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Abstract

Automatic tumor segmentation from medical imaging is an important step for computer-aided 

cancer diagnosis and treatment. Recently, deep learning has been successfully applied to this task, 

leading to state-of-the-art performance. However, most of existing deep learning segmentation 

methods only work for a single imaging modality. PET/CT scanner is nowadays widely used in 

clinic, which is able to provide both metabolic information and anatomical information through 

integrating PET and CT into the same utility. In this study, we proposed a novel multi-modality 

segmentation method based on a 3D fully convolutional neural network (FCN), which is capable 

of taking account of both PET and CT information simultaneously for tumor segmentation. The 

network started with a multi-task training part, where two parallel sub-segmentation architectures 

constructed using deep convolutional neural networks (CNNs) were designed to automatically 

extract feature maps from PET and CT respectively. A feature fusion component was implemented 

using cascaded convolutional blocks, which re-extracted features from PET/CT feature maps. The 

tumor mask was obtained as the output at the end of the network using a softmax function. The 

effectiveness of the proposed method was validated on a clinic PET/CT dataset of 84 patients with 

lung cancer. The results demonstrated that the proposed method achieved significantly 

improvements over existing methods solely using PET or CT.
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1 Introduction

Recently, deep convolutional neural networks (CNNs) [1] have been widely used to various 

tasks from computer vision and medical image analysis fields, such as image classification 

[2–5], object detection on images [6–9] and videos [8, 9], speech recognition [10] and 

machine translation [11]. The Fully convolutional neural network (FCN) [12] was adopted 
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for semantic segmentation of natural image, and various techniques [13–16] were further 

proposed to improve the segmentation performance.

In clinical research, accurate lesion segmentation from 3D medical images is crucial for 

computer-aided disease diagnosis and treatment planning. With the rapid development of 

deep learning and its superior performance, automatic approaches based on CNN have been 

applied recently to lesion segmentation in medical images. For example, both U-Net [17] for 

2D and V-Net [18] in 3D achieved excellent performance on medical image segmentation 

tasks for a single imaging modality. The V-Net architecture [18], which was trained end-to-

end on 3D MRI volumes, learning to delineate a lesion from the whole volume. A novel 

FCN-based method [19] was introduced for automatic segmentation of the brain tumor, in 

which the multi-level contextual information was extracted by concatenating hierarchical 

feature representations. The segmentation performance was further improved by 

incorporating boundary information directly into the loss function. Moreover, Generative 

Adversarial Network (GAN) [20] has also been used as a valid framework for segmentation 

tasks. An efficient algorithm [21] based on GAN was proposed for liver segmentation from 

3D CT volumes. These segmentation methods were designed for only one image modality, 

either positron emission tomography (PET), computed tomography (CT) [21], or magnetic 

resonance imaging (MRI) [18, 19].

PET/CT scanner, which integrates PET and CT into the same utility, is nowadays widely 

used in clinic. PET imaging and CT imaging characterize a lesion from different but 

complemental aspects, with the former providing metabolic information and the latter 

detailing anatomical information. CT imaging always has a high resolution, and the intensity 

(CT numbers) between lesions and non-soft tissues are generally significantly different in 

CT images. However, the ability of CT imaging to distinguish a lesion from its surrounding 

soft tissues is limited because of their similar CT intensity distribution.

As shown in Fig. 1(a) and (c), the CT images have clear boundaries between the tumors (the 

part enclosed by the pink contour) and the lung, but have no clear boundaries between the 

lesions and their surrounding normal soft tissues. As a result, accurate lesion segmentation 

solely using CT is challenging. In contrary, a PET image often exhibits a high contrast, 

which makes it easy to distinguish the malignant tumors from the surrounding normal 

tissues [22]. A target tumor in a PET image usually has high standardized uptake values 

(SUVs) and appears as a ‘hot’ area, as shown in Fig. 1 (b) and (d). However, the PET 

imaging often has a low spatial resolution, and a lesion boundary in PET images is thus 

fuzzy and indistinct, as shown in Fig. 1(b) and (d).

To make full use of the complemental information from both modalities, several tumor co-

segmentation methods were proposed for PET/CT [23]. A method based on the random walk 

was introduced in [24], in which it was assumed that tumors in PET and CT shared the same 

tumor contour. Wang et al. proposed a tumor delineation approach that was based on tumor-

background likelihood models in CT and PET [25]. This delineation method avoided 

leakage to structures with similar intensities on CT and PET by taking into account the 

intensity feature in PET and the boundary definition in CT. Song et al. [22] proposed a 

method for tumor co-segmentation in PET/CT, in which an adaptive context term was added 
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into the loss function to obtain consistent segmentation results between the two modalities. 

