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Abstract

Purpose of Review: This article introduces the roles of perinatal DNA methylation in human 

health and disease, highlights the challenges of tissue and cellular heterogeneity to studying DNA 

methylation, summarizes approaches to overcome these challenges, and offers recommendations 

in conducting research in environmental epigenetics.

Recent Findings: Epigenetic modifications are essential for human development and are labile 

to environmental influences, especially during gestation. Epigenetic dysregulation is also a 

hallmark of multiple diseases. Environmental epigenetic studies routinely measure DNA 

methylation in readily available tissues. However, tissues and cell types exhibit specific epigenetic 

patterning and heterogeneity between samples complicates epigenetic studies. Failure to account 

for cell type heterogeneity limits identification of biological mechanisms and biases study results.

Summary: Tissue-level epigenetic measures represent a convolution of epigenetic signals from 

individual cell types. Tissue-specific epigenetics is an evolving field and the use of disease-

affected target, surrogate, or multiple tissues has inherent trade-offs and affects inference. 

Likewise, experimental and bioinformatic approaches to accommodate cell type heterogeneity 

have varying assumptions and inherent trade-offs that affect inference. The relationships between 

exposure, disease, tissue-level DNA methylation, cell type-specific DNA methylation, and cell 

type heterogeneity must be carefully considered in study design and analysis. Causal diagrams can 

inform study design and analytic strategies. Properly addressing cell type heterogeneity limits 
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sources of potential bias, avoids misinterpretation of study results, and allows investigators to 

distinguish shifts in cell type proportions from direct changes to cellular epigenetic programming, 

both of which provide insights into environmental disease etiology and aid development of novel 

methods for prevention and treatment.
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Introduction to Epigenetics

Epigenetics refers to the programming of cellular state, memory, or fate not attributable to 

changes in DNA sequence [1, 2]. Epigenetic modifications include DNA methylation, 

histone modifications, and non-coding RNAs [3]. DNA methylation describes the 

methylation of the fifth carbon of the nucleotide cytosine. Advancements in DNA 

methylation measurement tools, particularly microarrays, have made DNA methylation a 

popular and relatively inexpensive measure in large studies.

DNA methylation undergoes drastic reprogramming during mammalian development [4, 5] 

and is a key regulator of cellular differentiation [6]. Epigenetic dysregulation is a hallmark 

of multiple diseases, including cancer [7], neurodegeneration [8], and cardiovascular disease 

[9]. Critically, epigenetic modifications are labile to environmental influences, especially 

during gestation [10]. Understanding how environmental exposures impact epigenetic 

regulation during development likely will impact our understanding of disease etiology and 

identify novel methods for prevention and treatment [11]. This article introduces the roles of 

perinatal DNA methylation in human health and disease, highlights the challenges of tissue 

and cellular heterogeneity to studying DNA methylation, summarizes approaches to 

overcome these challenges, and offers recommendations in conducting research in 

environmental epigenetics.

Epigenetic Alterations During Development

Epigenetics are essential for several aspects of human development. First, DNA methylation 

undergoes dynamic changes during embryonic development. In the preimplantation embryo, 

the paternal genome experiences rapid, widespread DNA demethylation. Meanwhile, the 

maternal genome is passively demethylated to a lesser extent through replication without 

DNA methylation maintenance [12]. Second, during the reprogramming process, DNA 

methylation is maintained at specific locations in both the paternal and maternal genomes, 

termed genomic imprinting [13]. Third, X-chromosome inactivation is a dosage 

compensation mechanism that randomly transcriptionally silences one of two X 

chromosomes in females. [14]. Fourth, as tissues differentiate during embryogenesis, they 

acquire more specialized epigenetic marks. Broad regions of the epigenome are often 

regulated in concert and we observe larger-scale tissue specific differentially methylated 

regions [15]. Epigenetic marks help to lock tissues in their differentiation state and maintain 

tissue identity. Appropriate epigenetic regulation is essential for healthy development and 

these processes can be dysregulated by environmental exposures.
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Tissue Specificity in Environmental Epigenetics

