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Abstract

PRMT5, which regulates gene expression by symmetric dimethylation of histones and non-histone 

target proteins, is overexpressed and plays a pathogenic role in many cancers. In diffuse large B 

cell lymphoma (DLBCL), the mechanisms of PRMT5 dysregulation and its role in 

lymphomagenesis remain largely unknown. Here we demonstrate that B cell receptor (BCR) 

signaling regulates PRMT5 expression in DLBCL cells. Immunohistochemical analysis reveals 

elevated levels of PRMT5 expression in DLBCL cases and in germinal center (GC) B cells when 

compared to naive B cells. PRMT5 can be induced in naive B cells by BCR stimulation. We 

discovered that BTK-NF-κB signaling induces PRMT5 transcription in activated B cell-like 

(ABC) DLBCL cells while BCR downstream PI3K-AKT-MYC signaling upregulates PRMT5 

expression in both ABC and GCB DLBCL cells. PRMT5 inhibition inhibits the growth of DLBCL 
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cells in vitro and patient derived xenografts. Genomic and biochemical analysis demonstrate that 

PRMT5 promotes cell cycle progression and activates PI3K-AKT signaling, suggesting a feedback 

regulatory mechanism to enhance cell survival and proliferation. Co-targeting PRMT5 and AKT 

by their specific inhibitors is lethal to DLBCL cell lines and primary cancer cells. Therefore, this 

study provides a mechanistic rationale for clinical trials to evaluate PRMT5 and AKT inhibitors 

for DLBCL.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma 

arising from germinal center (GC) or post-GC center B cells1, 2. DLBCL includes two main 

molecular subtypes, termed activated B cell-like (ABC) and GC B cell-like (GCB), which 

demonstrate distinct biological and genetic characteristics and different clinical 

outcomes3–5. In more aggressive ABC DLBCL, NF-κB is constitutively activated by a 

variety of genetic alterations6–13, including somatic mutations targeting components of the B 

cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways. For example, MYD88 

mutations (mainly L265P) are present in ~40% of ABC DLBCL tumors, which promote cell 

survival by activating the NF-κB pathway and inducing production of IL-6 and/or IL-109. 

The NF-κB pathway can also be engaged by gain-of-function mutations of the BCR 

components CD79A and CD79B11 and the downstream signaling adaptor CARD1114. The 

active form of BCR signaling is required for the fitness of ABC DLBCL cells11, 15. BTK, a 

key component of the early BCR signaling pathway, is an effective drug target and its 

inhibitor ibrutinib has been used for the treatment of ABC DLBCL16, 17.

In GCB DLBCL, there are no highly recurrent mutations in the BCR signaling and NF-κB 

pathways. Rather, GCB DLBCL cells use antigen-independent tonic BCR signaling through 

the PI3K/AKT signaling pathway to promote their survival, similar to Burkitt lymphoma 

cells18, 19. PTEN, a negative regulator of PI3K, is lost in its expression in more than 50% of 

cases by a number of mechanisms including deletion, mutation, and amplification of the 

miR17–92 microRNA cluster20. One of the downstream targets of the PI3K pathway is 

MYC as re-expression of PTEN or inhibition of PI3K/AKT signaling in PTEN deficient 

cells reduces MYC expression20, 21. Targeting the PI3K signaling pathway has emerged as a 

therapeutic strategy in DLBCL22.

Arginine methylation is a common posttranslational modification that governs important 

cellular processes and impacts development, cell growth, proliferation, and differentiation23. 

Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs), which 

are classified as type I and type II enzymes responsible for the formation of asymmetric and 

symmetric dimethylarginine, respectively24. PRMT5 is the main type II enzyme that 

catalyzes symmetric dimethylarginine of histone proteins to induce gene silencing by 

generating repressive histone marks, such as H2AR3me2s, H3R8me2s, and H4R3me2s25–29. 

These histone modifications facilitate PRMT5 to form transcriptional repressive complexes, 

including those containing SIN3A/HDAC, MBD2/NURD, N-CoR/SMRT and DNMT3A29. 

PRMT5 can also methylate nonhistone proteins such as the transcription factors p53, E2F1 

and p6530–32. PRMT5 deficiency leads to embryonic lethality due to the abrogation of 
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pluripotent cells in mouse blastocysts33. PRMT5 expression is required for normal adult 

hematopoiesis in a PRMT5 conditional knockout mouse model34. A recent elegant 

biochemical and genetic study has demonstrated that PRMT5 methylates BCL6, regulates 

expression of BCL6 target genes, and therefore contributes to GC formation35.

