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Abstract

Attention to relevant stimulus features in a categorization task helps to optimize performance. 

However, the relationship between attention and categorization is not fully understood. For 

example, even when human adults and young children exhibit comparable categorization behavior, 

adults tend to attend selectively during learning, whereas young children tend to attend diffusely 

(Deng & Sloutsky, 2016). Here, we used a comparative approach to investigate the link between 

attention and categorization in two different species. Given the noteworthy categorization ability of 

avian species, we compared the attentional profiles of pigeons and human adults. We gave human 

adults (Experiment 1) and pigeons (Experiment 2) a categorization task that could be learned on 

the basis of either one deterministic feature (encouraging selective attention) or multiple 

probabilistic features (encouraging distributed attention). Both humans and pigeons relied on the 

deterministic feature to categorize the stimuli, albeit humans did so to a much greater degree. 

Furthermore, computational modeling revealed that most of the adults exhibited maximal 

selectivity, whereas pigeons tended to distribute their attention among several features. Our 

findings indicate that human adults focus their attention on deterministic information and filter less 

predictive information, but pigeons do not. Implications for the underlying brain mechanisms of 

attention and categorization are discussed.
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If it has fur, then it must be a mammal; if it has feathers, then it must be a bird. This kind of 

reasoning is typical of our daily inductive inferences. Indeed, in order to classify numerous 
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objects and events, an organism must perceive and attend to those features that are common 

to exemplars of one category and that distinguish this category from all others. Thus, it 

seems logical to say that, when humans and nonhuman animals learn to categorize diverse 

stimuli, it is advantageous for them to focus on those features that are relevant to mastering 

the task.

Attention figures prominently in many models of human categorization, including exemplar 

models (Kruschke, 1992; Nosofsky, 1986, 1992), prototype models (e.g., Smith & Minda, 

1998), and clustering models (e.g., Love, Medin, & Gureckis, 2004), as well as in various 

animal associative learning models (e.g., George & Pearce, 2012; Mackintosh, 1965, 1975). 

According to these accounts, attention is pliable; it tends to be distributed along multiple 

stimulus dimensions at the beginning of learning, but it converges on the most relevant 

dimensions as learning proceeds. In addition, deploying attention is assumed to help 

optimize performance, particularly when categories can be distinguished on the basis of only 

a few dimensions. For example, to discriminate between squirrels and chipmunks, one 

should shift attention to stripes (diagnostic feature) and away from the tail or fur 

(nondiagnostic features).

Although it is entirely reasonable for organisms to focus their attention on the stimulus 

feature(s) conveying information that is relevant to solving a categorization task, it is 

important to appreciate that a category discrimination can also be accomplished by 

perceiving the overall similarity or family resemblance of the exemplars in each category, so 

that attention may become more widely distributed among multiple features. It has often 

been observed that, under explicit, intentional classification and learning conditions, healthy 

human adults tend to use a single deterministic dimension; however, they tend to rely on 

multiple probabilistic dimensions that contribute to overall exemplar similarity under 

implicit learning conditions (e.g., Kemler Nelson, 1984; Love, 2002; Waldron & Ashby, 

2001).

Learning under those different circumstances may involve separate mechanisms, as 

suggested by COVIS, the categorization theory proposed by Ashby and his colleagues 

(Ashby et al., 1998; Ashby & Valentin, 2005; Ashby & Waldron, 1999). According to 

COVIS, category learning may be accomplished by two different systems: 1) a frontal-based 

explicit system that uses language and logical reasoning, and allows the organism to learn 

relatively quickly, and 2) a basal ganglia-mediated implicit system that involves procedural 

learning, and results in learning taking place slowly, in an incremental fashion, and being 

highly dependent on immediate feedback. Correspondingly, these two systems involve 

different types of attention. Attention is hypothesis driven under the explicit mechanism, 

whereas attention is stimulus-driven by the contingencies of reinforcement under the 

implicit mechanism; that is, stimulus features or dimensions are differentially weighted 

based on their capacity to predict the correct category. As it has become the custom in the 

human cognition literature, we will reserve the term selective attention for the top-down, 

hypothesis-driven type of attention.

Early in human development, categories can be learned without engaging selective attention 

(e.g., Best, Yim, & Sloutsky, 2013). Infants can learn the statistical co-occurrence of several 
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features within the exemplars of different categories; thus, infants’ attention tends to be 

distributed rather than focused on specific diagnostic features. In a later study, Deng and 

Sloutsky (2016) gave 4-year-olds, 7-year-olds, and adults a category learning task in which 

there was a single rule-like deterministic feature that perfectly predicted category 

membership accompanied by multiple probabilistic features that only probabilistically 

predicted category membership (a paradigm developed by Kemler Nelson, 1984). After 

training, participants’ categorization behavior and memory were tested in order to identify 

which features controlled participants’ categorization choices and how well these features 

were remembered. When the instructions directed participants’ attention to both the 

deterministic and probabilistic features (Experiment 1), adults and 7-year-olds tended to rely 

on the deterministic feature, whereas 4-year-olds relied on the probabilistic features. The 4-

year-olds could and did rely on the deterministic feature when the instructions directed them 

to it (Experiment 2), just as did the 7-year-olds and adults. Yet, even when the categorization 

choices of children and adults were based on the deterministic feature, their memories were 

strikingly different. Consistent with their engagement of selective attention, the 7-year-olds 

and adults exhibited robust memory for the deterministic feature, but not for the probabilistic 

features; in contrast, the 4-year-olds remembered all of the features equally well, at odds 

with the idea of selective attention. Thus, older children’s and adults’ memory pointed to 

selective attention during category learning, whereas younger children’s memory suggested 

more distributed attention.

Following Ashby and colleagues’ theoretical proposal (Ashby et al., 1998; see also, Cincotta 

& Seger, 2007; Sloutsky, 2010), one possible explanation for this discrepancy between very 

young children and adults is that selective attention requires the active involvement of brain 

structures mediating what is called executive function: specifically, the prefrontal cortex 

(PFC), which is immature early in development. From this perspective, selective attention in 

category learning requires the participation of a fully developed and functional PFC, 

whereas similarity-based categorization can be accomplished by more primitive brain 

regions, such as the inferotemporal cortex and the basal ganglia. If a fully developed and 

functional human PFC is required to exhibit selective attention, then animals that have a less 

well-developed PFC or that do not have this structure at all may show an attentional pattern 

more similar to that of young children who have an immature PFC.