Different tissues have biologically determined epigenetic differences. When designing an 

epigenetic study, a crucial step is to determine the tissue of interest. A given tissue may be 

the “target” tissue for a disease process or exposure effects, while another tissue may be a 

measurable “surrogate” tissue for monitoring biomarkers associated with disease or 

exposure. Compelling arguments can be made for selecting target tissues (such as brain or 

lung) based on their direct links to disease. However, the postmortem timing of acquisition 

for many target tissues, scarcity of exposure and confounder data in most tissue banks, and 

often modest available sample sizes present challenges for target tissue research [16]. 

Epigenetic analyses on easily collected surrogate tissues (such as blood or saliva) may be 

less connected to the disease. Despite this, surrogate tissue research can provide valuable 

contributions related to etiologic timing through longitudinal sampling, identification of 

associations with environmental exposures, defining early biomarkers, developing 

translational utility, and even providing mechanistic insights in some cases [16]. The field of 

environmental epigenetics is strengthened by evidence from both surrogate and target tissue 

studies.

Traditionally, studies have investigated a single tissue of interest (either surrogate or target) 

at a time. Critical investigation of multiple tissues simultaneously is essential to identify 

similarities in epigenetic profiles across normal, diseased, and exposed tissues. Evidence on 

DNA methylation correlations across normal and diseased tissues vary. For example, 

correlation in DNA methylation signatures between surrogate and brain tissue was limited to 

few informative sites that varied by brain region [17]. Schizophrenia-associated DNA 

methylation signatures identified in blood and brain only overlapped at 7.9% of positions 

[18]. To specifically interrogate the utility of surrogate tissues in environmental epigenetics, 

the Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of 

Transcription (TARGET) II consortium is studying epigenetic effects of exposure across 

tissues in perinatal mouse models [19]. Human population studies have also identified 

environment-associated epigenetic alterations that are detectable across tissues. For example, 

DNA methylation signatures associated with smoking exposure were first identified in cord 

blood [20]. A portion of the smoking signatures were then identified in adult blood [21], and 

a smaller portion were identified in adult lung tissue [22]. Testing epigenetic signatures 

across tissue types is a powerful approach to disentangle exposure- or disease-related 

systemic and tissue-specific alterations. A high degree of overlap in epigenetic signatures 

across target and surrogate tissues due to an exposure would provide support for the 

hypothesis that surrogate tissue types can provide relevant information about epigenetic 

alterations in target tissues. Epigenetic signatures specific to an exposure in a target tissue 

may represent unique effects that are informative of tissue-specific regulation. 

Understanding the tissue specificity of environmental and disease epigenetics is an important 

and ongoing field.

Cell Type Specificity in Environmental Epigenetics

Epigenetic control similarly governs cellular differentiation. Pluripotent stem cells 

differentiate to myriad cell types by selective regulation of differentiation pathways [5, 6]. 
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Consequently, DNA methylation profiles differ systematically by cell type [23, 24]. 

Complex cell type mixtures make up tissues. For example, whole blood contains many cell 

types including T-cells, B-cells, granulocytes, monocytes, and natural killer cells. Thus, 

tissue-level measures of DNA methylation, such as whole blood DNA methylation, reflect 

averages across all cells present (Figure 1). Tissue level measurements are therefore 

“convoluted” by proportions of individual cell types in a tissue [25, 26].

Given tissue measures reflect DNA methylation averages across a mixture of cells, 

differences in DNA methylation by exposure or disease could have multiple underlying 

biological mechanisms. There are at least three biological scenarios that lead to the same 

tissue-level DNA methylation signal (Figure 2). First, the exposure could have a uniform 

effect on DNA methylation across all cell types, leading to a substantial change in average 

DNA methylation (Figure 2A). For example, aging has a uniform direct effect on DNA 

methylation across cell types, termed the epigenetic “clock.” DNA methylation at these 

positions strongly correlate with age across tissues and cell types [27, 28].