A growing literature demonstrates a critical role of PRMT5 in tumorigenesis36–42. PRMT5 

expression is upregulated in various cancers, including mantle cell lymphoma and 

DLBCL43–46. PRMT5 upregulation is associated with Epstein-Barr virus (EBV) infection41. 

Viral latent membrane protein 1 (LMP1) induces PRMT5 expression by driving the 

formation of an NF-κB suppressive complex, which inhibits transcription of the PRMT5 

inhibitory microRNA9641. Given that less than 10% of DLBCL are EBV-positive47, the 

mechanisms underlying PRMT5 expression in DLBCL are still largely unknown.

Here, we investigated the role of BCR signaling in regulating PRMT5 expression in 

DLBCL. In both ABC and GCB DLBCL cells, the PI3K-AKT signaling pathway 

contributes to PRMT5 overexpression. Additionally, active BCR-BTK-NF-κB signaling in 

ABC DLBCL cells also upregulates PRMT5 expression. Using genetic and pharmacological 

approaches, we demonstrated that PRMT5 expression is required for the survival and 

proliferation of DLBCL cells in vitro and in vivo. We also revealed that co-targeting PRMT5 

and AKT by their specific inhibitors synergistically inhibits the growth of DLBCL cell lines 

and primary cancer cells.

Methods

Cell lines and culture.

Doxycycline-inducible human DLBCL cell lines (HBL1, TMD8, U2932, SUDHL2, OCI-

Ly10, Toledo, OCI-Ly7, SUDHL4, K422 and OCI-Ly7) that express the bacterial 

tetracycline repressor were engineered as described previously48. Doxycycline (20 ng/ml) 

was used for inducing the expression of genes of interest.

Gene knockout with an inducible 2-vector CRISPR-Cas9 knockout system.

pRSGT16-U6Tet-sg-HTS6C-CMV-TetRep-2A-TagRFP-2A-Puro (Cellecta) was used for 

generating sgRNA targeting specific gene and pR-CMV-Cas9–2A-Hygro (Cellecta) for 

generating Cas9-expressing cells.

Xenografts.

Male and female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) breeder pairs were purchased 

from The Jackson Laboratory (Bar Harbor, ME, USA) and bred under specific pathogen-free 

conditions in sterile ventilated racks in the animal care facility at the University of 

Wisconsin-Madison. All animal protocols were approved by the Animal Care and Use 

Committee. Tumor measurements were recorded 3 times a week, and volumes were 

calculated as previously described49. When mice became moribund or when tumors 

exceeded 20 mm in any direction, mice were euthanized as required by institutional 

protocols.
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DLBCL patient derived xenografts (PDX).

DLBCL PDX model was established as described previously50. All experimental procedures 

and protocols (the animal IACUC protocol # 00001260 and the tissue collection protocol# 

Lab11–0342) were approved by the Institutional Animal Care and Use Committee and 

Institutional Review Boards of The University of Texas MD Anderson Cancer Center. 

Briefly, 10-week-old male NSG mice were housed in the animal research facility. 5 × 106 

freshly isolated DLBCL cells were directly injected into the fetal bone chip of NSG-hu mice 

after the mice were anesthetized with 5% isoflurane vaporizer. Once tumor growth was 

detected in the first generation, tumor mass was monitored and then passaged. The passaged 

tumor equally grew and mice were assigned as 5 mice/group for in vivo treatment.

RNA-seq analysis.

Total RNA was extracted using RNeasy plus mini kit (Qiagen) according to the 

manufacturer’s protocol. RNA-seq libraries were prepared by using the Illumina TruSeq 

stranded mRNA LT sample preparation kit (Illumina). Sequencing was performed on 

Illumina Hiseq 2500 at 50-bp length. For the RNA analysis, raw reads were mapped to the 

human reference genome (UCSC hg19) by HISAT2 (v2.1), and differential expression 

analysis was done by StringTie (v1.3.4) and Ballgown51. Gene ontology analysis was 

performed by Panther Classification System (http://pantherdb.org/). Gene Set Enrichment 

Analysis (GSEA) was performed by GSEA software (V2.0) (http://

software.broadinstitute.org/gsea/index.jsp). For the GSEA analysis, molecular signatures 

databases h.all.v5.2 symbols.gmt was used. RNAseq data discussed in this publication have 

been deposited in the National Center for Biotechnology Information’s Gene Expression 

Omnibus and are accessible through GEO Series accession number: GSE115136.