Given these premises, Couchman, Coutinho, and Smith (2010) explored whether humans 

and monkeys (Macaca mulatta) would rely on a single deterministic predictor or on several 

probabilistic predictors when learning to discriminate two artificial categories. Because 

monkeys have proportionally smaller frontal cortices than humans (Semendeferi, Lu, & 

Schenker, 2002), it was suspected that they might not show the same attention capacities as 

do humans. Human adults were trained under either explicit or implicit learning conditions, 

with the explicit condition being more directly comparable to the task given to monkeys. 

The prediction was that, as in earlier studies (e.g., Kemler Nelson, 1984), human adults 

would strongly rely on the deterministic predictor in the explicit condition, but strongly rely 

on the probabilistic predictors in the implicit condition. However, only 58% of the human 

participants relied on the single perfect predictor in the explicit condition (36% relied on the 

probabilistic features in the implicit condition). Two monkeys were given the same basic 

explicit task in a pair of experiments. The first experiment suffered from low categorization 
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accuracy during the testing phase. The second experiment, with the same two monkeys, 

required several procedural modifications to improve their testing accuracy; its results 

suggested that the monkeys were distributing their attention among all of the features in the 

categorization stimuli. It seems safe to conclude from this study that humans were inclined 

to use to the deterministic information, whereas monkeys were more inclined to use the 

probabilistic information, although the results of the study were not straightforward.

A subsequent study addressing the same issue with pigeons was conducted by Nicholls, 

Ryan, Bryant, and Lea (2011). Pigeons do not have a PFC, so their tendency to distribute 

attention and to rely on all of the available features when learning to categorize complex 

stimuli may be even more clearcut. Indeed, some researchers have contended that pigeons 

lack the capacity for rule formation and selective attention (Smith et al., 2012); if so, then 

pigeons’ excellent categorization performance may actually be based on their recognition of 

the overall similarity among the trials belonging to the same category rather than on their 

deployment of selective attention to the most diagnostic information. In Nicholls et al. 

(2011, Experiment 2), pigeons were shown artificial categories in which each exemplar was 

created from four spatially separated features: one was a perfect predictor, whereas the other 

three were probabilistic predictors (using only one feature could yield 75% accuracy; using 

all three features was required to reach 100% accuracy). When, in testing, the perfect and 

probabilistic predictors were put into conflict, most pigeons relied on the perfect predictor to 

classify the stimuli. Interestingly, those pigeons that did not, also focused on one feature, 

just not the perfect predictor. So, overall, pigeons’ categorization behavior was controlled by 

only one feature (see also Lea & Wills, 2008, Lea et al., 2009, and Wills et al., 2009, for 

further results and discussion).

Categorization controlled by a single feature suggests selective attention, because that single 

feature must be preferentially processed amid all of the available features. More explicit 

evidence implicating attention to specific features in pigeons’ categorization was provided 

Castro and Wasserman (2014). In that study, pigeons were trained to classify stimuli from 

two different artificial categories, in which the exemplars contained both relevant (perfect 

predictors) and irrelevant features. Because tracking of peck location—similar to human eye 

tracking (e.g., Rehder & Hoffman, 2005)—is a promising proxy for measuring pigeons’ 

allocation of visual attention, Castro and Wasserman required their pigeons to peck 

anywhere at the category exemplars when they were presented on a computer screen (see 

also Dittrich, Rose, Buschmann, Bourdonnais, & Güntürkün, 2010). The authors found that, 

as pigeons’ categorization accuracy progressively rose, so too did their pecks to the relevant 

category features; conversely, pigeons’ pecks to the irrelevant category features 

progressively fell. In short, as pigeons were learning to categorize the stimuli, they also 

seemed to learn to attend preferentially to the relevant stimulus features (see also Castro & 

Wasserman, 2016a, 2017).

Although pigeons do not have a PFC—and their pallium is nucleated and lacks the 

distinctive laminar organization observed in the mammalian cortex (Jarvis et al., 2005) —

there are noteworthy parallels between the avian and the mammalian forebrains at the 

connectivity level. For example, birds’ forebrains are both modular, small-world networks 

with a connective core of hub nodes that includes structures (e.g., the nidopallium 
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caudolaterale) similar to the mammalian PFC. These hub nodes are centrally located and 

richly connected (Shanahan, Bingman, Shimizu, Wild, & Güntürkün, 2013). It is thus 

conceivable that pigeons’ brain characteristics are sufficient to allow them to solve 

categorization tasks akin to those solved by human adults (see Lazareva & Wasserman, 

2010, for a comprehensive review).

Considering the prior empirical findings and theoretical analyses, we are left with two 

related, but unanswered questions. First, do animals lacking a mature mammalian PFC learn 

categorization tasks by selectively attending to the most predictive information (e.g., Castro 

& Wasserman, 2014; Nicholls et al., 2011) or do they tend to distribute their attention in the 

process of category learning so that their usage of the most predictive features is merely the 

result of those features acquiring high associative strength because they are strong predictors 

of reinforcement (e.g., Ashby et al., 1998; Couchman et al., 2010; Smith et al., 2012)? 

Second, to what extent is the role of attention in category learning similar in animals and 

humans?

To answer these questions, we deployed a category learning paradigm similar to that of 

Deng and Sloutsky (2016) with both human adults (Experiment 1) and pigeons (Experiment 

2), to better understand how these different species attend to and process the available 

information for solving a categorization task. We also used computational modeling to 

determine people’s and pigeons’ attentional profiles in categorization testing. We expected 

that human adults would be prone to optimize attention and, thus, to focus on the 

deterministic feature of the category exemplars. At greater issue was pigeons’ attentional 

performance. Would they too optimize their attention and focus on the deterministic feature? 

Or would they attend more diffusely, relying as well on the probabilistic features, in line 

with the behavior of very young children?

2. Experiment 1

In Experiment 1, human participants had to learn to categorize exemplars belonging to two 

categories. Each category had a prototype that was completely different in seven features 

from the prototype of the other category. The prototype itself was never presented in 

training, but the training exemplars highly matched the prototype (see Figure 1). All of the 

training exemplars contained one deterministic feature that perfectly distinguished the two 

categories (e.g., the circle in the center of the exemplars in Figure 1); in addition, the 

exemplars contained four probabilistic features that were consistent with the corresponding 

prototype plus two more features that were consistent with the opposite prototype (e.g., 

Kemler Nelson, 1984). Thus, participants could use either the deterministic feature or the 

probabilistic features to learn the category discrimination. A minimum of three probabilistic 

features was necessary to reach accuracy as high as accuracy using the deterministic feature; 

accuracy could not exceed 66% if only one probabilistic feature was being used.