Alternatively, a difference in average tissue DNA methylation may be observed when 

vulnerable cell types exhibit a large shift in DNA methylation (Figure 2B). As an example, a 

small study of smoking and non-smoking healthy volunteers tested for differences in DNA 

methylation among sorted blood immune cell subpopulations. In smokers, two DNA 

methylation sites within the Growth Factor Independent 1 Transcriptional Repressor (GFI1) 

or F2R Like Thrombin or Trypsin Receptor 3 (F2RL3) genes were hypomethylated in 

granulocytes but not in peripheral blood mononuclear cells. Further, two sites within the 

Coproporphyrinogen Oxidase (CPOX) or G Protein-Coupled Receptor 15 (GPR15) genes 

were hypomethylated in peripheral blood mononuclear cells, including some T cell 

subtypes, but not in granulocytes [29]. Another small study of smokers and nonsmokers 

observed cell type-specific associations between smoking and DNA methylation in CD14+ 

monocytes, CD15+ granulocytes, CD19+ B cells, and CD2+ pan T cells [*30]. These results 

show cell types may have variable and specific DNA methylation susceptibility to 

environmental exposures.

In a third plausible scenario, the exposure has no direct effect on DNA methylation in any 

cell type. The apparent shift in average DNA methylation is attributable to a difference in 

cell type proportions (Box 1) between exposed and unexposed individuals (Figure 2C). For 

example, in whole blood, cigarette smoking is associated with DNA methylation at a locus 

within GPR15. When considering blood immune cells separately, no direct effect of 

cigarette smoking was observed on GPR15 methylation in GPR15+CD3+ T cells. Instead, 

smoking led to an increase in the relative proportion of GPR15+CD3+ T cells in whole 

blood [31]. Exposures can influence DNA methylation measures by causing a shift in cell 

type proportions, which can have important consequences in the tissue.

Tissue-level differences in DNA methylation can be biologically attributed to direct DNA 

methylation effects across all cells, direct DNA methylation effects in vulnerable cell types, 

or shifts in cell type heterogeneity. Each scenario represents a unique consequence of an 

exposure and warrants further investigation. Because bulk tissue-level measures of DNA 

methylation fail to resolve such biologically distinct mechanisms, observational studies are 
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potentially fraught with incorrect conclusions and misinterpretation [32]. Applying methods 

to account for cell type heterogeneity is critical to identify underlying biological 

mechanisms and facilitate proper interpretation.

Methods for Estimating or Accounting for Cell Type Heterogeneity

Accounting for cell type heterogeneity in DNA methylation data allow investigators to 

distinguish shifts in cellular heterogeneity from direct effects of an exposure on DNA 

methylation, both of which offer potential insights into disease etiology [25]. There are five 

main approaches to account for cellular heterogeneity: cellular separation, unbiased single-

cell profiling, cell counting, and cellular deconvolution in silico by reference-based or 

reference-free methods (Table 1). Studies may elect to use one or more of these methods, 

based on their study design, timing, tissue, and sample or measure availability. The 

advantages and trade-offs of each method are described below.

Direct physical cellular separation is a method to account for cell type heterogeneity in a 

mixed tissue that requires purifying cells or cell type subpopulations before measuring DNA 

methylation. Cell sorting technologies such as fluorescence-activated cell sorting or 

magnetic-activated cell sorting allow the user to isolate cellular subpopulations based on 

various stains, morphological characteristics, or expression of known cell type markers [33]. 

