., 2010). The
phytochemical analysis of antihyperglycemic extract from the seed of
B. crassifolia revealed that byrsonines A (14) and B (15) (Fig. 2), two
dimeric guaianolides, are responsible for the antioxidant, hypoglyce-
mic and hypolipidemic activities (Guti�errez and Ramirez, 2016). In par-
ticular, it has been proposed that the antihyperglycemic activity of
these compounds may involve both pancreatic and extra pancreatic
mechanisms, based on the observed increase in serum insulin level
and the reduction of hepatic glucose output via decreasing glucose-6-
phosphatase (G6Pase) activity and increasing glucokinase activity
(Guti�errez and Ramirez, 2016). Although the mechanisms underlying
the antihyperglycemic activity of 14 and 15 have not been completely
explored, this effect could likely be ascribed to the activation AMP-
activated protein kinase (AMPK). Activation of the AMPK pathway in
the liver regulates glucose homeostasis by inhibiting hepatic glucose
production and downregulating the expression of gluconeogenic
genes, including G6Pase gene expression. Targeting AMPK by natural
products demonstrated considerable success in lowering blood glucose
levels (Joshi et al., 2019). Nevertheless, more experimental research is
needed to substantiate this claim.

On the other hand, the induction of antioxidant enzymes in
hepatic, renal, and pancreas tissues after the administration of 14 and
15, indicates a positive effect of these molecules in improving glyce-
mic control in STZ-induced diabetic rats (Guti�errez and Ram-
irez, 2016), since oxidative stress takes an important role in the
pathogenesis and progression of diabetic tissue injury. In this sense,
the reported improvement in insulin resistance by byrsonines A and
B can be related to the observed increase in the HDL-C levels and the
decrease in TC, TG, LDL-C, and VLDL (Guti�errez and Ramirez, 2016).
Additionally, TNF-a levels were also decreased after treatment of
byrsonines A and B in STZ-induced diabetic rats.

The bioactivity described for 14 and 15 makes them one of the
most active guaianolides on different components of MetS reported
at this time. As described above, another molecule of this family with
activity on different components of MetS is eremathin. However,
byrsonines A and B (14, 15) seems to be more effective, which could
be due to their dimeric structure that provides two possible Michaels
acceptors. Dimeric SLns have been found to be more potently cyto-
toxic than their monomers toward human cancer cells, indicating
that the antitumor potential of SLns are improved by the presence of
additional a-methylene-g-lactone ring (Singh et al., 2011;Ren et al.,
2016). This phenomenon could be studied in 14 and 15 for MetS
treatment due to their extended activity reviewed here. Moreover,
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pharmacokinetics studies are needed to understand either byrso-
nines suffer biotransformation reactions and act as monomeric mole-
cules or if they can show biological activity in their original dimeric
forms. No in vivo toxicity studies on byrsonines A (14) and B (15)
have been reported to date.

6.9. Lactucain from Lactuca indica Linn

Various species of the genus Lactuca are globally important edible
plants containing valuable nutrients such as polyphenols, sterols,
vitamins, minerals, and dietary fiber. L. sativa L., Lactuca indica L. and
L. serriola L. (syn. L. scariola L.) have been used in the treatment of dia-
betes mellitus, hypertension, and cardiac diseases (Eddouks et al.,
2002; Subramoniam, 2016). In vivo experiments of some Lactuca spe-
cies shown the ability to reduce several metabolic risk factors, espe-
cially hyperglycemia, TG and TC (Nicolle et al., 2004; Salih, 2019).
SLns are commonly found in Lactuca species and are represented as
subgroups such as lactucin-type guaianolides and the eudesmano-
lide-type. The latter is commonly found in some species of Lactuca
such as L. sativa L. var. anagustata, L. saligna L. and L. canadensis L.
(Han et al., 2010; Kisiel and Gromek, 1993; Michalska et al., 2013).

The dimeric guaianolide lactucain C (16) (Fig. 2), isolated from L.
indica Linn. showed moderate lowering of plasma glucose in STZ-dia-
betic rats (Hou et al., 2003). Nevertheless, there are no evidences
about the possible mechanism of action and no further research has
been made about this compound. As mentioned before, dimeric SLns
could show an important activity in components of MetS derived
from their double a,b-unsaturated g-lactone ring. Because of its
hypoglycemic properties and chemical structure, 16 is also a candi-
date to further studies that analyze deeply its effect in blood glucose
levels and some other MetS�s components. No in vivo toxicity studies
on luctucain C (16) have been reported to date.

