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Abstract

Quantification of biological aging is of interest in gerontology as a means to surveil aging rates in the population and to evaluate the effects 
of interventions to increase healthy life span. Analysis of proposed methods to quantify biological aging has focused on samples of midlife or 
mixed-age adults in the West. Research is needed to test whether quantifications of biological aging can differentiate aging rates among older 
adults and if quantifications of biological aging developed in Western samples can differentiate aging rates in non-Western populations. We 
conducted analysis of Klemera-Doubal method (KDM) Biological Age and homeostatic dysregulation measures of biological aging developed 
in the U.S. NHANES and tested in a sample of older Taiwanese adults in the Social Environment and Biomarkers of Aging Study. We conducted 
analysis of physical and cognitive function and mortality, comparing quantifications of biological aging to a biomarker index based on 
norms within our analysis sample and to participants’ ratings of their own health. Results showed that quantifications of biological aging (a) 
predicted differences in physical and cognitive function and in mortality risk among Taiwanese older adults and (b) performed as well as a 
traditional biomarker index and participant self-rated health for prediction of these outcomes.

Keywords: Biomarkers, Physical performance, Cognitive decline, Mortality

Biological aging is the gradual and progressive decline in the integ-
rity of bodily systems that occurs with advancing chronological age 
(1). Processes of biological aging are thought to represent a modifi-
able cause of age-related disease, disability, and mortality (2). The 
etiology of biological aging is thought to involve an accumulation 
of molecular changes occurring at the cellular level, which in turn 
leads to declining system integrity (3,4). Studies in animals suggest 
that interventions modifying these cellular-level changes may pre-
vent a range of age-related disease and extend healthy life span (5,6). 
A barrier to conducting human trials of these therapies is the length 
of human life spans; because aging-related health declines in humans 
unfold over decades, follow-up needed to test prevention or delay of 
chronic disease or disability is cost- and time-prohibitive. If it were 
possible to measure biological aging, such measures could serve as 
surrogate endpoints, accelerating testing to translate therapies to 
slow aging from animals to humans.

Among measurement methods proposed to quantify bio-
logical aging, methods that use data from blood chemistry tests 
and physiological assessments already conducted in routine clin-
ical care are appealing for their scalability. A growing number of 
studies suggest that proposed quantifications of biological aging 
derived from this type of data can predict differences in health, 
function, and life span (7–11), including in individuals still too 
young to have age-related disease (12). But most of these studies 
have focused on midlife adults or mixed-age samples, although 
some previous studies have reported analyses focused on older 
adults (10,13,14). Much research in gerontology is focused on 
older adults. Studies are therefore needed to test whether proposed 
quantifications of biological aging can differentiate patterns of 
aging within aged populations. Specifically, can proposed measures 
of biological aging differentiate older adults in terms of functional 
status and survival?
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A second issue is that most biological aging research has been 
conducted in Western samples. Two studies considering Western 
and non-Western populations have raised questions about cross-
population utility of quantifications of biological aging (7,15). More 
data are needed to address this uncertainty. A  specific question is 
whether measures of biological aging developed in one population 
can be applied to study aging processes in a different population.

We conducted a study to test quantifications of biological aging 
developed from analysis of a U.S.-based mixed-age sample in a 
sample of Taiwanese older adults in the Social Environment and 
Biomarkers of Aging Study (SEBAS). SEBAS is a sub-study of the 
Taiwan Longitudinal Study of Aging, a nationally representative lon-
gitudinal study of Taiwanese older adults aged 54+ in 2000 (16). 
We conducted analysis of two proposed methods to quantify bio-
logical aging, the Klemera-Doubal Method (KDM) Biological Age 
(17) and homeostatic dysregulation (18). We tested associations be-
tween these measures of biological aging and measures of physical 
and cognitive function, and the risk of death. We compared effect 
sizes from these analyses to effect sizes from two alternative meas-
ures: a biomarker index based on norms within the SEBAS sample 
(19) and participant ratings of their own health.