A priori knowledge of the distinguishing characteristics of cellular subpopulations present in 

the tissue is required, however, and represents a key limitation of this approach. Cells must 

also be processed and separated fresh at the time of sample collection or stored in a way to 

allow cell membranes to survive freeze-thaw. This can be achieved by using a 

cryopreservation blood tube or dissociation of solid tissues to a viable single-cell 

suspension, which is then cryopreserved prior to cell population separation and DNA 

methylation measurement. Investigators should be cautious as cell types may differentially 

survive processing. Following cell type separation, DNA methylation is measured in sorted 

cell types.

Single-cell epigenetics is an emerging technology that accommodates cell type 

heterogeneity. Single-cell approaches bypass the need for a priori cell type marker 

identification and generate single-cell epigenetic measures in an unbiased manner. These 

data can be aggregated at the cell type level using unbiased clustering to quantify epigenetic 

heterogeneity within and across cell types. Single-cell DNA methylation approaches are 

being rapidly developed and there is not a current consensus method. Current disadvantages 

include limited coverage and robustness, labor requirements, and cost [34]. Single-cell 

technologies may even allow for mechanistic investigation of exposures and DNA 

methylation within individual cells or cell types and subtypes of tissues, organs, and 

organisms [35]. Like direct cellular separation, initial sample processing steps apply.

Direct cell counting methods, such as complete blood counting or histopathological cell 

counting, are used to quantify the relative abundance of cell types in a sample. DNA 

methylation measures are then made at the tissue level and investigators can adjust for the 

cell type counts in downstream analyses. This approach requires fresh samples or samples 

prepared for counting, such as fixed tissues. Direct cell counting allows investigators to test 
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for exposure differences in cell type proportions. Unlike the previous two methods, however, 

cell counting offers no information about the direct effects of an exposure on DNA 

methylation. Only cell type proportion estimates of a sample are available and can be used 

for adjustment or interpretation of a tissue DNA methylation measure.

Indirect cellular deconvolution is a class of methods to account for cell type heterogeneity 

via in silico estimation of cell type proportions. Deconvolution refers to the bioinformatic 

process of accounting for differences in intrasample cell type heterogeneity in tissues [36, 

37]. Given that the previous three methods require specific laboratory preparation and 

processing at the time of sample collection, bioinformatic deconvolution is more commonly 

implemented in observational studies. To leverage DNA methylation data generated from 

heterogeneous tissues, two classes of deconvolution methods have been developed—

reference-based and reference-free.

Reference-based methods are supervised and rely on independently collected cell type-

specific DNA methylation profiles to estimate cell type proportions in a tissue sample. 

Advantages of the reference-based methods include: quantification of cell type proportions, 

biologically interpretable model components, and few model assumptions [25, 37, 38]. 

Reference panels are currently available for cord blood [**39–43], umbilical cord tissue 

[43], adult blood [24, 44], frontal cortex (neuron vs. non-neuron) [45], and broadly epithelial 

versus fibroblast cell types [46] (Table 2). Disadvantages include a lack of demographically 

diverse reference samples, a limited number of reference panels, an assumption about 

constituent cell types, and challenges in identifying methylation sites and regions that 

discriminate cell types [25, 37, 47]. Similar to direct cell counts, cell type proportions 

estimated from reference-based deconvolution can be used in regression models when 

analyzing tissue DNA methylation measures. We recommend that investigators implement 

reference-based methods when cell type references are available for a tissue of interest.

Reference-free methods are unsupervised methods to account for variation in DNA 

methylation data, including cell type heterogeneity. This category encompasses many 

algorithms that account for sources of variation that are unmeasured and unmodeled due 

biological sources of variation, such as cell type heterogeneity, or nonbiological sources of 

variation, such as random noise or batch effects in an association study. Reference-free 

methods, like “surrogate variable analysis”, were originally developed for RNA expression 

deconvolution [48], and are now applied in epigenome-wide association studies [37]. 