Statistical analysis.

Two-tailed Student’s t-test was used to determine a significant difference. Results were 

presented as mean ± standard deviation (SD). *P < 0.05, **P < 0.01, and ***P < 0.001 were 

used to show statistical significance.

Full details of the methods used and data analysis are presented in Supplementary Materials.

Results

PRMT5 expression is elevated in DLBCL and germinal center B cells

To determine the level of PRMT5 expression in DLBCL cells and compare it with normal B 

cells, we isolated naive B cells from human tonsils. Immunoblot analysis of naive B cells 

and several ABC and GCB DLBCL cell lines revealed that levels of PRMT5 expression 

were higher in DLBCL cell lines than that in naive B cells (Figure 1A). Consistent with 

these results, immunohistochemical (IHC) analysis of human tonsils and a tissue microarray 

of DLBCL patient samples demonstrated that PRMT5 expression in both Non-GCB and 

GCB DLBCL and germinal center B cells is elevated compared with non-tumor tissues and 

naive B cells (Figure 1B, 1C). However, there is no statistically significant difference in 

PRMT5 expression between the two subtypes of DLBCL. We also observed increased 

PRMT5 expression in mantle cell lymphoma patient samples when compared with normal 
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lymph nodes (Figure S1A). The level of PRMT5 expression was relatively low in Burkitt 

lymphoma cell lines and Hodgkin lymphoma cell lines but similar in Jurkat T cells when 

compared with the GCB DLBCL cell line OCI-Ly1 (Figure S1B).

B cell receptor (BCR)-mediated canonical NF-κB pathway drives PRMT5 expression in 
ABC DLBCL cells

The above IHC analysis demonstrating increased PRMT5 expression in antigen experienced 

GC B cells prompted us to investigate the role of BCR signaling in regulating PRMT5 

expression. Immunoblot analysis revealed higher levels of PRMT5 expression in tonsillar B 

cells than of naive B cells (Figure 2A). Notably, when BCR was engaged by IgM antibody 

in naive B cells, expression of PRMT5 along with IRF4, a known BCR downstream target, 

was significantly increased (Figure 2B). This result was further supported by IHC analysis, 

which showed a positive expression correlation of PRMT5 with BTK, a key component of 

the early BCR pathway (Figure 2C). To knock out BTK, we used an inducible CRISPR/Cas9 

system that was created for our very recent study52. We induced BTK sgRNA expression 

with 20 ng/ml doxycycline in the ABC DLBCL cell line TMD8 and found a time-dependent 

reduction in BTK expression and PRMT5 expression (Figure S2A). After 6 days of BTK 

sgRNA induction, we observed a significant reduction of PRMT5 expression in another 

ABC DLBCL cell line HBL1 when compared with sgRNA uninduced control cells (Figure 

2D), suggesting that PRMT5 is a downstream target of BTK. BCR-BTK mediated activation 

of the canonical NF-κB pathway is characteristic of the ABC subtype and an important pro-

survival pathway in ABC DLBCL. Because this NF-κB pathway is not activated in GCB 

DLBCL, not surprisingly, BTK knockout did not change PRMT5 expression in two GCB 

DLBCL cell lines (Figure S2B).

Next, we used the above CRISPR-Cas9 system to knockout RelA/p65, which is an important 

component in the canonical NF-κB pathway and a critical transcription factor downstream 

of BTK6. Knockout of p65 led to a reduction in PRMT5 expression in TMD8 and HBL1 

cells (Figure 2E), which was in a time-dependent manner (Figure S2C). Decreased PRMT5 

expression by p65 sgRNA was not due to general cytotoxicity because the sgRNA 

expressing cells were viable after 6 days of induction (Figure S2D). The ENCODE data 

(GEO:GSM935478) showed that there are p65 binding sites around the transcription start 

site of PRMT5 in human lymphoblastoid cell line GM12878. For ChIP analysis, we 

designed primers around that region and indeed found p65 enrichment within the PRMT5 

locus (−196, +3) in two ABC DLBCL cell lines (Figure 2G). PRMT5 was reduced in p65 

knockout cells (Figure 2F). As expected, enrichment of the p65 target gene IRF4 was also 

reduced in p65 knockout cells (Figure 2F). Taken together, the results suggest that active 

BCR/BTK signaling contributes to upregulation of PRMT5 expression in ABC DLBCL 

cells.