Methods

Data
We analyzed data from SEBAS, a nationally representative longitu-
dinal study of Taiwanese older adults aged 54+ in 2000 (16). SEBAS 
is based on a subsample of the Taiwan Longitudinal Study of Aging, 
which began in 1989. SEBAS survey assessments were conducted in 
2000, when 1,023 participants were interviewed and completed a 
health exam, and again in 2006, when 639 of the original partici-
pants were interviewed and completed a health exam.

Analysis focused on SEBAS participants who provided blood 
samples at the year 2000 assessment and for whom data on all 
biomarkers were available (n = 951, Table 1). Analyses of physical 
performance and cognitive function were further restricted to the 
subsample of these individuals re-interviewed and examined in 2006 
(n = 598–668 for physical performance; n = 689 for cognitive func-
tion; Table 1). Mortality follow-up was conducted through 2015. 
Survival analysis was conducted using two intervals. First, to match 
analysis of physical and cognitive functioning, we conducted survival 

analysis with follow-up through 2006 (n = 166 deaths). Second, to 
take full advantage of available data, we conducted survival analysis 
with follow-up through 2015 (n = 451 deaths).

Measures
We analyzed two proposed measures of biological aging and two 
additional measures to provide effect size comparisons. The bio-
logical aging measures were the KDM Biological Age and homeo-
static dysregulation. These are individual-level measures that 
combine information from multiple clinical biomarkers to quan-
tify decline in system integrity. We compared these two proposed 
quantifications of biological aging to two established methods for 
differentiating health and aging in older adults: a composite bio-
marker index counting the number of biomarkers with extreme 
values within the analysis sample and a survey item measuring self-
rated health.

KDM Biological Age and homeostatic dysregulation
KDM Biological Age and homeostatic dysregulation are algorithm-
based measures that combine information on the integrity of 
multiple organ systems in the body (17,18,20). Biological aging 
measurements made with these algorithms are predictive of mor-
bidity, mortality, and indicators of healthspan in young and older 
populations (12,13,18,20–22). We calculated KDM Biological Age 
and homeostatic dysregulation based on a panel of 11 biomarkers 
measuring system integrity, including cardiovascular, renal, hepatic, 
immune, and metabolic function: albumin, blood urea nitrogen, cre-
atinine, C-reactive protein, cytomegalovirus optical density, glycated 
hemoglobin, total cholesterol, white blood cell count, lymphocyte 
percent, mean corpuscular volume, and systolic blood pressure 
(Supplementary Table 1). Biomarkers were selected on the basis of 
their inclusion in published analyses of biological age (20,22,23) 
and availability in the SEBAS data. The biomarkers included in the 
three previous algorithms and their overlap in the SEBAS analysis 
are reported in Supplementary Table 2. We conducted analysis to 
estimate parameters for the KDM Biological Age and homeostatic 
dysregulation algorithms in data from NHANES III and continuous 
NHANES panels spanning 1999–2016 (Supplementary Methods).

The KDM Biological Age algorithm is derived from a series of 
regressions of individual biomarkers on chronological age in a refer-
ence population. Following previous work (20,24), we formed this 
reference population from NHANES participants aged 30–75 years 
who were not pregnant (N  = 38,765, 49% male). An individual’s 
KDM Biological Age prediction corresponds to the chronological 
age at which her/his physiology would be approximately normal in 
the NHANES reference sample.

The homeostatic dysregulation algorithm is based on 
Mahalanobis distance (25) for a panel of biomarkers. Following 
previous work (23,24), we computed the distance based on a com-
parison of SEBAS participants to a reference population composed 
of NHANES participants aged 20–30  years who were not obese, 
not pregnant, and for whom all biomarkers fell within the clinic-
ally normal range (N = 502, 24% male). An individual’s homeostatic 
dysregulation value quantifies how different their physiology is from 
this young, healthy NHANES sample.