Testing trials allowed us to determine the participants’ categorization strategy. Critically, we 

included Incongruent trials, which had the deterministic feature of one category, but most of 

the probabilistic features that were consistent with the opposite category. These Incongruent 

trials permitted us to determine whether participants relied on the overall similarity of the 
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exemplars (if they were to choose the category that was consistent with the majority of the 

probabilistic features) or on the deterministic rule (if they were to choose the category that 

was consistent with the deterministic feature).

In testing, participants were also presented with the prototype of each category in order to 

assess whether accuracy would increase compared to accuracy with the training exemplars, 

which always contained four probabilistic features from the training category plus two 

probabilistic features from the opposite category. If participants were focused on just the 

deterministic feature, then no difference in accuracy between the prototype and training 

trials should be observed. But, if the probabilistic features also commanded participants’ 

attention, then higher accuracy for the prototype would be expected, because all of the 

features in the prototype came from the same category.

The remainder of the testing trials involved replacing one or more of the trained features 

with a novel feature. We included Only-P trials, which had four of the probabilistic features 

of one category, two of the probabilistic features of the other category, and a novel feature 

replacing the trained deterministic feature; these Only-P trials allowed us to assess whether 

participants could rely on the probabilistic features alone when the deterministic feature was 

not available. There were also Only-D trials, which had the deterministic feature from one 

category and six novel features replacing the probabilistic features; these Only-D trials 

allowed us to determine whether participants could rely on the deterministic feature alone 

when none of the probabilistic features were available. Finally, we included One-New-P 

trials, in which a novel feature replaced one of the four probabilistic features of the correct 

category; because these One-New-P trials lacked one of the training features, just as the 

New-D trials, they allowed us to see whether a possible decrement in accuracy on New-D 

trials was due to a strong reliance on the deterministic feature or simply to the replacement 

of one trained feature.

Examples of testing trials can be seen in Figure 1. Note that the white circles are the novel 

features replacing the features presented during training.

2. 1. Method

2.1.1. Participants—Participants were 56 human adults. All were undergraduate 

students at The University of Iowa who received course credit for their participation. 

Participants provided their informed consent prior to beginning all experimental procedures. 

The study was conducted in accordance with the Declaration of Helsinki and all procedures 

were approved by the Institutional Review Board at The University of Iowa.

2.1.2. Stimuli

2.1.2.1. Training stimuli.: A total of 14 colored circles of 2.7 cm of diameter were used to 

create the different category training exemplars. These colors’ wavelengths were all 

discriminable by humans and have been shown to be discriminable by pigeons as well 

(Emmerton & Delius, 1980; Palacios & Varela, 1992).

Participants were trained with two categories, A and B. The category structure of the 

training stimuli is detailed in Table 1 (top rows). Each of the category exemplars contained 
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seven features forming a circular shape: one feature was placed in the center and the other 

six surrounded it, separated from one another but connected by a white line (see Figure 1). 

Each image occupied a 10 × 10 cm square area. Each category had a prototype that differed 

in all seven colors from the prototype of the other category; the prototype was never 
presented in training. During training, all exemplars contained one deterministic feature that 

perfectly distinguished the two categories (e.g., the circle in the center of the exemplars in 

Figure 1); in addition, the exemplars contained four probabilistic features that were 

consistent with the corresponding prototype and two more features that were consistent with 

the opposite prototype. Each colored circle was always presented in the same location (for a 

given participant), so that the total number of unique training exemplars was 15 for Category 

A and 15 for Category B.

In order to control for the possibility that some color combinations were more discriminate 

than others, we created two sets of stimuli, so that each deterministic feature was presented 

with either Set 1 or Set 2 of probabilistic features; half of the participants were trained with 

one combination, whereas the other half was trained with the other combination. In addition, 

to control for a possible preference to attend to some spatial locations, the deterministic 

feature was placed in the center for 28 participants, and in one of four side locations (top 

left, top right, bottom left, bottom right) for the other 28 participants.

2.1.2.2. Testing Stimuli.: In testing, participants were presented with six types of trials: 

Training, Incongruent, Only-P, Only-D, One-New-P, and Prototype. Examples of the testing 

stimuli are shown in Figure 1 and their category structure is detailed in Table 1. Training 

trials were used to assess learning of the trained categories. As explained earlier, 

Incongruent trials had the deterministic feature of one category, but most of the probabilistic 

features were consistent with the opposite category, so they allowed us to determine whether 

participants relied on the overall similarity of the exemplars or on the deterministic feature. 

Only-P trials had the probabilistic features of one category, two of the probabilistic features 

of the other category, and a novel white feature replacing the trained deterministic feature, so 

they allowed us to assess whether participants could rely on the probabilistic features when 

the deterministic feature was not available. Only-D trials had the deterministic feature from 

one category and all new white features replacing the probabilistic features, so they allowed 

us to determine whether participants could rely on the deterministic feature when none of 

the probabilistic features were available. In One-New-P trials, one of the probabilistic 

features of the correct category was replaced by a novel white feature to see if the 

replacement of just one relevant feature (as in Only-P trials) would result in a performance 

decrement. Finally, in Prototype trials, all of the probabilistic features belonged to the 

correct category, so they allowed us to see if the gain in positive probabilistic features and/or 

the loss of probabilistic features from the incorrect category would result in a performance 

increment.

2.1.3. Procedure—In order to make the human experiment as similar as possible to the 

pigeon experiment, we minimized the verbal instructions that we gave to the participants. 

Each of the participants was seated in front of a computer and told that they would be 

observing a series of images and attempting to learn the correct response for each of them. 

Castro et al. Page 7

Cognition. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For each image, participants had to use the mouse to choose one response button located to 

the left or to the right of the image. The report buttons were 2.3 × 6 cm rectangles filled with 

two distinctive black-and-white patterns. Participants had to select one of the two report 

buttons, depending on the category presented. If their choice was correct, then they would 

hear a pleasant tone and move to the next trial; if their choice was incorrect, then they would 

hear an unpleasant buzz and the same image would again be presented until the correct 

response was made. No information was provided that could have directed the participant 

toward any particular aspect of the images. These are the full instructions given, in written 

form, to the human participants:

You will be observing a series of images and attempting to learn which response button is 

correct for each of them. These images will appear repeatedly, over a total of approximately 

510 trials. First, you will see a white square with a black cross in the center of the screen; 

you need to click on it to start every trial. Then, an image will appear on the center of the 

screen. Click on it and the choice response buttons will appear to the left and right of the 

stimulus. One of the buttons will be correct, the other one will be incorrect. You have to 

learn to choose the correct one. At the beginning you will have to guess, but auditory 

feedback will indicate you whether or not your choice is correct. If you choose the correct 

button, then you will hear a pleasant tone and you will be moved on to the next trial. If you 

choose the incorrect button, then you will hear a buzz, and the stimulus will appear again 

until you choose the correct button. Your goal is to accurately choose the correct button as 

many times as possible.