Upregulation of PRMT5 expression by BCR-mediated PI3K/AKT signaling in both ABC and 
GCB DLBCL cells

In GCB DLBCL, NF-κB is not activated. Rather, GCB DLBCL cells use antigen-

independent tonic BCR signaling through the PI3K/AKT signaling pathway to promote their 

survival5318. The PI3K/AKT signaling pathway is also activated in ABC DLBCL cells due 
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to the chronic antigen-dependent BCR signaling20, 21. MYC is a downstream target of this 

signaling pathway in DLBCL20, 21. AKT induces GSK3β phosphorylation, which leads to 

GSK3β autoinhibition54. Reduced GSK3β activity then stabilizes MYC protein since 

GSK3β phosphorylates MYC and facilitates MYC rapid proteolysis by the ubiquitin 

pathway55. A recent Eμ-myc mouse genetic study demonstrated that PRMT5 is a direct 

transcriptional target of MYC44.

Based on these findings, we hypothesized that the BCR-PI3K/AKT-MYC pathway 

upregulates the expression of PRMT5 in DLBCL. To test this hypothesis, we treated GCB 

and ABC DLBCL cell lines with the selective AKT inhibitor AZD536321. Indeed, AKT 

inhibition by AZD5363 diminished phosphorylation of GSK3β, a direct downstream target 

of AKT, and reduced expression of both MYC and PRMT5 in all six cell lines (Figure 3A, 

left panel). AZD5363 mediated reduction in expression of MYC and PRMT5 did not result 

from general cytotoxicity based on our cell apoptosis assay (Figure S3). Interestingly, a 

similar result was obtained in normal B cells when stimulated with an-IgM (Figure 3A, right 

panel), suggesting that PRMT5 regulation by the BCR-PI3K/AKT-MYC pathway is a 

general mechanism. MYC-mediated regulation of PRMT5 was confirmed by MYC 

knockout strategy in 2 ABC DLBCL cell lines (HBL1 and TMD8) and 2 GCB DLBCL cell 

lines (OCI-Ly1 and SUDHL4). Our time course experiments showed significant reduction in 

MYC expression after 5–6 days of MYC sgRNA induction (Figure S2E), which did not 

significantly reduce cell viability (Figure S2D). Indeed, PRMT5 expression significantly 

decreased in the cells expressing the MYC sgRNA (Figure 3B). We next performed MYC 

ChIP analysis using a pair of primers within the promoter region of PRMT5 (−321, −124), 

according to ENCODE data (GEO:GSM822290) in the human lymphoblastoid cell line 

GM12878. We found an enrichment of MYC on this promotor region of PRMT5 (Figure 

3C). This is MYC specific since the enrichment signal was significantly diminished in MYC 

knockout cells (Figure 3C). Together, these data suggest PI3K/AKT signaling regulates 

PRMT5 expression through the AKT-GSK3β-MYC axis in both ABC and GCB DLBCL 

cells as well as in normal IgM activated B cells.

PRMT5 inhibition by its selective inhibitor EPZ015666 or its sgRNA inhibits the growth of 
DLBCL cells

To test whether highly expressed PRMT5 contributes to cancer cell survival, we used the 

selective PRMT5 inhibitor EPZ015666, which has previously showed significant efficacy in 

growth inhibition of mantle cell lymphoma cells both in vitro and in vivo43. We treated 4 

ABC DLBCL and 4 GCB DLBCL cell lines with this inhibitor and observed functional 

impairment of PRMT5 because of diminished H4R3 symmetric dimethylation (Figure 4A), 

which subsequently led to a significant reduction in cell viability in all of the DLBCL cell 

lines tested (Figure 4B). For comparison, we also tested 4 mantle cell lymphoma cell lines in 

the same experimental setting and found two sensitive cell lines (Marver-1 and Z138) and 

two insensitive cell lines (Granta-519 and Jeko) (Figure 4B). We also confirmed insensitivity 

of Granta-519 and Jeko cell lines to PRMT5 inhibition with an extended observation time 

(Figure S4A). Given the important physiological role of PRMT5, there is the possibility of 

toxicity of EPZ015666 to normal B cells. To test that possibility, we isolated naive B cells 

from human tonsils and stimulated in vitro with IgM. The survival of EPZ015666 treated 
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activated B cells was comparable to that of DMSO treated cells during 6 days of culture 

(Figure S4C), suggesting that PRMT5 inhibition is not toxic to normal B cells. Reduced 

number of viable DLBCL cells in the culture was found to be due to inhibition of cell cycle 

progression and cell proliferation (Figure 4C, Figure S4B) but unlikely through triggering of 

apoptosis (Figure S4D). These data demonstrate that PRMT5 function is required for the 

survival and proliferation of DLBCL cells. The insensitivity of normal B cells to the 

inhibition of PRMT5 suggests that PRMT5 could be a therapeutic target for DLBCL.