We applied KDM Biological Age and homeostatic dysregulation 
algorithms developed in the NHANES database to compute bio-
logical aging measures in the SEBAS dataset (KDM Biological Age 
range 35–144, M = 67.74, SD = 12.87; homeostatic dysregulation 
range 1.67–6.87, M = 4.10, SD = 0.86; Table 1). Summary statistics 

Table 1. Descriptive Statistics

Variables Mean SD n
Correlation  
With CA

Chronological age in 2000 67.74 8.39 951 -
KDM Biological Age in 2000 67.74 12.87 951 0.67
Homeostatic dysregulation 
in 2000

4.10 0.86 951 0.23

Physiological dysregulation 
in 2000

5.43 2.79 951 0.24

Self-rated health in 2000 2.93 0.99 951 0.07
Chair-stand speed in 2006 0.48 0.18 598 -0.33
Walk speed in 2006 0.77 0.28 661 -0.43
Grip strength in 2006 25.68 10.14 668 -0.33
Peak expiratory flow in 2006 296.59 124.34 660 -0.29
Cognitive assessment in 2000 17.11 3.14 689 -0.30
Cognitive assessment in 2006 15.54 3.93 689 -0.38

Note: CA = cognitive assessment; KDM = Klemera-Doubal Method.
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for SEBAS biomarkers are reported in Supplementary Table 1. For 
analysis of KDM Biological Age, we calculated the difference be-
tween participants’ biological and chronological ages and standard-
ized the resulting values to have M = 0, SD = 1, with higher values 
indicating more advanced biological age. For analysis of homeo-
static dysregulation, we first regressed homeostatic dysregulation on 
chronological age and predicted residual values. We then standard-
ized these residual values to have M = 0, SD = 1, with higher values 
indicating greater homeostatic dysregulation.

For comparison purposes, we also conducted analysis of two al-
ternative measures, physiological dysregulation - a biomarker health 
index previously constructed from the SEBAS database - and self-
rated health.

Physiological dysregulation
We constructed the physiological dysregulation (PD) biomarker 
index from 24 biomarkers according to the procedure used in pre-
vious SEBAS analysis (19,26). Briefly, for each biomarker, partici-
pants were classified as being in a high-risk or normal-risk group 
based on the distributions of the biomarkers in the SEBAS cohort. 
High risk was defined as the top and/or bottom quintile or decile 
depending on the markers (Supplementary Table 1). The PD bio-
marker index was calculated by summing the number of high-risk 
biomarkers across the set of 24 (M  =  5.43, SD  =  2.79, Table 1). 
Physiological dysregulation was standardized to have M = 0, SD = 1 
for analysis.

In addition to this 24-biomarker measure of physiological 
dysregulation used in previous SEBAS analysis (19), we conducted 
analysis of two additional PD measures. These two additional 
PD measures comprise the 11 biomarkers included in the KDM 
Biological Age and homeostatic dysregulation measures. One was 
defined based on cut-points established within SEBAS. The other 
was defined based on cut-points established within the NHANES. 
We report effect sizes for the original PD measure in the main text 
and for these alternative measures in Supplementary Tables 4–9.

Self-rated health
At the time of survey in 2000, respondents were asked (in Chinese) 
to rate their health on a 1–5 scale as excellent, good, average, not so 
good, or poor (M = 2.93, SD = 0.99, Table 1). Self-rated health was 
standardized to have M = 0, SD = 1 for analysis, with higher values 
indicating worse self-rated health.

To evaluate criterion validity of biological aging measures and 
comparison measures, we tested associations with measures of phys-
ical performance, cognitive function, and survival.