Once the participants indicated their understanding of the procedure, the experimenter 

started the program. The program to run the experiment was developed in MatLab® with 

Psychtoolbox-3 extensions (Brainard, 1997; Pelli, 1997; http://psychtoolbox.org/).

All of the participants received a fixed number of training trials, with the order of 

presentation randomized for each participant. A total of 3601 training trials were scheduled; 

each particular exemplar was presented a total of 12 times. After training was completed, the 

testing phase started; it continued without a noticeable change, but a total of 88 testing trials 

were randomly interspersed among 60 more training trials. Differential feedback continued 

for training trials, so that a pleasant sound was presented if the response was correct and an 

unpleasant buzz was presented followed by repetition of the trial if the response was 

incorrect. For testing trials, no differential feedback was given; participants always heard the 

pleasant sound and advanced to the next trial regardless of their responses. Unique testing 

trials (Prototype and Only-D trials) were presented eight times each, whereas testing trials 

that included multiple variations (Incongruent, Only-P, and One-New-P trials) were 

presented 24 times each, for later analysis of control by each individual feature (see section 

4. Computational Modeling).

2.1.4. Data analysis—The data, here and in Experiment 2, were subjected to logit 

mixed-effects analyses (a generalization of logistic regression; see Jaeger, 2008). Mixed-

1A prior unpublished experiment in which we used a shorter training phase, 120 trials, resulted in a large proportion of participants not 
learning the task. We decided to have an extended training phase in order to maximize the number of participants learning the task.
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effects models are especially well-suited to analyze repeated-measures data. Mixed-effects 

models add random effects (random intercepts and random slopes specific to the subjects 

taking part in an experiment) to the fixed effects (the independent variables familiar in 

traditional analyses). Thus, mixed-effects models allow one to take into account each 

subject’s variability by computing a random intercept and/or a random slope for each subject 

and thereby ensure the best estimates of the fixed effects. To select an appropriate random-

effects structure (only random intercepts or random slopes as well), we compared models 

with the same fixed-effects structure and varying complexity in their random-effects 

structure using the log likelihood ratio test (Wagenmakers & Farrell, 2004). All analyses 

were conducted using the Ime4 version 1.1-21 (Bates, Maechler, Bolker, & Walker, 2015) 

package of R, version 3.3.2 (R Development Core Team, 2016).

2. 2. Results and Discussion

We chose an inclusion criterion of 85% correct to each of the two categories over the last 30 

trials of the training phase; participants failing to meet this criterion were eliminated from 

later analyses. Of the 56 participants, 52 met this criterion. The 4 participants who did not 

learn had been presented with the deterministic feature on the left or right side locations of 

the category exemplars. The accuracy of these participants was at chance in the last block of 

30 trials (M = 54.16%, SE = 4.56), so we eliminated their data from subsequent analyses. 

The accuracy of those participants who learned was very high in the last block of training 

(M = 99.48%, SE = 0.18), and there were no differences between participants trained with 

the deterministic feature in the center location (M = 99.76%, SE =0.17) and participants 

trained with the deterministic feature in the side locations (M = 99.16%, SE = 0.33). In 

Supplemental Material, we separately present all of the data and all of the analyses for 

participants trained with the deterministic feature in the center location and participants 

trained with the deterministic feature in the side locations.

Categorization Choice.—All of the participants’ responses to the training and testing 

trials presented during the testing phase are depicted in Figure 2 (top left). Accuracy was 

very high (over 95%) for all of the testing trials except for Only-P trials (around 50%, the 

chance level), the only testing trials in which the deterministic feature was not available. 

Thus, it seems that people relied almost entirely on the deterministic feature to make their 

choices. When the deterministic feature was absent, they failed to make the correct choice.

We first evaluated whether the counterbalancing of the location of the deterministic feature 

had any effect on the participants’ testing performance. A logistic model was fit with the 

location of the deterministic feature (Center vs. Side) as the fixed effect (treatment coded, 

with center as the reference condition). This analysis did not yield differences in accuracy 

between the center and side locations, B = −0.07, SE = 0.08, Z = −0.96, p = .34; M = 91.5, 

95% CIM [90.7, 92.4] and M = 90.9, 95% CIM [89.9, 91.8], respectively, so we dropped this 

factor from all subsequent analyses.

Next, a logistic mixed-effects model was fit with type of test trial (Training, Prototype, 

Incongruent, Only-D, Only-P, One-New-P) as the fixed effect (treatment coded, with 

training trial as the reference condition). A log-likelihood ratio test indicated that the best 
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fitting random-effects structure included a random intercept for participant as well as 

random participant slopes for test type. Critically, there were no statistical differences among 

the Training, Prototype, Incongruent, Only-D, and One-New-P trials; on all of those trials, 

the deterministic feature was available. Indeed, when the deterministic and probabilistic 

features were put into conflict on Incongruent trials, participants robustly relied on the 

deterministic feature, M = 99.8, 95% CIM [99.6, 100] (for scoring purposes, on Incongruent 

trials we considered correct those choices that were consistent with the category to which the 

deterministic feature belonged). Only on those trials in which the deterministic feature was 

absent, Only-P trials, did accuracy drop to chance level, M = 49.7, 95% CIM [46.9, 52.4] and 

was choice accuracy statistically different from Training trials, B = −5.41, SE = 0.27, Z = 

−19.79, p < .001, d = 4.25.

This pattern of performance reveals that human participants seem to have relied entirely on 

the deterministic feature when they made their categorization choices to the novel testing 

trials. Indeed, when only the probabilistic features were available, participants’ performance 

fell to chance level, suggesting that they might not have learned anything about any of the 

probabilistic features.

Reaction time.—We also analyzed reaction time (RT) to perform the categorization choice 

during the testing phase. In order to normalize the distributions, the RTs were subjected to 

log-transformation before statistical analyses (see Ratcliff 1993, for several different 

methods to deal with non-normal reaction time distributions and reaction time outliers). 

Participants’ RTs to the training and testing trials presented during the testing phase are 

depicted in Figure 2 (top right). RTs were very similar to all testing stimuli, except for Only-

D and Only P trials, that yielded longer RTs.