We then knocked out PRMT5 in ABC DLBCL (HBL1, TMD8) and GCB DLBCL (OCI-

Ly7) cell lines by sgRNA. Immunoblot analysis indicated a near complete knockout of 

PRMT5 and a significant reduction of H4R3 dimethylation by sgPRMT5 (Figure 5A). The 

knockout was PRMT5 specific since the related members PRMT7 and PRMT9 were not 

affected (Figure 5A). Consistent with the above result, PRMT5 knockout by its sgRNA 

significantly reduced the number of viable cells when compared with control cells in which 

sgPRMT5 was not induced for expression (Figure 5B). We confirmed this as an on-target 

effect since overexpression of PRMT5 cDNA with mutations of the targeting sequence 

rescued the effect of sgPRMT5 on proliferation (Figure S5A). Consistent with the inhibitor 

result, sgPRMT5 expression inhibited cell cycle progression and cell proliferation (Figure 

S5B) but did not significantly induce apoptosis (Figure S4D). The antitumor effect of 

PRMT5 sgRNA was further revealed in xenograft mouse models of TMD8 and OCI-Ly7, 

where sgPRMT5 expression inhibited tumor growth and significantly reduced tumor 

volumes in 2 different DLBCL xenograft models (Figure 5C).

To investigate the molecular mechanisms underlying tumor growth inhibition by PRMT5 

sgRNA, we performed the whole genome transcriptome analysis by RNA-seq. PRMT5 

sgRNA was induced for expression for either 3 days (partial knockout) or 5 days (complete 

knockout) (Figure S6A). Since TMD8 and OCI-Ly7 are two different DLBCL subtypes with 

their distinct gene expression profiles, it was not surprising that less than 10% of up- or 

down-regulated genes by PRMT5 sgRNA were overlapped (Figure S6B, Table S1). 

However, gene set enrichment analysis (GSEA) demonstrated common gene signatures 

enriched between the two cell lines upon PRMT5 knockout, including E2F targets, PI3K-

AKT-mTOR signaling, glycolysis and cholesterol homeostasis (Figure 6A, Table S1, Figure 

S6C). Notably, among E2F1 target genes, CDK1, CDK4, PLK1, PLK4 and MYC were 

downregulated by PRMT5 sgRNA (Table S1). Immunoblot analysis verified cell cycle arrest 

by PRMT5 sgRNA, showing reduced expression of E2F1 while expression of the negative 

cell cycle regulators p53 and RBL2 was increased in the knockout cells (Figure 6B, top 

panel). PRMT5 sgRNA expression also reduced AKT phosphorylation (Figure 6B, bottom 

panel), suggesting a positive feedback loop between PRMT5 and PI3K-AKT signaling. 

These results suggest that PRMT5 regulates cell cycle progression and cellular metabolic 

pathways to promote DLBCL survival and proliferation.

Co-targeting PRMT5 and AKT by their specific inhibitors in DLBCL

There has been a recent increase in the use of patient derived xenograft (PDX) engrafted into 

immune-compromised rodents such as NSG mice for preclinical modeling. For animal 

studies, we used a more potent PRMT5 inhibitor termed GSK3326595, which was recently 
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used for mantle cell lymphoma xenografts56 and has led to a new clinical trial 

(NCT02783300). We first tested the drug in vitro and found a remarkable reduction in both 

AKT phosphorylation and symmetric dimethylation of histone H4R3 in all 4 cell lines after 

3 days of treatment (Figure 7A, top panel). This result is consistent with the above PRMT5 

sgRNA data. We then tested anti-tumor effects of GSK3326595 in a patient-derived 

xenograft model that we recently developed. Indeed, GSK3326595 treatment significantly 

inhibited the growth of DLBCL from a patient with ABC DLBCL and prolonged mouse 

survival (Figure 7B) while not affecting mouse body weight (Figure S8A) in a NSG 

xenograft model.