An approach using the two modalities by integrating the Random walk [26] and the graph 

cut [27] method was proposed in [28], where the co-segmentation problem was formulated 

as a loss minimization problem. Yu et al. proposed a 3D method to incorporate Gaussian 

Mixture Models (GMMs) into the graph cut method, in which the segmentation problem was 

solved with the min-cut method [29]. These studies indicated that using both metabolic 

information and anatomical information can improve performance over using PET only or 

CT only for tumor segmentation. However, most existing PET/CT co-segmentation methods 

are computationally expensive and sometimes require extra pre-processing or post-

processing.

In this paper, we proposed a novel multi-modality 3D fully convolutional neural network for 

tumor co-segmentation in PET/CT. The network makes full use of both the superior contrast 

of PET and the superior anatomical resolution of CT. Besides, it is much faster and more 

convenient than other traditional co-segmentation methods mentioned above once the 

network is properly trained. This proposed network consists of two parts. The first one is a 

multi-task learning part, specially designed for tumor co-segmentation in PET/CT. As 

illustrated in Fig. 2, the left structure (Fig. 2(a)) is a very common form for multi-task 

learning [30], in which different supervised tasks share the same input x and some 

intermediate-level representations h(1),h(2), while the right structure (Fig. 2(b)) is the novel 

form used in our study for multi-task learning, in which two different inputs x(1),x(2) are fed 

to the network, with the same feature re-extraction process represented by hshared. According 

to this novel form of multi-task learning, the first part had two independent V-Net style 

architectures to extract high-dimensional feature representations from CT images and PET 

images, respectively. The two V-Net style architectures had two independent loss functions 

but shared the same ground truth. A weight was used to balance the two loss functions, and 

is a hyperparameter in the network. The second part was a feature fusion part, in which 

several cascaded convolutional layers with a total loss function was used to re-extract 

features from PET/CT features obtained from the first part. The prediction of the tumor was 

the output of the whole network through a softmax function.

Our main contributions in this study are: (1) to the best of our knowledge, we are the first to 

apply a deep CNN framework to the tumor co-segmentation problem in PET/CT; (2) we 

proposed a multi-modality 3D FCN with a novel form of multi-task learning and an effective 

feature re-extraction process for feature fusion, well suitable for making use of the 

complemental information from both modalities; (3) we demonstrated that the proposed 

network achieved significant improvements over existing methods using only PET or only 

CT.

2 Methods

The main idea of the proposed method is to fuse features extracted from PET and CT for 

tumor segmentation using a deep learning network. The first part in the network contained 

two parallel sub-segmentation branches. Each branch was responsible for high-dimensional 

features extraction from PET and CT respectively, by a V-Net style network with a weighted 
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loss function. Cascaded convolutional blocks followed as the second part, which played the 

role of feature fusion.

The mathematical model of the proposed framework can be expressed as

ℎ(1) = f1(x(1), θ(1))

ℎ(2) = f2(x(2), θ(2))

y = ffusion(ℎ(1), ℎ(2), θfusion)

(1)

where x(1),x(2) denote the inputs of the two branches, θ(1),θ(2) are the parameters in the 

branches, h(1),h(2) refer to the features presentations extracted from the PET images and the 

CT images respectively, f1,f2 represent the mappings from x(1),x(2) to h(1),h(2),ffusion is the 

mapping from features h(1),h(2) to output y (the segmentation result), and θfusion denotes the 

parameters for fusion. Note that in this deep learning framework, f1,f2,ffusion,θ(1),θ(2) and 

θfusion will be learnt from training, and the PET/CT co-segmentation is actually an end-to-

end mapping from input images x(1),x(2) to output y directly, with intermediate-level features 

h(1),h(2) .

2.1. Co-Segmentation Framework

The novel structure of the proposed multi-modality network is illustrated in Fig.3. It 

consisted of two parts, one for multi-task learning and one for feature fusing. In the first 

part, different from the usual segmentation networks that only worked on a single imaging 

modality, pared images from two modalities (PET and CT) (x(1),x(2)) were fed to the 

network as inputs, and two parallel V-Net style architecture branches were designed to 

perform feature extraction from CT images and from PET images, respectively. These two 

independent branches realized respectively the mapping f1 and f2 in the mathematical model 

(1). The outputs of the two branches represented the high-dimensional feature maps 

(h(1),h(2)) from the PET images and the CT images, respectively. The two V-Net style 

architectures had two independent weighted loss functions but shared the same ground truth. 

These two feature maps were fed to the fusion network, which consisted of several cascaded 

convolutional layers and a total loss function to achieve the goal of feature re-extraction. The 

prediction of the tumor y was the output at the end of the fusion network. The following 

sections describe each part in details.

2.2. V-Net style architecture

For each branch in the multi-task learning part, we employed a popular 3D FCN-based deep 

learning architecture, V-Net [18], for 3D volumetric medical image feature extraction. This 

V-Net style framework has been demonstrated to work well with small number of learning 

samples. As shown in Fig. 4, two nearly symmetrical paths were included in the V-Net style 

architecture. The left part of the network was a contracting path, while the right part was a 

symmetrical expanding path which decompressed the features until its original size was 

reached. Convolutions were all performed with appropriate padding.