A linear mixed-effects model was fit with type of test trial (Training, Prototype, Incongruent, 

Only-D, Only-P, One-New-P) as the fixed effect (treatment coded, with training trial as the 

reference condition). A log-likelihood ratio test indicated that the best fitting random-effects 

structure included a random intercept for participant. Critically, there were no statistical 

differences in RTs among the Training, Prototype, Incongruent, and One-New-P trials. But, 

on those trials in which the deterministic feature was absent, Only-P trials, participants were 

slower, M = 590 ms, 95% CIM [572, 609], than on Training trials, M = 508 ms, 95% CIM 

[501, 515], B = 0.149, SE = 0.012, t = 11.95, p < .001, d = 0.31. Participants were also 

slower when only the deterministic feature was present, on Only-D trials, M = 603 ms, 95% 

CIM [577, 631], compared to Training trials, B = 0.172, SE = 0.019, t = 8.85, p < .001, d = 

0.40.

It may have been that, when the deterministic feature was absent on Only-P trials, 

participants were uncertain as to which response was correct, consistent with their accuracy 

falling to chance level. However, such uncertainty is unlikely to have been the reason for 

participants’ slowness to respond on Only-D trials, given that their accuracy was 96%. 

Perhaps because Only-D trials displayed only one feature, and all of the others were novel 

white circles, their appearance may have surprised the participants and, consequently, 

slowed their choice responses.
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3. Experiment 2

Next, we studied the categorization response patterns of a very different species. Pigeons 

had to learn to categorize exemplars belonging to the same two categories as in Experiment 

1. The experimental design and category structure for training and testing exemplars were 

the same as in Experiment 1. The only disparities were related to the different regimens 

required to study both species.

3. 1. Method

3.1.1. Subjects—The subjects were 16 homing pigeons (Columba livia) maintained at 

85% of their free-feeding weights by controlled daily feedings. The pigeons had served in 

unrelated studies prior to the present project. Pigeons’ ages ranged from 2 to 11 years. All 

procedures were approved by the Institutional Animal Care and Use Committee at The 

University of Iowa.

3.1.2. Apparatus—The experiment used four 36 × 36 × 41 cm operant conditioning 

chambers detailed by Gibson, Wasserman, Frei, and Miller (2004). The chambers were 

located in a dark room with continuous white noise. Each chamber was equipped with a 15-

in LCD monitor located behind an AccuTouch® resistive touchscreen (Elo TouchSystems, 

Fremont, CA). The portion of the screen that was viewable by the pigeons was 28.5 cm × 

17.0 cm. Pecks to the touchscreen were processed by a serial controller board outside the 

box. A rotary dispenser delivered 45-mg pigeon pellets through a vinyl tube into a food cup 

located in the center of the rear wall opposite the touchscreen. Illumination during the 

experimental sessions was provided by a houselight mounted on the upper rear wall of the 

chamber. The pellet dispenser and houselight were controlled by a digital I/O interface 

board. Each chamber was controlled by its own Apple® iMac® computer. Just as in 

Experiment 1, the program to run the experiment was developed in MatLab® with 

Psychtoolbox-3 extensions (Brainard, 1997; Pelli, 1997).

3.1.3. Stimuli—The stimuli were the same as in Experiment 1. As detailed above, each 

deterministic feature was shown with either Set 1 or Set 2 of probabilistic features; half of 

the pigeons were trained with one combination, whereas the other half was trained with the 

other combination. In addition, the deterministic feature was placed in the center for half of 

the birds and in one of the four side locations (top left, top right, bottom left, bottom right) 

for the other half of the birds.

3.1.4. Procedure

3.1.4.1. Training.: Daily training sessions comprised 120 trials: half presented Category A 

exemplars and half presented Category B exemplars, in a random fashion. At the beginning 

of a trial, the pigeons were presented with a start stimulus, a white square (3 × 3 cm) in the 

center of the computer screen. After one peck anywhere on this white square, one category 

exemplar was displayed in the center of the screen. The pigeons had to satisfy an observing 

response requirement (gradually increased from 2 to a maximum of 20 pecks, on a daily 

basis). This requirement was adjusted to the performance of each pigeon. If the bird was 

consistently pecking, but not meeting the discrimination criterion (see ahead) in a timely 
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fashion, then the number of pecks was raised to increase the cost of making an incorrect 

response.

On completion of the observing response requirement (number of pecks at the stimulus 

image), two report buttons appeared 4.5 cm to the left and right of the category exemplar. 

The report buttons were 2.3 × 6 cm rectangles filled with two distinctive black-and-white 

patterns. The pigeons had to select one of the two report buttons, depending on the category 

presented. If the choice was correct, then food reinforcement was delivered and the intertrial 

interval (ITI) ensued; the ITI randomly ranged from 6 to 10 s. If the choice was incorrect, 

then food was not delivered, the houselight was darkened, and a correction trial was 

scheduled. Correction trials were given until the correct response was made. No data were 

analyzed from correction trials.

We trained the birds until they reached an accuracy level of 85% for each of the categories 

on 2 consecutive days, to ensure that categorization performance had reached a high and 

stable level. Then, we started the testing phase.

3.1.4.2. Testing.: Each testing session began with 12 warm-up training trials. The next 128 

trials comprised 108 training trials plus 20 randomly interspersed testing trials (four of each 

type: Prototype, Incongruent, Only-P, Only-D, and One-New-P trials). A total of 12 testing 

sessions were given. On training trials, only the correct response was reinforced; incorrect 

responses were followed by correction trials (differential reinforcement). On testing trials, 

any choice response was reinforced (nondifferential reinforcement); food was given 

regardless of the pigeons’ choice responses, so that testing could proceed without explicitly 

teaching the birds the correct responses to the testing exemplars. No correction trials were 

given on testing trials.

3. 2. Results and Discussion

Of the 16 pigeons, 15 reached the learning criterion (85% correct on each category on 2 

consecutive days) in an average of 16 days (SD = 11.24). The fastest bird reached criterion 

in 7 days, whereas the slowest bird took 36 days. After 52 days of training, the sole 

remaining pigeon (Bird 83Y) fell slightly short of criterion with an accuracy level of 79% on 

the last 2 days; none of the results of the subsequent analyses changed due to the presence or 

absence of the data of this bird, so we decided to include its data in all subsequent analyses.