Given a positive regulatory loop between PRMT5 and AKT and the fact that PRMT5 

maintains the fitness of DLBCL cells through regulating gene expression in multiple 

oncogenic and metabolic pathways, we hypothesized that PRMT5 inhibition by its specific 

inhibitor would enhance the antitumor effects of an AKT inhibitor in DLBCL. A recent 

preclinical study and our in vitro analysis demonstrated that AZD5363 is effective in killing 

those DLBCL cells that harbor PTEN mutations/deletions or lack PTEN expression21, which 

are largely restricted to GCB subtype20 (Figure S7). To test our hypothesis, we avoided 

using AZD5363 but used AKT inhibitor V (or triciribine) instead, an AKT inhibitor that is 

being used in clinical trials for solid cancers and other hematological malignancies57. 

Immunoblotting analysis showed that treatment with AKT inhibitor V dramatically reduced 

AKT phosphorylation, and MYC and PRMT5 expression in 2 ABC and 2 GCB DLBCL cell 

lines (Figure 7A, bottom panel). We then treated these cell lines and an additional GCB cell 

line (HT) with GSK3326595 or AKT inhibitor V alone or in combination and found 

synergistic cell killing of all 5 cell lines (Figure 7C). Synergism between the two drugs was 

also observed in primary cancer cells from 3 DLBCL patients, each with ABC, GCB and 

MYC/BCL-2 double-hit DLBCL (Figure 7C, Figure S8B). Therefore, our data suggest that 

co-targeting PRMT5 and AKT is a potential novel targeted combination therapeutic strategy 

with probable synergy in DLBCL.

Discussion

In this study, we have elucidated the molecular mechanisms of BCR signaling in regulating 

PRMT5 expression in DLBCL (Figure 6C). PRMT5 expression is elevated in DLBCL cells 

as well as in normal germinal center B cells. PRMT5 is induced upon BCR stimulation in 

naive B cells. BCR downstream PI3K signaling regulates PRMT5 expression in both ABC 

and GCB DLBCL cells through the AKT-GSK3β-MYC axis. In addition, active BCR-BTK-

NF-κB signaling in ABC DLBCL cells also upregulates PRMT5 expression. Expression of 

PRMT5 is required for the fitness of DLBCL since genetic or pharmacological inhibition of 

PRMT5 inhibits the growth of DLBCL cells both in vitro and in vivo. PRMT5 promotes the 

survival and proliferation of these lymphoma cells, making it an attractive therapeutic 

target41, 43. In addition, disruption of a positive feedback regulatory loop between PRMT5 

and AKT by their specific inhibitors has potential clinical implications.

Recent studies have demonstrated higher levels of PRMT5 expression in DLBCL and mantle 

cell lymphoma than in normal B cells41, 44–46. Our work extends these findings and 

describes an antigen-dependent PRMT5 expression mechanism. This mechanism applies to 
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DLBCL cells as well as to normal B cells, including germinal center B cells and activated B 

cells. Notably, the level of PRMT5 expression is comparable between DLBCL and germinal 

center B cells. In addition, antigen stimulation dramatically increases PRMT5 expression in 

naive B cells either from tonsils or from peripheral blood. Despite elevated PRMT5 

expression and its essential role in cell survival, our prognosis analysis revealed no relevance 

of PRMT5 expression to DLBCL patient outcomes (data not shown). This could be due to 

the fact that the level of PRMT5 expression is not distinguishable between GCB and Non-

GCB DLBCL.

It is not well understood how PRMT5 maintains fitness of DLBCL cells. Our flow 

cytometric, biochemical and RNA-seq analyses have demonstrated that PRMT5 plays a 

positive role in cell cycle progression. Methylation of E2F1 by PRMT5 inhibits apoptosis 

and promotes cell cycle progression58. PRMT5 has also been shown to regulate the activity 

of p53 and its expression level30, 34. RBL2, which inhibits E2F function and cell cycle 

progression from G1 to S phase, is epigenetically silenced by PRMT5 in DLBCL46. 