The contracting path of the network can be divided into three levels with different resolution 

feature maps. Each level consisted of two or three convolutional layers where the number of 
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kernels remained the same. Between two levels, a convolution with kernels of 2×2×2 voxels 

wide and stride of 2 was used to reduce the resolution of the feature maps. After the down-

sampling operation, the size of the feature maps will be halved. This strategy introduced in 

[31] played a similar role as the pooling layer. Moreover, in order to improve the ability of 

the feature presentations, the number of feature channels will be doubled or quadrupled 

when the down-sampling was performed. Similar to the contracting path, the right portion of 

the network can be also divided into three levels with several convolutional layers included. 

It extracted features and expanded the spatial support of the lower resolution feature maps. 

As is opposed to the down-sampling process, de-convolution with kernels of 2×2×2 voxels 

wide and stride of 2 was employed for increasing the size of the feature maps. During up-

sampling, the number of feature channels also decreased accordingly. At the very last 

convolutional layer, 1×1×1 voxels wide kernels were employed to produce two feature maps 

which had the same size as the input volume. The features maps represented the probability 

that the corresponding pixel was classified as background and foreground respectively.

For both the contracting path and the expanding paths, all convolution operations used 

volumetric kernels with the same size of 3×3×3 voxels with stride 1. ReLU [32] non 

linearities were applied throughout the network. Moreover, Dropout [33] was employed in 

the final level of the contracting path to prevent the neural networks from overfitting.

In the V-Net style architecture, the single modality PET or CT image was fed to the network 

as input (x(1) or x(2)), and the output was the high-dimension feature presentation (h(1) or 

h(2)).

2.3. Feature Fusion

As shown in Fig. 5, in this prat, feature maps (h(1) and h(2)) were fed to the fusion net with 

four convolutional layers for feature re-extraction. The first three convolution layers applied 

volumetric kernels of size 3×3×3 and the number of feature channels of each layer were set 

to be 16, 64, 256, respectively. At the last convolutional layer, volumetric kernels of size 

1×1×1 were used to reach the feature channel number that was equal to the number of 

classes (tumor or non-tumor). In addition, the feature maps remained the same size by 

appropriate padding operations. A softmax function was further connected to the fusion 

network to obtain the tumor mask. ReLU activation function was used throughout the 

network.

This feature fusion map realized the mapping ffusion in the mathematical model(1), and the 

output of this part was the prediction result y (the segmentation result).

2.4. Multi-task loss function

The proposed multi-modality FCN co-segmentation method can be formulated as a weighted 

loss function minimization problem. For general image segmentation using deep learning, 

the loss function was designed based on the cross entropy loss. In this study, the cross 

entropy loss needed to be re-formulated for co-segmentation under a binary classification 

(foreground vs. background) problem. Note that the imaging mechanism of the two 

modalities was different. A weighted cross entropy loss function was designed in the 

proposed network to balance the influences of different modalities.
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Let X = {x1,x2,…,xN} be the input image (PET or CT), Y = {y1,y2,…,yN} the ground truth 

(gold standard), and P = {p1,p2,…,pN} the predicted probabilistic map of image voxels 

being assigned the foreground label. N is the image size. The probability of image voxels 

being assigned the background label is 1 − P. The total loss in the proposed network can be 

expressed as

ℓtotal(θ) = ∑
k ∈ {(1), (2), fusion}

ℓk(θ)

= − 1
N ∑

k ∈ {(1), (2)}
∑

n = 1

N
wk(yn log(pn; xnk, θk) + (1 − yn)log(1 − pn; xnk, θk))

− 1
N ∑

n = 1

N
wfusion(y log(pn; ℎ(1), ℎ(2), θfusion) + (1 − yn)log(1 − pn; ℎ(1), ℎ(2),

θfusion))

(2)

where ℓk denotes the loss of each branch and the output, θ(1) refers to the parameters of the 

CT feature extraction branch, θ(2) refers to the parameters of the PET feature extraction 

branch, θfusion refers to the parameters of the fusion network, and h(1),h(2) are the features 

extracted from the two branches, respectively. The weight factors wk are hyperparameters 

that need to be manually adjusted in the network, w(1),w(2),wfusion are set to be 0.5, 0.5 and 

1 respectively in this study.

2.5. Training details

It is worth emphasizing that the proposed network does not depend on the size of the inputs. 

Images of an arbitrary size can be fed into the network, which is an advantage for tumor 

segmentation since the tumor shape and size can be very diverse in clinic. If we fixed the 

size of the input patch to be small, it cannot fit a tumor with a large size, as shown in 

Fig.6(a). But if we fixed the size of the input patch to be large, the input patch may contain 

other tissues or organs near the tumor, as shown in Fig.6(b). In addition, the training process 

will be computationally expensive when using input patches with a too large size. Our 

network was designed to allow input patches with variable sizes.