Physical performance
SEBAS administered four in-home tests of physical performance 
in 2006: a chair-stand test, walk-speed test, grip strength test, and 
peak-expiratory-flow test. The chair-stand test was conducted with 
arms folded across the chest and consisted of standing up and sit-
ting down five times in a row as quickly as possible. Chair-stand 
speed (stand/s) was adjusted for chair height (27) (M  =  0.48, 
SD = 0.18, Table 1). Walk-speed (m/s) was measured as the faster 
of two trials walking three meters at normal speed, starting in a 
standing position (M = 0.77 meters per second, SD = 0.28 Table 1). 
Grip strength was measured as the highest value across three trials 
on each hand using the North Coast hydraulic hand dynamom-
eter (M = 25.68 kg, SD = 10.14, Table 1). Peak-expiratory-flow, a 
measure of lung function, was assessed using the TruZone peak flow 

meter (M = 296.59 L/m, SD = 124, Table 1). Physical functioning 
measures were standardized to have M = 0, SD = 1 for analysis with 
higher values indicating higher levels of physical functioning. For 
grip strength, standardization was conducted separately for men and 
women.

Cognitive functioning
Cognitive assessments were conducted in 2000 and 2006 using a 
set of cognitive and memory tasks derived from the Short Portable 
Mental Status Questionnaire (28), the Rey Auditory Verbal Learning 
Test (29), and a modified Digits Backward test (30). Each task was 
scored following published guidelines (31) and scores were summed 
to compute an overall cognitive score ranging from 0 to 24. If a re-
spondent did not answer an item, it was coded as incorrect, or 0. The 
mean score in the analytic sample was 17.1 in 2000 (SD = 3.14, Table 
1), and 15.5 in 2006 (SD = 3.93, Table 1). The cognitive functioning 
measures were standardized to have M = 0, SD = 1 for analysis, with 
higher scores indicating higher cognitive functioning.

Mortality
Mortality follow-up of SEBAS participants was conducted through 
linkage to the Ministry of Health and Welfare death certificate regis-
tration system. Primary analysis of mortality focused on follow-up 
through 2006, when functional testing was conducted. Additional 
analysis of survival through 2015 is reported in Supplementary 
Table 9.

Analysis
We tested associations of KDM Biological Age, homeostatic 
dysregulation, physiological dysregulation, and self-rated health 
with measures of physical performance and cognitive functioning 
using linear regression. We estimated two models. The first model 
included covariates for chronological age in 2000 and sex. The 
second model included body mass index in 2000 as an additional 
covariate. For analysis of cognitive test data, we also fitted a third 
model that included the participant’s cognitive test score in 2000 as 
a covariate. The coefficient estimated for the biological aging vari-
able from this third model tests the association between measured 
aging and cognitive decline between 2000 and 2006. We report ef-
fect sizes as standardized regression coefficients (interpretable as 
Pearson’s r). We tested associations of KDM Biological Age, homeo-
static dysregulation, physiological dysregulation, and self-rated 
health with survival using Cox proportional hazard models. To test 
whether each measure of aging improved prediction of measures of 
functioning and mortality over and above chronological age alone, 
we computed Harrell’s concordance index (32). Harrell’s concord-
ance index is measured as the proportion of time that the model 
correctly orders survival times for pairs of respondents among all 
possible pairs. Higher values indicate better prediction.

Results

SEBAS participants with older chronological age had older KDM 
Biological Ages, higher levels of homeostatic dysregulation, higher 
scores on physiological dysregulation, and poorer self-rated health 
(r  =  .07–  .67, Table 1). The correlation was highest for KDM 
Biological Age, which includes chronological age in the calculation 
formula, and lowest for self-rated health. We next evaluated corre-
lation among the different aging measures. We first regressed all meas-
ures on chronological age and sex and computed residual values. We 
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then computed correlations among these residuals (Supplementary 
Table 3). Participants with more advanced KDM Biological Age also 
tended to have higher levels of homeostatic dysregulation (r = .68) 
and more physiological dysregulation (r = .42), but no association 
with self-rated health (r = .06).

SEBAS participants with more advanced KDM Biological Age 
and higher levels of homeostatic dysregulation performed worse on 
tests of physical performance. Effect sizes were small (r = .08–.20), 
but similar in analysis of physiological dysregulation and self-rated 
health (r = .07–.20). When we repeated the analysis including body 
mass index in 2000 as a covariate, effect sizes were substantively 
similar (Supplementary Tables 4–7). Effect sizes with 95% confi-
dence intervals are plotted in Figure 1. Full results from regression 
analysis are reported in Supplementary Tables 4–7.