Advantages of unsupervised methods include no required a priori knowledge of tissue cell 

types, flexible modelling strategies, and no required cell type references, allowing them to 

be used in any tissue. Disadvantages include the general inability to estimate intrasample 

cell type proportions and the large number of delicate model assumptions, including the 

assumption that the largest driver of variation is due to cell type proportion differences [37, 

**49, 50]. Following reference-free processing, depending on the specific method, 

investigators either implement exposure testing on the resulting adjusted DNA methylation 

matrix or they account for the reference-free “cell types” in regression models when 

analyzing tissue DNA methylation measures. Reference-free methods are only 

recommended for tissues lacking adequate references.
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Utility of Cellular Heterogeneity in Research Questions and Epidemiologic 

Modeling

Once cell type heterogeneity has been accounted for, one can ask critical questions about 

DNA methylation, exposures, and disease. The appropriate approach depends on the study 

sampling framework, timing of measures, and hypothesized relationships between 

exposures, cellular heterogeneity, DNA methylation, and disease. Causal diagrams [51] are 

frequently employed in epidemiologic studies to evaluate and communicate the relationships 

between key variables and identify appropriate approaches to address bias [52]. Below, we 

use causal diagrams to describe five study hypotheses involving an exposure, a disease, 

tissue-level DNA methylation, and cell type-specific DNA methylation epigenotypes (Box 

1). These five hypotheses are well-studied in epidemiologic frameworks: mediation, 

confounding, biomarker of disease, biomarker of exposure, and precision variables. By 

directly measuring epigenetics within sorted cell types (cell type-specific epigenotypes), 

researchers simplify casual diagrams and associated statistical models. Simpler causal 

diagrams require fewer assumptions, use simpler analytic methods, minimize sources of 

bias, and improve interpretability of study results [51, 52]. In each setting, we demonstrate 

that studying cell type-specific epigenotypes simplifies the causal diagram and reduces 

sources of potential bias.

DNA methylation dysregulation is a candidate to mediate early-life environmental exposures 

and later life health outcomes [53, 54]. Mediation refers to the indirect effect an exposure 

has on an outcome by acting through an intervening variable [55]. Though perhaps the most 

biologically compelling, mediation studies were the among rarest study designs according to 

recent DNA methylation mediation reviews [*56, 57]. Testing mediation requires 

assumptions under different analytic frameworks, but all models rely on faithfully capturing 

exposure-mediator and mediator-outcome relationships [58] (Figure 3A—Tissue 
Epigenotype). These relationships must be identifiable, unconfounded, and free of bias to 

establish evidence of a causal relationship [59]. Mediation testing in epigenetic perturbations 

is difficult due to a lack of cell type-specific studies in tissues relevant to the disease process 

[60] and a lack of observational studies that span the perinatal period until the end of life 

[61]. One example of a recent mediation-based study design was a case-control study of 

rheumatoid arthritis and genetic risk that controlled for cell type heterogeneity and removed 

DNA methylation signatures due to arthritis onset. Ten differentially methylated regions 

were identified in a mediation analysis [**62]. Recently, a cell type deconvolution algorithm 

for DNA methylation demonstrated a quantitation of the mediation of phenotypic 

associations with DNA methylation by cellular heterogeneity in 23 DNA methylation 

microarray datasets across 13 studies [**49]. Cell type-specific assessment of DNA 

methylation avoids mediation by cell type heterogeneity altogether (Figure 3A—Cell Type 
Epigenotypes). Well-designed DNA methylation mediation studies that account for cell type 

heterogeneity may identify the mechanisms by which environmental exposures affect DNA 

methylation directly and disease etiology.