For training, each image in the PET/CT dataset was cropped to obtain a region of interest 

(ROI) that contained the entire tumor but no other tissues and organs. The ROI was used to 

feed into the network. Data augmentation such as Gaussian noise pollution and rotation was 

employed to improve the performance and prevent neural networks from overfitting. The 

values of hyperparameters w(1) , w(2) and wfusion were set to be 0.5, 0.5 and 1, respectively. 

For the gradient descent optimization algorithms, Adam Optimizer [34] with a fixed learning 

rate of 0.001 was applied. The rate of Dropout was α = 0.8.

The proposed method was implemented by Python and the Tensorflow library. The training 

process was performed on a PC with a NVIDIA GTX 1080 ti GPU (11GB memory), and it 

took 6 hours for about 350 epochs.
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3 Experiments

3.1. Data Set

The proposed method was validated on a clinic dataset of 84 patients with lung cancer. 3D 

PET/CT images in the dataset were obtained on a PET/CT scanner (Reveal HD, CTI, 

Knoxville, TN, USA) equipped with bismuth germaneate detectors and a dual-slice CT 

scanner. Each set of data contained a PET and CT image pair, already registered through the 

hardware in the PET/CT scanner. The ground truth was manually delineated by an 

experienced radiation oncologist. Each slice of the reconstructed CT volume was of size 

512×512, with a voxel size 0.98×0.98×3.27 mm3. Each slice of the reconstructed PET 

volume was of size 128×128, with a voxel size 4.69×4.69×3.27 mm3. The PET volume was 

up-sampled on 2D, leading to slice size of 512×512.

48 samples were selected randomly from the 84 PET/CT image pairs for training, while the 

remaining 36 image pairs were used to test the performance of the trained network. Data 

augmentation was adopted on the training set.

3.2. Comparison Methods

To verify the effectiveness of the proposed approach, three categories of methods were used 

for comparison.

The first category was the V-Net style architecture on the single modality (PET or CT only). 

The CNN-based methods using PET or CT only were trained on the same dataset and had 

the same number of iterations as the proposed method. Both used the cross entropy loss 

function.

The second category included several traditional segmentation methods using PET only. The 

first one was a fuzzy c-means clustering method (FCM) [35] which worked well on blurred 

images. It minimized the energy function in an alternating iteration to achieve segmentation 

task solely using PET. The second one was the OTSU method which was used to 

automatically perform clustering-based image thresholding, or the reduction of a graylevel 

image to a binary image. The third one was the active contours (CV) model, which detected 

objects using curve evolution[36, 37]. The last one was a combinatorial graph cut algorithm 

[27].

The third category included two variational co-segmentation methods without using deep 

learning. Because of the good performance of the fuzzy variational [38] method on 

segmenting blurred images, both co-segmentation methods were designed based on the 

fuzzy variational model, and were named as FVM_CO_1 and FVM_CO_2. The first one 

considered the PET image and the CT image as two channels of a hyper-image, and the co-

segmentation model can be expressed as
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F (u, c1_PET , c1_CT , c2_PET , c2_CT) = ∫
Ω

η(IPET − c1_PET)2 + (1 − η

)(ICT − c1_CT)2 u2dA

+ ∫
Ω

ξ(IPET − c2_PET)2 + (1 − ξ)(ICT − c2_CT)2 (1 − u)2dA

+ α∫
Ω

∣ ∇u ∣ dA

(3)

where η and ξ are two positive parameters assigning the weight of PET and CT, ICT and 

IPET are the CT image and PET image, c1_PET (c1_CT) and c2_PET (c2_CT) denote average 

prototypes of the tumor area and the background area of the PET (CT) image, respectively. 

In this study, η and ξ were set to be 0.5 and 0.7 respectively. The second method considered 

the PET and the CT images as two different information sources, and the co-segmentation 

model can be defined as

F (u1, u2, c1_PET , c1_CT , c2_PET , c2_CT) = ζ∫
Ω

(IPET − c1_PET)2u1
2dA

+ ζ∫
Ω

(IPET − c2_PET)2(1 − u1)2dA + α1∫
Ω

∣ ∇u1 ∣ dA

+ (1 − ζ)∫
Ω

(ICT − c1_CT)2u2
2dA + (1 − ζ)∫

Ω
(ICT − c2_CT)2(1 − u2)2dA + α2∫

Ω
∣ ∇u2 ∣ dA
+ μ∫

Ω
(u1 − u2)2dA

(4)

where ζ, μ, α1 and α2 are positive parameters and ζ denotes the weight of PET and CT, u1 

and u2 represent two membership functions corresponding to PET and CT images, 

respectively. The last term was used to fuse the CT and PET information and achieve 

consistent results in both modalities. In this study, ζ was set to be 0.6 or 0.7, and the weight 

of the PET image was set to be larger to overcome the influences of the complex background 

of the CT images.

3.3. Evaluation Measures

The segmentation accuracy of the proposed method and the other comparison algorithms 

was evaluated by computing the Dice similarity coefficient (DSC), classification error (CE), 

and volume error (VE), all compared with the ground truth.