Consistent with these findings, our immunoblot analysis revealed reduced expression of 

E2F1 in PRMT5 knockout cells while the level of RBL2 and p53 expression is increased. In 

support of these results, RNA-seq data showed that E2F1 target genes are downregulated in 

these knockout cells, including CDK1, CDK4, PLK1, PLK4 and MYC. PRMT5 can also 

promote DLBCL survival through interaction with, and methylation of, BCL635

GSEA also demonstrated that PRMT5 regulates the expression of genes that involve PI3K-

AKT-mTOR signaling, glycolysis and cholesterol homeostasis. Interestingly, in addition to 

cell cycle signature enrichment, all these enriched metabolic signatures are also among the 

GSEA list of normal germinal center B cells (PRMT5 high) when compared with naive B 

cells (PRMT5 low) (Figure S6D), based on published RNA-seq data59. To date, our 

knowledge of PRMT5 in cellular metabolism is limited. A recent study demonstrated that 

PRMT5 is upregulated by high fat diet in the mouse liver and its enzymatic activity 

enhances hepatic mitochondrial biogenesis through activation of PI3K-AKT signaling60. 

Consistent with this finding, our data suggest that PRMT5 is required for AKT activation 

and forms a feedback regulatory loop with AKT to promote the survival and proliferation of 

DLBCL cells (Figure 6). Future work to gain more insights into the function of PRMT5 in 

cellular metabolism appears warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PRMT5 expression in DLBCL cell lines and tissues.
(A) Immunoblot analysis of PRMT5 expression in naive B cells and the indicated DLBCL 

cell lines. β-actin served as a loading control. (B) Immunohistochemical analysis of PRMT5 

expression in DLBCL tumor tissues and human tonsils, analyzed with InformTM advanced 

image analysis software (student’s t-test, ***p<0.001). (C) Representative images of 

PRMT5 expression in a GCB DLBCL, a Non-GCB DLBCL, and a human tonsil (original 

magnification X400).
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Figure 2. PRMT5 expression driven by B cell antigen receptor signaling.
(A) Immunoblot analysis of PRMT5 expression in naive B cells and total tonsillar B cells 

isolated from the same human tonsil. (B) Immunoblot analysis of IgM antibody stimulated 

naive B cells from tonsils (left panel) and peripheral blood (right panel). (C) Correlation of 

protein expression by immunohistochemical analysis between BTK and PRMT5 in 104 

DLBCL cases (34 Non-GCB DLBCL, 70 GCB DLBCL). (D) PRMT5 expression after 

knockout of BTK by sgRNA. BTK sgRNA was induced for expression with 20 ng/ml 

doxycycline for 6 days before immunoblot analysis. Error bars represent mean ± SD 

(*p<0.05, **p<0.01, n=3). (E) PRMT5 expression after knockout of p65 by sgRNA. p65 

sgRNA was induced for expression with 20 ng/ml doxycycline for 7 days before 

immunoblot analysis. Error bars represent mean ± SD (*p<0.05, n=3). (F) p65 ChIP and 
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qPCR for PRMT5 in DLBCL cells without or with 6 days of p65 sgRNA induction. IgG 

antibody served as a control. Error bars represent mean ± SD (**p<0.01, N =3).

Zhu et al. Page 16

Leukemia. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. PI3K-AKT-MYC signaling regulates PRMT5 expression in DLBCL.
(A, left panel) Eexpression of phospho-GSK3β, MYC and PRMT5 by immunoblot analysis 

after 3-day treatment with 1 μM AKT inhibitor AZD5363 on 2 ABC DLBCL cell line 

(TMD8 and U2932) and 4 GCB DLBCL cell lines (OCI-Ly7, K422, OCI-Ly1 and HT). β-

actin served as a loading control. Data are representative of 3 independent experiments. (A, 

right panel) Eexpression of phospho-GSK3β, MYC and PRMT5 by immunoblot analysis 

after 3-day treatment with 1μM AKT inhibitor AZD5363 on naive B cells when stimulated 

with 10 μg/ml anti-IgM. β-actin served as a loading control. Data are representative of 2 

independent experiments. (B) PRMT5 expression after 6 days of MYC sgRNA induction 

with 20 ng/ml doxycycline. Error bars represent mean ± SD (*p<0.05, n=3). (C) MYC ChIP 
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and qPCR for PRMT5 in DLBCL cells without or with 6 days of p65 sgRNA induction. IgG 

antibody served as a control. Error bars represent mean ± SD (N =3).
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Figure 4. Inhibition of PRMT5 inhibits DLBCL cell proliferation.
(A) Treatment of the indicated DLBCL cell lines for 5 days with 1 μM of the PRMT5 

inhibitor EPZ015666 led to reduced symmetric dimethylation of histone H4R3. (B) Trypan 

blue dye exclusion viability assay of the indicated cell lines treated with 1 μM EPZ015666. 