Now, we focus on modeling the tissue epigenotype as the outcome to understand the role 

cellular heterogeneity plays in the relationship between exposure and tissue epigenotype in 
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the mediation framework. Typically, investigators do not adjust for a mediator as it 

represents a contributor to the total effect of the exposure on the outcome. In epigenetic 

studies, assessing mediation by cell type heterogeneity is essential to distinguish direct 

intranuclear changes (Figures 2A or 2B) from shifts in cell type heterogeneity (Figure 2C) 

[38], each of which offers insights into disease etiology [25]. Note that single-cell or cell 

type-specific assessment is required to distinguish a global direct effect (Figure 2A) from a 

vulnerable cell type scenario (Figure 2B). When the goal is to identify direct DNA 

methylation changes, cell type deconvolution and adjustment can block the non-causal 

pathway that is mediated by cell type heterogeneity. For example, a recent epigenome-wide 

meta-analysis identified associations robust to cell type adjustment between exposure to 

maternal smoking in pregnancy and over 6,000 newborn blood DNA methylation sites 

(Figure 3A—Tissue Epigenotype, boxed) [20]. Again, Cell type-specific assessment of 

DNA methylation circumvents cell type heterogeneity (Figure 3A—Cell Type 
Epigenotypes, boxed). Researchers must take care in the design, analysis, and interpretation 

of epigenetics studies where the exposure is thought to affect cell type heterogeneity, 

prompting the consideration of a mediation framework.

In a second scenario, epigenetic measures serve as exposure biomarkers. Because DNA 

methylation is labile to environmental exposures and generally stable once established [63], 

DNA methylation can serve as a proxy measure of past exposures [64, 65]. Several studies 

have linked maternal smoking during pregnancy to changes in newborn or later childhood 

blood DNA methylation, though the potential health consequences of these changes beyond 

a biomarker is unclear [20, 66, 67]. The framework is identical in structure to the mediation 

scenario, except that the tissue epigenotype does not affect disease (Figure 3B—Tissue 
Epigenotype). For similar reasons, cell type-specific epigenotypes should be prioritized 

over tissue epigenotypes whenever possible (Figure 3B—Cell Type Epigenotypes). DNA 

methylation could reduce information bias in epidemiological studies by extending the reach 

of exposure assessment backward in time and more accurately quantifying an individual’s 

exposure.

In a third scenario, cell type heterogeneity could be a confounder in the relationship between 

exposure and tissue-level DNA methylation (Figure 3C—Tissue Epigenotype). 

Confounding refers to a non-causal association between an exposure and outcome due to a 

shared common cause (the “confounder”) [68]. Most current epigenome-wide association 

studies implement cell type proportions as adjustment covariates in regression models, with 

the stated goal to account for potential confounding due to cell type heterogeneity. Cellular 

heterogeneity may affect the metabolism, storage, or cellular response to an environmental 

toxicant, impacting biomarker measured toxicant levels. For example, in five cell lines 

across 20 heavy metal toxicants, an Nrf2-dependent oxidative stress response varied by cell 

type [69]. Further, we know that cell type heterogeneity predicts tissue-level DNA 

methylation [70]. The common cause of cell type heterogeneity could therefore distort the 

measure of association between exposure and tissue-level DNA methylation. As before, 

evaluating DNA methylation at the cell type level simplifies the causal diagram as well as 

eliminates the potential for confounding by cell type heterogeneity (Figure 3C—Cell Type 
Epigenotypes).
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Fourth, epigenetic measures can be biomarkers of disease. The application of DNA 

methylation as a disease biomarker can reduce outcome misclassification, serve as a 

surrogate endpoint, and monitor disease progression, prognosis, and treatment response [71, 

72]. DNA methylation is routinely employed as a disease biomarker in cancers and is being 

investigated for use in psychiatric conditions and chronic diseases such as cardiovascular 

disease [73–75]. DNA methylation of placentally derived DNA from maternal plasma has 

been used as a noninvasive biomarker of aneuploidy [76]. A recent meta-analysis revealed 

an association between neonatal blood DNA methylation and birthweight, although it is 

unclear if DNA methylation was a mediating cause of birthweight changes or simply a 

birthweight biomarker [*77]. DNA methylation is an auspicious vehicle for the promise of 

precision medicine and might soon be established as the ‘universal’ disease biomarker, given 

the vast array of disease-specific DNA methylation profiles that are being uncovered [78]. 