6.10. 8-Deoxylactucin from Cichorium intybus L

Cichorium intybus, commonly known as chicory, was historically
cultivated by the ancient Egyptians as a vegetable crop, a coffee sub-
stitute, and a medicinal plant. Nowadays, it is appreciated for its bit-
ter taste and widely used in India as a traditional treatment for
diabetes mellitus (Al-Snafi, 2016; Pushparaj et al., 2007). The antidia-
betic, hypolipidemic, hepatoprotective, antioxidant and anti-inflam-
matory effects of C. intybus have been widely studied (Chandra and
Sk, 2016). This broad spectrum of biological activities has been attrib-
uted to its high content of phytochemical constituents, being SLns
the most abundant in roots and the responsible of the bitterness of
leaves (Al-Snafi, 2016).

8-deoxylactucin (17) (Fig. 2) is a guaianolide found as a major
component of chicory root and it is also common in species of Lac-
tuca. It has been demonstrated that 17 possess anti-inflammatory
activity by inhibiting the nuclear transcription factor NF-kB and as a
selective inhibitor of COX-2 (Cavin et al., 2005). An important struc-
tural characteristic of 17 is the presence of a-methylene-g-lactone
group and a,b-unsaturated cyclopentenone. Compounds that possess
these structures, such as Helenalin, can react with sulfhydryl group of
Cys38 in NF-kB and prevent DNA binding (Lyß et al., 1998;
Widen et al., 2017). Thus, 8-deoxylactucin (17) could interact with
NF-kB by a similar mechanism. No in vivo toxicity studies on 8-deox-
ylactucin (17) have been reported to date.

6.11. Artemisinin from Artemisia spp

Artemisinin (18) (Fig. 2) is a cadinanolide endoperoxide sesquiter-
pene lactone originally isolated from Artemisa annua Linn in 1972
(Tu, 2016). Nowadays, 18 and their derivatives are part of the proto-
cols for malaria treatment (Bridgford et al., 2018). Experimental stud-
ies have also established their effectiveness as an anti-inflammatory,



A. Salazar-G�omez, J.C. Ontiveros-Rodríguez, S.S. Pablo-P�erez et al. South African Journal of Botany 135 (2020) 240�251
antioxidant, anti-tumor, and vascular protection agent (Kim et al.,
2015; Jiang et al., 2016; Efferth, 2017). Regarding to vascular protec-
tion, Cao et al. (2020) demonstrated that oral administration of arte-
misinin (18) effectively alleviated inflammatory response (MCP-1,
IFN-g , IL-6 and TNF-a), elevated macrophage autophagy, suppressed
foamy macrophage transformation, and thereby inhibiting athero-
sclerotic plaque formation in high-fat diet treated ApoE�/� mice. In
addition, 18 has been discovered to be a potential therapeutic agent
for ameliorating type 1 diabetes because of its ability to promote the
conversion of pancreatic glucagon-producing a cells to insulin-
secreting b cells in rats (Li et al., 2017). Nevertheless, the widespread
application of artemisinin as an anti-malarial drug could contributed
to the selection of resistant strains of the etiologic agent Plasmodium,
thus its use to combating non-communicable human diseases would
raise the risk for this selection and lead to an important drug resis-
tance development. Some authors have suggested that unless neces-
sary, artemisinin (18) should be replaced by other therapeutic agents
for the treatment of versatile types of human diseases (Dong-
Sheng et al., 2017).

It is important to note that some species of Artemisia have been
traditionally used in treatment of diabetes such as A. dracunulus L., A.
minor Jacq. ex Besser, A. pallensWall. ex D.C., A. sphaerocephala Krasch
and A. herba-alba Asso, (Mohamed et al., 2010; Subramoniam, 2016).
Several eudesmanolides and guaianolides have been isolated from A.
herba-alba, all of them having in common the absence of the a-meth-
ylene in the g-lactone ring as in artemisinin (18) structure. Indeed
the ethanol, chloroform and water extracts of this plant have showed
important hypoglycemic activity (Mohamed et al., 2010).