The Dice similarity coefficient (DSC) can be computed as[39, 40]

DSC(V A, V R) = 2 ∣ V A⋂V R ∣
∣ V A ∣ + ∣ V R ∣ (5)

where VA denotes the foreground volume of the segmentation result and VR denotes the 

volume of the ground truth. Note that DSC ∈ [0,1] , and it represents the degree of similarity 

between segmentation result and ground truth. The larger the DSC value, the higher the 

segmentation accuracy.
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The volume difference and the spatial location bias of the segmented foreground were 

measured by VE [41] and CE [40, 42], respectively:

VE(VA, VR) = abs( ∣ V A ∣ − ∣ V R ∣ )
∣ V R ∣ (6)

CE(V A, V R) = ∣ V FP ∣ + ∣ V FN ∣
∣ V R ∣ (7)

where |VFN| denotes the number of false negative errors, and |VFP| denotes the number of 

false positive errors. The smaller VE and CE value, the better segmentation result.

3.4. Experiment and Analysis

In this section, we compared the proposed method with the CNN-based methods using CT 

or PET only, traditional methods using PET only, and the two co-segmentation methods 

without using deep learning, respectively.

3.4.1. Comparison with CNN-based methods using CT or PET only—In this 

comparison, both CNN-based methods using CT only or PET only were trained on the same 

training set as the proposed co-segmentation method.

In order to have a more intuitive understanding of the process of feature fusion in the 

proposed co-segmentation network, we visualized the high-dimensional feature maps 

extracted from the two branches, as well as the fused feature map, as shown in Figs. 7 (a–c). 

The gray values in these feature maps represent the probability of classifying the 

corresponding pixels as foreground. The pink contour denotes the ground truth boundary of 

the tumor. Fig. 7(a) is one slice of the high-dimensional feature map extracted from the PET-

segmentation branch (see Fig. 3). As we can see, the PET feature map for this patient had 

inhomogeneous values, and the area inside the green contour with low feature values had a 

high probability for this part to be classified as background. Different from the PET feature 

map, the values of the CT feature map in the tumor area were uniform, as shown in Fig. 

7(b). However, having similar CT intensity distribution as the tumor, the surrounding soft 

tissue enclosed by the green contour had a high probability to be classified as foreground. 

After the feature re-extraction, the fused feature map had a better gray value distribution, as 

shown in Fig. 7(c), where the gray values in the tumor area were less inhomogeneous while 

those of the surrounding soft tissue became dim. The visualization process demonstrated that 

the feature fusion part in the designed network can make full use of the advantages from 

both modalities effectively.

The evaluation indexes (DSC, CE and VE) of the proposed method, the CNN-based methods 

using either CT or PET on the remaining 36 testing samples are shown in Fig. 8, and the 

mean value and standard deviation (std) of the evaluation indexes are listed in Table 1. All 

evaluation indexes demonstrated that the proposed co-segmentation method (DSC=0.85, 

CE=0.33, VE=0.15) had a significant promotion regarding the segmentation performance 

over the CNN-based method using PET only (DSC=0.83, CE=0.36, VE=0.18) or CT only 

(DSC=0.76, CE=0.53, VE=0.30).
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Illustrative segmentation results of the proposed method, the CNN-based using CT only or 

PET only, for three patient samples, are shown in Fig. 9. Figs. 9(a)–(c) show the 

segmentation results performed using the CNN-based method on CT only. As we can see, 

this method failed at localizing the correct tumor boundary mainly due to the effect of the 

surrounding soft tissues particularly for the third patient (Fig. 9(c)). Note that the 

surrounding soft tissues have similar intensity values as the tumor in these CT images. 

Figs.9(d)–(e) show that the results of CNN-based method using PET only, where the cold 

area (with low intensity) in the tumor was misclassified as background. This method also 

failed to localize the correct boundary of the tumor for the third patient. By contrast, the 

proposed co-segmentation network worked better than the two CNN-based methods using 

CT only or PET only, and the segmentation results coincided well with the ground truth, as 

shown in Figs. 9(g)–(i).

The visualization of feature maps in Fig. 7 and the illustrative segmentation results in Figs. 

9(a)–(c) indicated that a possible reason for the poor performance of the CNN-based method 

using CT only is that it is difficult to tell the tumor and the surrounding normal tissue owing 

to their s intensity distributions. For the CNN-based method using PET only, the poor 

performance is mainly caused by the inhomogeneity of the tumor in the PET images, such as 

Figs. 9(d)–(e), and the blurry boundary is another reason for the poor performance, as shown 

in Fig. 9(f). By contrast, the results of the proposed co-segmentation method demonstrated 

that the network can overcome the shortcomings of both modalities and had a significantly 

better result (see Figs. 9(g)–(i)).