Categorization Choice.—The pigeons’ responses to the training and testing trials during 

the testing phase are shown in Figure 2 (bottom). Accuracy was very high for Training, 

Prototype, and One-New-P trials. On Incongruent trials, in which the deterministic and 

probabilistic features were put into conflict, the deterministic feature seemed to exert greater 

control than the probabilistic features. Consistent with those choices, when only the 

deterministic feature was available on Only-D trials, pigeons’ accuracy was high, although 

lower than their accuracy on Training trials. And, although accuracy was not very high, it 

seems that pigeons could still solve the categorization task on Only-P trials, when only the 

probabilistic features were available.
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Just as for people, we first evaluated whether the counterbalancing of the location of the 

deterministic feature had any effect on the pigeons’ testing performance. A logistic model 

was fit with the location of the deterministic feature (Center vs. Side) as the fixed effect 

(treatment coded, with center as the reference condition). This analysis did not yield 

differences in accuracy between the center and side locations, B = −0.22, SE = 0.21, Z = 

−1.01, p = .31; M = 91.1, 95% CIM [90.7, 91.6] and M = 90.5, 95% CIM [90.0, 91.1], 

respectively; so, we dropped this factor from all subsequent analyses.

Next, a logistic mixed-effects model was fit with type of test trial (Training, Prototype, 

Incongruent, Only-D, Only-P, One-New-P) as the fixed effect (treatment coded, with 

training trial as the reference condition). A log-likelihood ratio test indicated that the best 

fitting random effects structure included a random intercept for bird, as well as random bird 

slopes for test type. Accuracy on Training trials was very high, M = 92.8, 95% CIM [90.5, 

95.1], yet it was even higher on Prototype trials, M = 99.5, 95% CIM [98.9, 99.9], suggesting 

that seeing all of the probabilistic features from the correct category did improve pigeons’ 

categorization accuracy. This improvement was statistically significant, B = 2.64, SE = 0.68, 

Z = 3.86, p < .001, d = 0.61.

When the deterministic and probabilistic features were put into conflict on Incongruent 

trials, pigeons tended to rely on the deterministic feature, M = 76.3, 95% CIM [67.0, 85.6]. 

However, the decrement in pigeons’ performance compared to Training trials was large and 

statistically significant, B = −1.41, SE = 0.14, Z = −9.69, p < .001, d = 1.53. Pigeons’ 

accuracy was still robust on Only-D trials, when only the deterministic feature was available, 

M = 70.2, 95% CIM [62.1, 78.3], but lower than their accuracy on Training trials, B = −1.79, 

SE = 0.19, Z= −9.37, p < .001, d = 2.09.

When only the probabilistic features were available, pigeons’ accuracy dropped even more, 

M = 63.3, 95% CIM [58.2, 68.4] compared to Training trials, B = −2.21, SE = 0.21, Z = 

−10.44, p < .001, d = 2.72. Still, pigeons’ accuracy was significantly higher than the 50% 

chance level, t(15) = 5.52, p < .001, d = 1.38. So, it seems that the pigeons could also use 

some of the probabilistic features to perform the task (probably just a subset of them 

because, had they been able to use all of the probabilistic features, their accuracy would have 

been higher). When on One-New-P trials only one of the probabilistic features was removed, 

pigeons’ accuracy was also very high, M = 87.6, 95% CIM [83.5, 91.7], although there was a 

small performance decrement compared to Training trials, B = −0.69, SE = 0.15, Z = −4.54, 

p < .001, d = 0.48.

Thus, when the deterministic and probabilistic features were put into conflict on Incongruent 

trials, pigeons tended to rely on the deterministic feature more than on the probabilistic 

features, most likely because they had learned the perfect predictive value of the 

deterministic feature. However, pigeons’ decrease in accuracy on Only-D and One-New-P 

trials, along with their improvement on Prototype trials and their higher than chance 

accuracy on Only-P trials, all suggest that at least some of the probabilistic features were 

having a measurable impact on their performance as well.
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Reaction time.—We also analyzed, in the pigeons, reaction time (RT) to perform the 

categorization choice during the testing phase. As was the case for the human participants, 

the pigeons’ RTs were subjected to log-transformation before statistical analyses in order to 

normalize the distributions. As can be seen in Figure 2 (bottom right), pigeons’ RT to the 

training and all testing trials presented during the testing phase was almost exactly the same.

A linear mixed-effects model was fit with type of test trial (Training, Prototype, Incongruent, 

Only-D, Only-P, One-New-P) as the fixed effect (treatment coded, with training trial as the 

reference condition). A log-likelihood ratio test indicated that the best fitting random effects 

structure included a random intercept for subject. There were no statistical differences in RT 

among any of the stimuli. Thus, pigeons’ time to choose the response buttons did not vary 

depending on the type of stimuli, and no differential processing can be inferred from this 

measure.

In sum, when given the same task, humans and pigeons exhibited both similar (greatest 

reliance on the deterministic feature compared to the other features), but nonetheless 

disparate patterns of categorization behavior (pigeons seemed to have learned about the 

probabilistic cues, but humans did not). These results suggest that the two species might 

have been attending to different features of the stimuli to different degrees. In order to gain a 

clearer understanding of humans’ and pigeons’ attention and categorization behavior, we 

next used a modeling approach to determine their attentional profiles during categorization 

testing.

4. Computational Modeling

We sought to determine to what extent people’s and pigeons’ attention was selective and 

focused on a single feature (presumably the deterministic feature) or distributed across some 

or all of the features in the stimuli. To do so, we modelled both species’ categorization 

choices during testing to infer utilization scores for each feature (Macho, 1997).

A suitable modeling tool to better understand humans’ and pigeons’ performance is 

Nosofsky’s (1986, 1988, 1992) Generalized Context Model (GCM). A core assumption of 

GCM is that organisms represent categories by storing individual training exemplars in 

memory; later classification—of novel testing exemplars, for example—is based on 

similarity comparisons between the novel exemplars and the stored exemplars. Thus, 

according to GCM, in the case of two mutually exclusive categories, A and B, the 

probability that Stimulus Si, is classified in Category CA, that is, P(RA|Si), is given by the 

following equation:

P(RA Si) =
bA∑a ∈ CAsimia

bA∑a ∈ CAsimia + (1 − bA)∑b ∈ CBsimib

where bA (0 ≤ bA ≤ 1) is Category A response bias and simia and simib are similarities 

between a given exemplar i and exemplars belonging to Categories A and B, respectively. 