SEBAS participants with more advanced biological aging per-
formed more poorly on tests of cognitive functioning and showed 
evidence of cognitive decline between 2000 and 2006. SEBAS parti-
cipants with more advanced KDM Biological Age and higher levels 
of homeostatic dysregulation in 2000 performed worse on the test of 
cognitive functioning in 2006 (r = .13–.20). Effect sizes were similar 
in analyses of physiological dysregulation and self-rated health 
(r  =  .12–.17). Because cognitive functioning earlier in life is asso-
ciated with healthier aging and individual differences in cognitive 
functioning are relatively stable across the life course (33,34), these 
associations could reflect reverse causation. Therefore, we conducted 
a second analysis focused on change in cognition between 2000 and 
2006. We repeated the regression analysis, this time including par-
ticipants’ scores on the same cognitive test in 2000 as a covariate. 
Effect sizes for KDM Biological Age (r  =  .17, CI  =  .08–.26) and 
homeostatic dysregulation (r  =  .11, CI =.04–.17) were modestly 
attenuated. Results were similar for physiological dysregulation 
(r = .12, CI = .05–.19). Self-rated health in 2000 was not associated 
with change in cognitive functioning between 2000 and 2006. Effect 
sizes for analysis of cognitive functioning are graphed in Figure 1. 
Full results from regression analysis are reported in Supplementary 
Table 8.

SEBAS participants with more advanced biological aging were 
at increased risk of death through follow-up in 2006 and 2015. By 
the time of follow-up in 2006, n = 161 participants had died (17%). 
Those with more advanced KDM Biological Age and higher levels 
of homeostatic dysregulation were at increased risk of death during 
2000–2006 (KDM Biological Age HR  =  1.56, CI  =  1.35–1.81; 
homeostatic dysregulation HR = 1.50, CI = 1.27–1.76). Effect sizes 
were larger for physiological dysregulation (HR = 1.95, CI = 1.69–
2.26) and smaller for self-rated health (HR = 1.26, CI = 1.07–1.48). 
By 2015, n = 421 had died (44%). Those with more advanced KDM 
Biological Age and higher levels of homeostatic dysregulation were 
at increased risk of death during 2000–2015 (KDM Biological Age 
HR = 1.59, CI = 1.43–1.77; homeostatic dysregulation HR = 1.54, 
CI  =  1.39–1.71). Effect sizes were again larger for physiological 
dysregulation (HR = 1.81, CI = 1.64–1.98) and smaller for self-rated 
health (HR  =  1.14, CI  =  1.03–1.25). Resulting survival estimates 
from the 2000–2006 interval are graphed in Figure 2. Complete re-
gression results are reported in Supplementary Table 9.

KDM Biological Age and homeostatic dysregulation both im-
proved discrimination of mortality over and above a base model 
including chronological age and sex (base-model Harrell’s concord-
ance index (HCI) = 0.725; KDM HCI = 0.755; HD HCI = 0.746). As 
in previous analysis, the SEBAS physiological dysregulation measure 
performed somewhat better (HCI = 0.793) and self-rated health per-
formed less well (HCI = 0.732). The result for self-rated health was 
weaker than in a previous analysis in SEBAS that included more 
participants, a shorter follow-up interval, a different model specifi-
cation, and measured discrimination using the AUC rather than the 
HCI (35).

Discussion

We conducted analysis of the KDM Biological Age and homeo-
static dysregulation methods of quantification of biological aging in 
a sample of Taiwanese older adults participating in SEBAS. There 
were two main findings. First, biological aging measures developed 
using data from the U.S. NHANES prospectively predicted differ-
ences in functional status, cognitive decline, and mortality risk in a 
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sample of Taiwanese older adults. Second, biological-aging-measure 
effect sizes were similar to effect sizes for a composite biomarker 
index developed within the analysis sample and a survey measure of 
self-rated health.