Figs. 10(a)–(b) show the DSC and VE curves on all testing samples (a total of 36 samples) 

of the proposed method, and the CNN-based methods using CT only or PET only. Most of 

the DSC values of the proposed method were larger than the other two methods, which 

proved that the proposed method had a better performance clearly for all most all testing 

samples. Moreover, the performance of the CNN-based method using CT only or PET only 

was very uneven, indicating that both methods totally failed for several testing data. In 

contrary, the curve of the proposed method was more flat, which demonstrated that it was 

more robust than both the CNN-based methods using CT only or PET only.

3.4.2. Comparison with traditional methods using PET only—As the proposed 

method, all the traditional methods were tested on the same remaining 36 samples. DSC, CE 

and VE values were calculated to evaluate the performance for comparison.

The comparison curves of the results are shown in Fig. 11. These curves showed that the 

proposed co-segmentation method had significantly better performance on most testing 

samples. Besides, it was smoother than the other four traditional methods (see the green 

curve in Fig. 11(a)), which illustrated the proposed method was more robust. In contrary, the 

curves of the traditional methods using only PET were quite uneven, and had a large range 

of fluctuations, especially for the OTSU method and the CV method (see the blue and 

orange curves in Fig. 11(a)).

Fig. 12 shows the mean DSC, CE and VE values of the proposed method and the other four 

traditional methods, and the numerical values are listed in Table 2. Overall, the results 
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suggested that the proposed method achieved the highest mean DSC (0.85), and the lowest 

CE (0.33) and VE (0.15). The FCM method (DSC=0.81, CE=0.41, VE=0.29), although not 

as good as the proposed co-segmentation method, was superior to all other traditional 

comparison methods using PET only. The proposed method had the smallest standard 

deviation in the three evaluation indexes, and was more robust over other traditional 

methods.

A more intuitive visual comparison for three patients are shown in Fig. 13. As we can see, 

the boundaries of the segmentation results of the traditional methods on PET only were 

barely accurate (see Figs. 13(b)–(e), (g)–(h) and (l)–(o)). A main reason is that the tumor 

boundaries in PET are blurry due to the low spatial resolution in PET imaging. Moreover, 

traditional methods on PET tended to be over-segmented, as shown in Figs. 13(b)–(e). For 

the proposed co-segmentation method, because it integrated the features of CT images 

which has a clear boundary, its segmentation results were closer to ground truth, as shown in 

Fig. 13(a), (f) and (k). The experimental results demonstrated the effectiveness of the 

proposed co-segmentation method.

3.4.3. Comparison with variational co-segmentation methods—In this 

comparison, both variational co-segmentation methods were validated on the same 

remaining 36 samples. Note that the FVM_CO_2 method got two different tumor volumes 

corresponding to the PET image and the CT image respectively.

Quantitative evaluation indexes (DSC, CE and VE) for different methods in this comparison 

experiment are listed in Table 3. Fig. 14 shows their averages over all testing samples. As we 

can see, the FVM_CO_1 method (DSC=0.82) was superior to the other variational co-

segmentation method FVM_CO_2 (DSC=0.80 on PET and DSC=0.73 on CT). The 

proposed method had a better performance (DSC=0.85). Fig. 15 shows the performance 

comparison for all 36 samples among the proposed method and two other variational co-

segmentation methods. The flatter curve (see the green curve in Fig. 15) and the smallest 

variance value (see Table 3) demonstrated that the proposed method performed the best 

according to both accuracy and robustness.

Fig. 16 shows three segmentation examples for the proposed method and the two variational 

co-segmentation methods. The proposed method performed better than the two variational 

co-segmentation methods. As shown in Figs. 16(b)–(d) and (j)–(l), over-segmentation 

happened because of the difference between PET and CT. for both FVM_CO_1 and 

FVM_CO_2. A possible reason for the failure of the two variational co-segmentation 

methods is that these two methods have no adaptive way of combining the advantages from 

the PET and CT. These methods failed to balance the influence between the two modalities. 

As shown in Figs. 16(b)–(d), some voxels in the tumor areas were not classified correctly, 

and the boundary between the tumor and the surrounding normal tissue was also not 

localized correctly, because of the high influence of the surrounding normal soft-tissue, 

which has the similar intensity as the tumor in the CT image (see Fig. 16(h)). Besides, 

voxels with a low intensity (the cold areas) in the PET image were classified as background 

owing to the high influence of the PET image for the variational co-segmentation, as shown 
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in Figs. 16(j)–(l). In contrast, the segmentation results of the proposed method were more 

consistent with the ground truth, as shown in Fig. 16(a), (e) and (i).

4 Discussion

In this paper, we proposed a novel multi-modality deep fully convolutional neural network 

for tumor co-segmentation in PET/CT. Our method can be also used as a general multi-

modality co-segmentation framework of other imaging modalities. The proposed network 

realized feature fusion automatically by establishing two parallel branches for feature map 

extraction from two modalities and a fusion network for feature re-extraction. Experimental 

result demonstrated that the proposed co-segmentation network can combine the advantages 

of the two imaging modalities effectively.