Animal experiments show considerable toxicity after the applica-
tion of artemisinin family (neurotoxicity, embryotoxicity, genotoxic-
ity, hemato- and immunotoxicity, cardiotoxicity, nephrotoxicity, and
allergic reactions), but large clinical studies and meta-analyzes did
not show serious human side effects, although proper monitoring of
adverse effects in developing countries may not be a trivial task.
There is a paucity of large-scale clinical trials adequate to detect rare
but significant toxicity. The lesson learned from animal and human
studies is that long-term availability rather than short-term peak
concentrations of artemisinin cause toxicity (Efferth and Kaina, 2010).
Thus, the observation of the toxicity of artemisinin derivatives in ani-
mals, but not in humans, is most likely due to different pharmacoki-
netic profiles after different routes of administrations.

6.12. Scoporanolide and estafiatin from Artemisia scopariaWaldst. &
Kit

Artemisia scoparia Waldst. & Kit. (redstem wormwood) is widely
distributed in Southwest Asia and central Europe. This species has
been reported to possess anti-obesity (Richard et al., 2014) and hypo-
lipidemic (Boudreau et al., 2018) properties. A. scoparia ethanolic
extract reduces non-alcoholic fatty liver disease by enhancing hepatic
insulin and AMP-AMPK signaling in diet-induced obese mice
(Wang et al., 2013). A. scoparia hot water extract reduces blood pres-
sure in spontaneously hypertensive rats via the inhibition of plasma
angiotensin I-converting enzyme (ACE) activity (Cho et al., 2015). The
phytochemical analysis of this extract revealed that seven SLns con-
tribute to the antihypertensive effect inhibition of ACE activity,
highlighting the activity of scoporanolide (19) and estafiatin (20)
(Fig. 2) (Cho et al., 2016) showing significantly higher ACE inhibitory
activities than the other isolated SLns. No in vivo toxicity studies on
scoporanolide (19) and estafiatin (20) have been reported to date.

6.13. Cumambrin A from Chrysanthemum boreale (Makino) Makino

The guaianolide cumambrin A (21) (Fig. 2), isolated from Chrysan-
themum boreale (Makino) Makino, has shown a pharmacological
effect on the normalization of blood pressure in spontaneously
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hypertensive rats (Hong et al., 1999). Ex vivo study demonstrate that
this compound is a potent relaxant of aortic smooth muscle at a con-
centration of 5 £ 10�5 M (Hong et al., 2005). No in vivo toxicity stud-
ies on cumambrin A (21) have been reported to date.
7. Concluding remarks

The potential beneficial effects of SLns on MetS�s risk factors dis-
cussed in this review clearly demonstrate that these substances rep-
resent remarkable compounds with a diversity of molecular
structure and biological activity. These beneficial effects include nor-
malization of blood glucose levels, improvement of blood lipid pro-
files, anti-inflammatory activity, improvement of insulin sensitivity
and normalization of blood pressure. The underlying molecular tar-
gets mediating these effects have not been completely understood.
Regardless of that, it can be noticed that at least six molecular targets
or pathways could explain the effect of SLns on components of MetS:
(a) inhibition of a-glucosidase; (b) inhibition of TLR4 signaling; (c)
inhibition of NF-kB pathway; (d) dual PPARa/g agonists; (e) AMPK
agonist activity and (f) regeneration and revitalization of the remain-
ing b cells.

Furthermore, the evidence from published literature demon-
strates that some SLns belonging to guaianolides like eremanthin (4)
and germacranolides such as costunolide (5) and guaianolide dimers
byrsonines A and B (14, 15), show multifunctional benefits due to
their action on many MetS�s risk factors. These observations suggest
that structural specificity may be a key for understanding the mecha-
nisms of action of SLns. Looking forward, the effects of SLns on MetS
should be explained based on the molecular targets and should be
related to biochemical mechanisms. MetS has become a major public
health problem worldwide and represents a common clinical condi-
tion in countries with a high incidence of obesity and western dietary
patterns. Natural products, such as SLns, are attractive drug candi-
dates and more attention must be paid to their potential use in the
treatment and prevention of MetS.
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