Identification of DNA methylation perturbations related to negative health outcomes will 

likely identify at-risk individuals and lead to novel preventive and therapeutic strategies [57]. 

Notice that assessment of DNA methylation as a biomarker of disease is identical in diagram 

structure to the mediation scenario presented above (Figure 3D—Tissue Epigenotype). 

Therefore, the same recommendation for assessing cell type-specific epigenotypes can be 

applied to the use of DNA methylation as a biomarker of disease (Figure 3D—Cell Type 
Epigenotypes). The use of DNA methylation as a disease biomarker still requires methods 

to account for cell type heterogeneity.

Finally, cell type heterogeneity may be an important precision variable in epigenetic studies 

(Figure 3E—Tissue Epigenotype). A precision variable is a predictor of the outcome that is 

unrelated to the exposure. A precision variable increases statistical efficiency when adjusted 

for in a model [79]. Cell type proportions are strong predictors of DNA methylation, often 

accounting for the first principal component of variability in DNA methylation data. Tissue 

DNA methylation studies may account for cell type proportions in regression models to 

improve precision in estimating DNA methylation associations with other variables. When 

cell type-specific DNA methylation is measured, cell type heterogeneity may no longer be 

relevant to estimating the direct effect of the exposure on cellular DNA methylation (Figure 
3E—Cell Type Epigenotypes). However, independence between cell type heterogeneity 

and cellular DNA methylation may be an unrealistic assumption due to cell-cell interactions 

in tissues [32]. Even when cell type heterogeneity is unrelated to the exposure, cell type 

heterogeneity may be an important precision variable.

Summary and Recommendations for Ongoing and Future Studies

DNA methylation is a key regulator of cell differentiation; thus tissues and cell types 

systematically differ in their DNA methylation profiles. When selecting a tissue type for 

study, investigators must be thoughtful about the possible utility and scope of inferences in 

that tissue. Surrogate and target tissues have complementary advantages and disadvantages. 

Disease target tissues, such as brain, may not be limited or not available for a given study 

design, though surrogate tissues may still provide insight into disease etiology or onset [16]. 

When possible, a multi-tissue approach in sampling, biobanking, and measurements will 

allow for the most robust biological interrogations. Single tissue studies should make 

comparisons to publicly available data in multiple tissues to extend the reach of insights.
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Epigenetic measurements of bulk tissues represent a mixture of individual cell types. This 

convolution complicates observational and experimental studies, making it impossible to 

disentangle distinct biological mechanisms that can lead to the same tissue epigenotype 

measure, particularly when cell type heterogeneity differs between samples. Cell type 

heterogeneity must be considered and accounted for in any epigenetic study. Direct 

measures of DNA methylation should be prioritized over indirect methods to faithfully 

capture the DNA methylation state of each sample without reliance on imperfect indirect 

methods that “smooth over” inter-sample differences such as in silico deconvolution. Of 

direct approaches, single-cell measures of DNA methylation show the greatest promise 

because they unbiasedly account for cell type heterogeneity with the greatest resolution and 

can later be aggregated at the cell type or sub-cell type level if desired. These methods, 

however, are not yet widely available for observational human studies. At this time, among 

indirect deconvolution approaches, referenced-based methods should be prioritized over 

reference-free methods. Reference-based deconvolution requires fewer assumptions and 

affords greater transparency and biological interpretability. However, reference-free 

deconvolution is invaluable when reference data are unavailable or biosampling logistics 

prevent cell sorting or single-cell approaches. Further studies of deconvolution algorithm 

performance and collection of high-quality and diverse DNA methylation reference profiles 

are required to advance indirect deconvolution approaches. Researchers should be 

transparent in reporting the assumptions and selection criteria for any cell type heterogeneity 

approach.