Error bars represent mean ± SD (*p<0.05, ** p<0.01, *** p<0.001, N=3). (C) Cell cycle 

analysis of TMD8 and OCI-Ly7 cells after 6 days of treatment with 1 μM EPZ015666. Error 

bars represent mean ± SD (*p<0.05, N=3).
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Figure 5. Knockout of PRMT5 inhibits DLBCL growth both in vitro and in vivo.
(A)Knockout of PRMT5 reduced symmetric dimethylation of histone H4R3. Immunoblot 

analysis of H4R3 dimethylation in the indicated cell lines after 6 days of PRMT5 sgRNA 

induction. β-actin served as a loading control. (B) Knockout of PRMT5 inhibited 

proliferation of DLBCL cells. Trypan blue dye exclusion viability assay of the indicated cell 

lines after 3 or 6 days of PRMT5 sgRNA induction. Error bars represent mean ± SD 

(*p<0.05, n=3). (C) Knockout of PRMT5 inhibited tumor growth in TMD8 and OCI-Ly7 

xenograft mouse models. Error bars represent mean ± SD (*p<0.05, *** p<0.001, N=8).
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Figure 6. Regulation of cell cycle progression and PI3K-AKT signaling by PRMT5.
(A) Gene set enrichment analysis of E2F signature genes and PI3K-AKT-mTOR signaling 

signature genes in TMD8 and OCI-Ly7 cell line with PRMT5 knockout. (B, top panel) 

Expression level of the indicated cell cycle regulators by immunoblot analysis after PRMT5 

knockout. β-actin served as a loading control. Data are representative of 3 independent 

experiments. (B, bottom panel) Eexpression of phospho-AKT and AKT by immunoblot 

analysis after PRMT5 knockout. β-actin served as a loading control. Data are representative 

of 3 independent experiments. (C) Model of PRMT5 regulation by BCR signaling in 

DLBCL. BCR downstream BTK-NF-κB signaling in ABC DLBCL and PI3K-AKT-GSK3β-

MYC signaling in both ABC and GCB DLBCL lead to the upregulation of PRMT5. 
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Overexpressed PRMT5 promotes cell cycle progression and forms a positive feedback loop 

with PI3K-AKT signaling to enhance cell survival and proliferation.
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Figure 7. Co-targeting PRMT5 and AKT by GSK3326595 and AKT inhibitor V in DLBCL.
(A, top panel) Treatment of the indicated DLBCL cell lines for 3 or 4 days with 800 nM of 

the PRMT5 inhibitor GSK3326595 led to reduced Phospho-AKT and symmetric 

dimethylation of histone H4R3. β-actin served as a loading control. (A, bottom panel) 

Treatment of the indicated DLBCL cell lines for 2 days with 20 μM of AKT inhibitor V led 

to reduced phospho-AKT, MYC and PRMT5. β-actin served as a loading control. (B) 

DLBCL patient derived xenografts (PDX). 5 × 106 freshly isolated ABC DLBCL cells were 

directly injected into fetal bone chip of NSG-hu mice after the mice were anesthetized with 

5% isoflurane vaporizer. Once tumor growth was detected in the first generation, tumor mass 

was monitored and then passaged. The passaged tumor equally grew and mice were assigned 

as 5 mice/group for in vivo treatment. Mice were administered vehicle control or 
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GSK3226595 100mg/kg, oral gavage, twice per day for 35 consecutive days after 3 days of 

tumor engraftment. Tumor burden was calculated by measuring tumor volume (N=5; 

GSK3226595 vs vehicle, p=0.0000023). Survival curve was analyzed by the Kaplan-Meier 

method (N=5; GSK3226595 vs vehicle, p=0.00001). (C) CellTiter-Glo™ Luminescent Cell 

Viability Assay of the indicated DLBCL cell lines after 6-day treatment of the indicated 

concentrations of AKT inhibitor V or GSK3326595, or both, and CellTiter-Glo™ 

Luminescent Cell Viability Assay of primary cancer cells from 3 DLBCL patients after 3-

day treatment of the indicated concentrations of AKT inhibitor V or GSK3326595, or both. 

Data indicate mean ± SD of triplicates. Combination index (CI) was calculated with 

CompuSyn software.
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