These findings address questions about clinical-biomarker-based 
quantifications of biological aging central to the application of these 
algorithms in clinical trials and etiologic studies. For clinical trials, a 
key question about biological aging algorithms is, “Can algorithms 
developed in one sample or one population be applied to another 
while retaining criterion validity?” If the validity of biological aging 
measures is restricted to people of a particular demographic profile 
or living in a particular place, then it will not be very useful in the 
context of a multi-site randomized trial. Two previous studies of 
clinical-biomarker-based quantifications of biological aging raised 
questions about cross-population validity of algorithms (7,15). In 
contrast, our study suggests reason for some confidence. We devel-
oped KDM Biological Age and homeostatic dysregulation algorithms 
from analysis of U.S. NHANES data and applied these algorithms to 
data from Taiwanese older adults. The resulting measures of bio-
logical aging were associated with measures of function and survival 
with effect sizes similar to those reported in studies of U.S. adults 
(9,24). These findings suggest that biological aging algorithms devel-
oped within the U.S. NHANES can generate estimates of biological 
aging with similar criterion validity in other populations. Additional 
replications are needed.

For etiologic studies, a key question about biological aging algo-
rithms is whether they provide an adequate surrogate for processes 
of health decline in aging (36). The current standards in such studies 
include biomarker indices based on cut-points and participant’s 
subjective perceptions of their health status. Our findings suggest 
that algorithm methods proposed to quantify biological aging cap-
ture similar information about morbidity, disability, and mortality 
when compared with these alternatives. Given similar performance, 
the algorithm methods offer three advantages over biomarker cut-
point and self-rated health alternatives. First, they are based on a 
reference external to the sample under study, and therefore, results 
are more directly comparable across samples. When we computed 
physiological dysregulation using NHANES reference data to form 
cut-points, effect sizes were somewhat smaller when compared with 
KDM and HD algorithms. Second, they capture similar information 
about aging processes at different life-course stages, permitting par-
allel application in young, midlife, and older adults. Third, because 
they are based on continuous distributions of biomarkers, they may 
be more sensitive to subtle differences in exposure.

We acknowledge several limitations. First, we analyzed two 
methods to quantify biological aging from clinical-biomarker data. 
But there are others. For example, we were unable to test the algo-
rithm recently proposed by Liu and colleagues (9) because SEBAS 
data did not include two of the nine biomarkers included in that 
algorithm—alkaline phosphatase and red cell distribution width 
(Supplementary Table 2). Similarly, SEBAS does not have DNA 
methylation data from which to compute epigenetic clock measures 
of biological aging (37). These measures capture different informa-
tion from the clinical-biomarker measures we analyzed (21). Second, 
we did not have access to a Taiwanese dataset comparable to the 
NHANES. As a result, we could not test if developing biological 
aging measures within a Taiwanese sample improved performance 
of the measures for prediction of functional status and mortality. 
However, effect sizes for the biological aging measures observed in 
the Taiwanese SEBAS sample are similar to effect sizes reported in 
U.S. samples. Third, SEBAS draws from the Taiwanese population, 

which enjoys a higher standard of living than much of the globe. 
Further analysis in low- and middle-income countries is needed. 
Fourth, our analysis was not powered to detect small differences in 
predictive accuracy between measures. For population surveillance 
applications, further testing in samples powered to detect small dif-
ferences between measures is needed to establish if quantifications 
of biological aging can provide superior information to alternative 
measures.

Within the context of these limitations, our findings suggest 
promise for the expanded application of clinical-biomarker-based 
quantifications of biological aging in cohort and clinical studies 
within and outside the United States. One opportunity suggested by 
our findings is the potential for cross-national comparative studies 
of aging based on biomarker data. Given marked differences in 
patterns of age-related morbidity and longevity around the world 
and the growing availability of clinical-biomarker data from bio-
social surveys, such comparisons represent a potent opportunity for 
gerontology.
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Supplementary data are available at The Journals of Gerontology, 
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