In the last several years, with the development of deep learning, CNN-based methods 

achieved good performance in image segmentation tasks, but most CNN-based methods 

worked only on single imaging modality. In clinic, a tumor under different imaging modality 

may have very different appearance since different imaging modality describe tumor from 

different physical and biological aspects. These modalities provide complemental 

information to each other. Our study demonstrated that integrating different imaging 

modality is able to improve segmentation performance, and deep learning can be used for 

this purpose.

The proposed co-segmentation method makes full use of advantages from both PET and CT 

modalities: the high contrast in PET and the high spatial resolution in CT. On one hand, the 

high spatial resolution in CT helps to accurately localize tumor boundary in PET, in which 

the tumor boundary is typically blurry. On the other hand, the high contrast in PET helps to 

exclude the surrounding soft tissues from the segmentation result in CT, where the tumor 

and surrounding soft tissues often have the similar intensity. Besides, the proposed network 

was designed to be adaptive to the diversity of tumor size and shape, leading to a rapid 

training process. Moreover, the proposed network has a very fast prediction (segmentation) 

speed once the network was properly trained. It only spent 0.508s on average for each 

testing sample. Note that the parameters of the proposed network are fixed and do not need 

to be recalculated after training. In addition, the proposed network works in an end-to-end 

way without needing any cumbersome pre-processing and post-processing. With a high 

performance, the proposed automatic segmentation process might be useful in clinic where 

physicians typically spent lots of time to manually annotate the tumor for disease diagnosis 

and treatment planning.

We designed a network with cascaded convolutional blocks for feature fusion in this study. 

The feature fusion part automatically integrated information from PET and CT for tumor 

segmentation. [22, 28]. The weighting parameters of the loss functions w(1), w(2), wfusion 

(see Eq. (2)) were manually adjusted, which would affect the segmentation performance. In 

our study, these parameters were set to be 0.5, 0.5 and 1 respectively to have the optimal 

segmentation results. Furthermore, there are some directions should be considered for future 

research. Sometimes contradictory rather than complementary information between the two 

modalities caused conflicts in defining the boundaries of the tumor. A decision matrix, 
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which determines the final result should believe which modality, will be needed. Besides, it 

would be interesting to see if there are better ways to re-extract features from PET/CT 

feature maps. It would be also interesting to see if the trained network can be transferred to 

other datasets without re-training. These will be our future work in this topic.

5 Conclusion

In this study, we proposed a novel multi-modality, full convolutional neural network for co-

segmentation of tumor in PET-CT images. The proposed neural network is able to make full 

use of the advantages from both modalities (the metabolic information from PET and 

anatomical information from CT). The proposed neural network was validated on a clinic 

PET/CT dataset of 84 patients with lung cancer. The results showed that the proposed 

network is effective, fast and robust and achieved significant performance improvement over 

the other CNN-based method, traditional methods using PET or CT only, and two 

vairational co-segmentation methods.
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Fig. 1. 
PET-CT image pairs. (a) CT image, and (b) its paired PET image, for one patient with lung 

cancer; (c) CT image, and (d) its paired PET image, for another patient with lung cancer. 

Both patients were imaged using an integrated PET/CT scanner (Reveal HD, CTI, 

Knoxville, TN, USA). The pink contours are the tumor boundaries.
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Fig. 2. 
Illustration of the multi-task learning: (a) the common form, and (b) the proposed form.
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Fig. 3. 
The architecture of the proposed co-segmentation network. Two parallel branches are used 

for feature extraction from the CT image and the PET image respectively, followed by the 

feature fusion part. The segmentation result is the output at the end of the network. x(1) and 

x(2) are the inputs of the two modalities (PET and CT), respectively. W, H and C are the 

sizes in the x, y and z directions of the input image, respectively. ℓ(1), ℓ(2) and ℓfusion are the 

loss funcitons of the CT-segmentation branch, PET-segmentation branch, and the feature 

fusion part, respectively. These loss functions will be defined later.
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Fig. 4. 
V-Net style architecture which forms one branch in the first part. The 3D CT or PET 

images(x(1) or x(2)) of arbitrary sizes were fed into the net. Feature maps (h(1) or h(2)) which 

have the same spatial size as the input image are the outputs at the end of the network.
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Fig. 5. 
Fusion network of the proposed multi-modality FCN. Features extracted from the first part 

were fed to the stage, the tumor mask was the output at the end of the network.
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Fig. 6. 
Input patches. (a) A input patch which does not contain the whole tumor (pink contour), and 

(b) a input patch which contains the whole tumor (pink contour) and other tissues or organs 

near the tumor (green contour).
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Fig. 7. 
Feature visualization. (a) One slice of the feature map from the PET-segmentation branch. 

The part in the green contour has low feature values indicating a low probability for this part 

to be classified as part of the tumor; (b) one slice of the feature map from the CT-

segmentation branch. The surrounding tissue in the green contour has high feature values 

indicating a high probability for this part to be classified as tumor incorrectly, and (c) one 

slice of the fused features re-extracted by the fusion network. The pink contour denotes the 

ground truth boundary of the tumor.
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Fig. 8. 
The mean and standard deviation of DSC, CE and VE, on the 36 testing samples, by the 

proposed method, the CNN-based methods using CT only or PET only.