At various genomic locations, tissues, and developmental times, DNA methylation is a 

promising biomarker of exposure and disease, as well as a potential mediator between 

environmental exposure and health outcomes. The relationships between exposure, disease, 

tissue-level DNA methylation, cell type-specific DNA methylation, and cell type 

heterogeneity must be carefully considered in any study design. Subject matter expertise, 

transparency of model assumptions, and appropriate methods to accommodate and evaluate 

potential study hypotheses will be required to improve causal inference and interpretability 

in environmental epigenetics. It is important that investigators clearly state hypotheses and 

analytic assumptions to generate valid, replicable, and interpretable study results.
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Box 1.

Definitions of key terms

Cell type heterogeneity: differences in the proportion of cell types across samples

Epigenotype: the measured or unmeasured epigenetic configuration of a genomic 

position or region

Tissue-level epigenotype: an epigenotype measurement made at the tissue level, i.e. 

averaging the epigenotype across all cell types and cells present in a sample

Cell type-specific epigenotype: an epigenotype measurement made on the cell type-

specific level by first isolating cell type populations or subpopulations
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Figure 1. 
Conceptual model for understanding tissue measures of DNA methylation as a mixture of 

signals from cell types. A complex tissue such as whole blood is composed of many 

individual cell types. Individual circles represent cells, colored by cell type identity. In this 

example, three cell types compose the tissue. The investigator performs a tissue-level 

assessment of DNA methylation that averages across cell types. The black bar represents the 

aggregate observed tissue-level mean DNA methylation signal. The cell type DNA 

methylation profiles are not observed. The investigator may incorrectly conclude that each 

genomic locus in each cell type in the sample is uniformly methylated at 50% if they do not 

consider the cell type heterogeneity of the sample.
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Figure 2. 
Conceptual model for differences in tissue DNA methylation by exposure status, considering 

tissues as mixtures of cell types. Individual circles represent cells, colored by three cell type 

identities. The black bar represents the observed tissue-level mean DNA methylation signal. 

A-C represent distinct biological scenarios that could lead to the same exposure-related 

DNA methylation signal. A. The exposure uniformly increases DNA methylation in each 

cell type population, which increases the observed DNA methylation signal. B. The 

exposure directly increases DNA methylation in one vulnerable cell type. C. The exposure 

does not have a direct effect on DNA methylation and the observed increase in DNA 

methylation signal is completely mediated by differences in cell type proportion between the 

exposed and unexposed samples.
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Figure 3. 
Based on hypothesized relationships between exposure, disease, and DNA methylation, 

multiple study design scenarios are possible. Measures of DNA methylation can be 

implemented in directed acyclic graphs for identifying model assumptions and analytic 

strategies for causal inference. The left column represents a DNA methylation epigenotype 

aggregated over multiple cell types (e.g., tissue) and the right column represents cell type-

specific epigenotypes measures. When measured on the cell type-specific level, the causal 

link between composition heterogeneity and epigenotype is broken and omitted from the cell 

type-specific diagram. A. Mediation: The exposure affects disease indirectly through the 
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tissue epigenotype (direct DNA methylation effects across all cells (Figure 2A) or in 

vulnerable cell types (Figure 2B)) or through cell type heterogeneity (Figure 2C). The 

exposure may also affect the disease directly. We focus on modeling the tissue epigenotype 

as the outcome, a subset of the overall causal diagram (Boxed). B. Biomarker of Exposure: 
The exposure affects the DNA methylation epigenotype directly and indirectly through cell 

type composition heterogeneity. C. Confounding: Cell type composition affects the level of 

exposure and directly affects the epigenotype through heterogeneity. D. Biomarker of 
Disease: The disease state affects the DNA methylation epigenotype directly and indirectly 

through cell type composition heterogeneity. E. Precision Variable: Cell type composition 

heterogeneity is independent of the exposure but is a strong predictor of DNA methylation 

epigenotype.
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