Similarity between items is an exponential decay function of psychological distance d 
derived from this equation:
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simia = e−cdia

where c (0 ≤ c ≤ ∞) is a sensitivity parameter reflecting overall discriminability in the 

psychological space, with larger values representing greater discriminability. Psychological 

distance d is calculated according to the following equation:

dia = ∑
m = 1

M
wm xim − xam

r
1/r

where xim is the psychological value of exemplar i on dimension m. The value of the 

parameter r typically takes values of 1 or 2, for separable or integral dimensions, 

respectively (Shepard, 1964); given the characteristics of our stimuli, we used an r = 1, that 

results in the city-block metric as the distance between exemplars in multidimensional 

space. Most critically, wm (0 ≤ wm ≤ 1) is the attentional weight given to a dimension or 

feature m. These attentional weights are free parameters and are interpreted as reflecting the 

attention that is allocated to each dimension during categorization (Nosofsky, 1986; Viken, 

Treat, Nosofsky, McFall, & Palmeri, 2002). Attentional weights are of critical importance 

because they change as a result of categorization training (Nosofsky, 1986); therefore, they 

reflect the amount of attention allocated to a particular feature. Because a limited-capacity 

system is assumed, the sum of all of the attentional weights equals 1; so, the more attention 

is paid to a particular feature, the less attention is paid to the other features.

We used GCM to estimate the attentional weights that best accounted for the responses of 

both humans and pigeons on the categorization testing trials. In order to do so, we assumed 

that all of the exemplars presented during training were in GCM’s memory. In order to get a 

close assessment of the attentional weights, we fixed the sensitivity parameter (c = 3; which 

is often estimated from data) and adopted a city-block metric (r = 1). By means of numerical 

optimization, we found the attentional weights that minimized the sum of squared error 

(SSE) between GCM’s and a given subject’s responses to the stimuli presented during 

testing.

Once we obtained the vector of attentional weights for each subject, we quantified the 

attentional profile of each subject by calculating the entropy of their vector of attentional 

weights. Given that we were interested in determining whether our subjects focused on one 

feature or distributed their attention over some or all of them, we considered that entropy, a 

measure of variety or diversity provided by information theory (Shannon & Weaver, 1949), 

would be a good candidate for this purpose. Entropy measures the amount of informational 

diversity by computing a weighted average of the number of bits of information that, in our 

case, each of the features in a stimulus provides. When only one feature carries all of the 

information (e.g., w = {1, 0, 0, 0, 0, 0, 0}), there is no informational diversity, so entropy is 

0. When all of the features carry some amount of information, informational diversity is 

larger; informational diversity, and entropy therefore, will be maximal when all of the 

features carry equal amounts of information (e.g., w = {.14, .14, .14, .14, .14, .14, .14}).
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Therefore, we used the following equation to calculate the entropy of the vectors of 

attentional weights for each subject:

Hw = − ∑
m

M
log(wm)wm

where Hw is the entropy of the vector of attentional weights w, and wm is the attentional 

weight of each feature m. Once entropy for each subject was obtained, it was then 

normalized based on the maximum possible entropy given the length of the vector of 

weights (uniform distribution of seven weights). Thus, normalized entropy was bound 

between 0 and 1, with 0 representing maximal selectivity (when the attentional weight for 

one of the features equals 1, whereas the remaining weights for all of the other features 

equals 0), and with 1 representing minimal selectivity or maximal distribution of attention 

(when all of the attentional weights are equal).

The entropies of the attentional profiles resulting from the GCM fits are shown in Figure 3. 

The violin plots depict the density distributions of normalized entropy for both species. 

Critically, of the human participants, 90% showed maximal selectivity (entropy = 0); that is, 

they attended only to the deterministic feature. The remaining 10% of the human 

participants showed varying levels of distributed attention (normalized entropy values 

ranged from 0.26 to 0.60). Table 2 details the attentional weights of the individual features 

for these 5 human participants (the attentional weights of the 47 participants exhibiting 

maximal selectivity were always 1 for the deterministic feature and 0 for all of the other 

features). Note that, the lower the entropy score, the higher the attentional weight was to one 

single feature. Conversely, the higher the entropy score, the more distributed the attentional 

weights were among a larger number of features. As can be seen in Table 2, the attentional 

weights for the deterministic feature were very high for these 5 participants; but, still, they 

were paying some measurable attention (weights equal to or greater than 0.05) to one, two, 

or three of the other features as well.

In contrast, Table 2 shows that all of the pigeons displayed distributed attention. Even when 

the pigeons had evidenced strong reliance on the deterministic feature to solve the 

categorization task (when the probabilistic and deterministic features were put into conflict 

on Incongruent trials, they preferentially, M = 76%, chose the category predicted by the 

deterministic feature), their attention was not completely focused on a single feature; 

instead, attention was distributed across multiple features of the category exemplars. Pigeons 

did show varied levels of distributed attention (normalized entropy values ranged from 0.23 

to 0.89); but, critically, no pigeon exhibited the maximal selectivity evidenced by the vast 

majority of human participants. The attentional weights for the deterministic feature were 

high for several pigeons (greater than 0.5 for 7 out of the 16 pigeons) and 13 of our 16 birds 

exhibited strongest control by the deterministic feature. Yet, all of the pigeons paid 

measurable attention to one, two, three, four, or five of the probabilistic features as well. 

Thus, we conclude that pigeons’ attention was largely distributed.
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In summary, the analyses of attentional weights disclosed that most humans completely 

focused their attention on the single deterministic feature. Pigeons, on the other hand, largely 

distributed their attention and none of them entirely focused on the deterministic feature.

5. General Discussion

In the reported experiments, human adults and pigeons mastered (terminal accuracy 

surpassing 90% correct) a categorization task that could be solved by selectively attending to 

a single deterministic feature or by distributing attention across multiple probabilistic 

features. When only the deterministic feature was available, both human adults’ and 

pigeons’ accuracy was well above chance (see Only-D trials in Figure 2), but humans’ 

accuracy was much higher and did not suffer any decrement compared to training 

performance. In addition, when both deterministic and probabilistic features were in 

conflict, both species relied on the deterministic feature, but humans did so to a greater 

larger extent (see Incongruent trials in Figure 2). Subsequent modeling of subjects’ 

attentional weights revealed a striking disparity between species. Whereas most of the 

humans’ attention exhibited maximal selectivity (complete focus on the deterministic 

feature), all of the pigeons’ attention was distributed; none of the pigeons exhibited maximal 

selectivity. Thus, it seems that pigeons’ preferential use of the deterministic feature was due 

to their learning the statistical contingencies of the task rather than to their exhibiting 

selective attention. Because the deterministic feature was the best predictor of reinforcement, 

it acquired the highest associative strength and became the feature predominately, but not 

exclusively controlling the pigeons’ behavior, as most associative learning theories would 

expect (e.g., Rescorla & Wagner, 1972; Mackintosh, 1975).