Zhao et al. Page 23

Phys Med Biol. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Visual comparison of the segmentation results (blue contour) of different methods and the 

ground truth (pink contour) for three patients. (a)-(c) Segmentation results of the CNN-based 

method using CT only on the three patients, and (d)-(f) segmentation results of the CNN-

based method using PET only on the three patients, and (g)-(i) segmentation reuslts of the 

proposed co-segmentation method on the three patients.
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Fig. 10. 
Performance comparison with the CNN-based methods using PET or CT only. (a) DSC, and 

(b) VE, all on the 36 testing samples. The proposed method (green) had a better performance 

and was more robust than the other two methods using CT (orange) or PET (blue) only. The 

two CNN-based methods using CT (orange) or PET (blue) only totally failed for several 

patients (e.g, patients 10, 17, 34), while the proposed had still decent performance for these 

patients.
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Fig. 11. 
Performance comparison with the traditional methods using PET only. (a) DSC, and (b) VE, 

all on 36 testing samples. The proposed method (green) had a better performance and was 

more robust than the other four traditional methods solely using PET. The Otsu method 

(blue) and the CV method (pink) totally failed for several patients (e.g, patients 18, 27, 28, 

35), while the proposed had still decent performance for these patients.
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Fig. 12. 
The mean and standard deviation of DSC, CE and VE on the 36 testing samples by the 

proposed method and the other four traditinal methods using PET only.
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Fig. 13. 
Visual comparison of the segmentation results (blue contour) of different methods and the 

ground truth (pink contour) for three patients (each row shows results for one patient). The 

results on the first patient by: (a) The proposed co-segmentation, and (b)-(e) traditional 

methods using PET only (OTSU, FCM, CV and Graph Cut); the result on the second patient 

by: (f) the proposed method, and (g)-(j) traditional methods using PET only (OTSU, FCM, 

CV and Graph Cut), The result on the third patient by: (k) the proposed method, and (l)-(o) 

traditional methods using PET only (OTSU, FCM, CV and Graph Cut).
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Fig. 14. 
The mean and standard deviation of DSC, CE and VE on the 36 testing samples due to the 

proposed method and the other two variatinal co-segmentation methods.
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Fig. 15. 
Performance comparison with the traditional co-segmentation methods. (a) DSC, and (b) 

VE, all on 36 testing samples. The proposed method (green) had a better performance and 

was more robust than both traditional co-segmentation methods. The FVM_CO_1 method 
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and FVM_CO_2 method totally failed for several patients (e,g, patients 12, 13, 17, 27), 

while the proposed still had decent performance for these patients.
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Fig. 16. 
Visual comparison of the segmentation results (blue contour) of different methods and the 

ground truth (pink contour) for three patients (each arrow shows results for one patient). The 

result on the first patient by: a) the proposed method, (b) FVM_CO_1, (c) FVM_CO_2 on 

PET, and (d) FVM_CO_2 on CT, respectively. The result on the second patient by: (e) the 

proposed method, (f) FVM_CO_1, (g) FVM_CO_2 on PET, and (h) FVM_CO_2 on CT, 

respectively. The result on the third patient by: (i) the proposed method, (j) FVM_CO_1, (k) 

FVM_CO_2 on PET, and (l) FVM_CO_2 on CT, respectively.
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Table. 1.

The mean and standard deviation (std) of DSC, CE and VE of the proposed FCN method and CNN-based 

methods using CT only or PET only

Method DSC CE VE

FCN 0.85(0.08) 0.33(0.19) 0.15(0.14)

CNN-CT only 0.76(0.07) 0.53(0.22) 0.30(0.26)

CNN-PET only 0.83(0.10) 0.36(0.21) 0.18(0.15)
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Table. 2.

The mean and standard deviation (std) of DSC, CE and VE of the proposed co-segmentation method and 

traditional methods on PET

Method DSC CE VE

Ours 0.85(0.08) 0.33(0.19) 0.15(0.14)

OTSU 0.78(0.16) 0.43(0.29) 0.32(0.34)

FCM 0.81(0.10) 0.41(0.27) 0.29(0.30)

CV 0.77(0.19) 0.46(0.29) 0.35(0.35)

Graph Cut 0.78(0.10) 0.42(0.19) 0.27(0.19)
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Table. 3.

The mean and standard deviation (std) of DSC, CE and VE of the proposed method and all comparison 

methods.

Method DSC CE VE

Ours 0.85(0.08) 0.33(0.19) 0.15(0.14)

FVM_CO_1 0.82(0.10) 0.39(0.25) 0.25(0.28)

FVM_CO_2 on PET 0.80(0.12) 0.42(0.26) 0.30(0.27)

FVM_CO_2 on CT 0.73(0.14) 0.61(0.33) 0.48(0.38)
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