Our human participants’ results agree with those prior findings showing that, when 

categorizing various stimuli, humans tend to focus their attention on a single stimulus 

feature or dimension and to deploy unidimensional rules or strategies (e.g., Ahn & Medin, 

1992; Ashby & Ell, 2001; Kemler Nelson, 1984; Nosofsky, Palmeri, & McKinley, 1994; 

Regehr & Brooks, 1995). Pigeons may also use single features or dimensions to categorize 

stimuli (e.g., Castro & Wasserman, 2014, 2016a, 2017; Lea & Wills, 2008, Nicholls et al., 

2011), but it seems more likely that this results from those features acquiring strong 

associative strength—given that they are the best predictors of the outcome—rather than 

because of pigeons deploying selective attention.

Role of length training and the interplay between accuracy and attention

Our human participants were trained for 360 trials in a single session, whereas our pigeons 

were trained for an average of 1,920 trials over an average of 16 daily sessions. Perhaps the 

longer training given pigeons allowed them to learn, not only the greater diagnostic value of 

the deterministic feature, but also the diagnostic value of several of the probabilistic features. 

A longer training phase might have provided humans with the opportunity to learn about the 

diagnostic value of the probabilistic features as well. We do not have any empirical evidence 

supporting that notion. We did find that some of our participants took as few as 4 or 6 trials 

to reach 85% correct, whereas other took as many as 320 or 340 trials to reach that level. 
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However, the number of trials to reach criterion did not correlate with participants’ testing 

performance or with their distribution of attentional weights.

Theoretical accounts of categorization and learning that explicitly consider the role of 

attention (George & Pearce, 2012; Kruschke, 1992; Love, Medin, & Gureckis, 2004; 

Mackintosh, 1965, 1975; Nosofsky, 1986, 1992) all propose that attention tends to be 

distributed along multiple stimulus dimensions at the beginning of training, but that attention 

converges on the most relevant dimensions as learning proceeds. Our own observations 

support these accounts.

Most of our present human participants relied completely on the deterministic feature by the 

end of training and their attentional weights revealed maximal selectivity. However, in a 

prior unpublished experiment, after a training phase of only 120 trials, some 30% of the 

participants had not yet reached an even more lenient learning criterion of 75% correct; that 

is, they had not learned to solve the categorization task based on either the deterministic or 

the probabilistic features. More interestingly for this discussion, of those participants who 

learned the task, just 60% showed maximal selectivity, whereas 40% showed varying levels 

of distributed attention (normalized entropy values ranged from 0.22 to 0.74). So, it is 

conceivable that the 40% of learners who were distributing their attention might have 

become maximal-selectivity participants if the training phase had been longer. This 

possibilty merits further study.

Other theoretical accounts that consider attention to be goal- or hypothesis-driven assume 

that, once the learner’s hypothesis proves to be correct, attention will fully focus on that 

relevant information and accuracy will assume its maximal level (e.g., Ashby et al., 1998). 

However, the story may not be that simple.

Rehder and Hoffman (2005) tracked human participants’ eye movements while they were 

solving categorization tasks in which some elements were relevant to correctly classifying 

the category exemplars, whereas other elements were not. They found that, as learning 

progressed, participants’ allocation of attention gradually shifted toward the relevant features 

of the stimuli. Curiously, but importantly, Rehder and Hoffman (2005) found that people’s 

eye movements toward the relevant elements of the category stimuli tended to follow rather 

than to precede improvements in task accuracy; indeed, their correct responses were already 

very high before people fully deployed their attention to the relevant features of the category 

stimuli (see also Blair, Watson, & Meier, 2009). It appears that accuracy needs to reach a 

relatively high threshold for attention to hone in on the most relevant information. That is, 

the likelihood of correct categorization after presentation of a specific stimulus feature may 

have to be sufficiently high to influence the amount of attention that will later be allocated to 

that feature; the amount of attention allocated to that feature will, in turn, influence the 

likelihood of correct categorization after its presentation.

Neural substrates of selective attention

Although we did not include children in the current study, 4-year olds showed broadly 

distributed attention in a very similar categorization task (Deng & Sloutsky, 2016). Even 

when they were told to rely on the deterministic feature of the category exemplars during 
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learning (Experiment 2), later testing disclosed that the 4-year olds remembered the 

deterministic and probabilistic features equally well.

These phylogenetic and ontogenetic similarities (pigeons and very young children seem to 

attend diffusely) along with the disparities observed (only human adults showed maximal 

selectivity) prompted us to seek a reason for these different attentional profiles. One 

possibility involves the neural substrates participating in selective attention. The mammalian 

PFC is considered to be critical for executive functions, such as cognitive flexibility, 

working memory, and attentional control (e.g., Miller & Cohen, 2001; O’Reilly, 2006). The 

structural attributes of the PFC and its anatomical connections undergo a protracted 

maturational process during humans’ first years of life; indeed, the PFC is immature early in 

development and, during the first 6 years, it expands more than twice as much as do other 

cortical regions (Hill et al., 2010). Because the PFC is not fully developed in very young 

children, their executive function capacities—attention among them—may greatly differ 

from the functional capacities of adults.

Mammals’ and birds’ evolutionary lines separated approximately 300 million years ago; 

hence, the anatomical organization of their forebrains differs considerably. Among the 

disparities, birds do not have a brain structure homologous to the PFC, although 

nonhomologous structures may perform similar functions (Briscoe & Ragsdale, 2018). 

Indeed, the avian nidopallium caudolaterale (NCL) —a multimodal telencephalic region 

located in the posterior forebrain—and the mammalian PFC share several physiological and 

functional attributes (Shanahan et al., 2013); thus, the NCL has been conjectured to be the 

avian neural structure most analogous to the mammalian PFC (Divac, Mogensen, & 

Björklund, 1985; Güntürkün, 2005, 2012). Still, there is relatively little research exploring 

executive control functions in avian species (Castro & Wasserman, 2016b; Rose & 

Colombo, 2005; Nieder, 2017). Hence, we do not know how the differences between the 

NCL and the PFC—for example, each of these structures receives projections from different 

regions of the thalamus (Waldmann & Güntürkün, 1993)—may affect the deployment of 

attention by birds, in general, and by pigeons, in particular.

We should also acknowledge that selective attention may not only involve focusing on 

relevant task information; it may also require filtering out irrelevant information, so that the 

less predictive and irrelevant stimulus dimensions or features are ignored and left out of the 

learning process (e.g., Corbetta & Shulman, 2002; Gulbinaite et al., 2014; Lennert & 

Martinez-Trujillo, 2011). Here, we found that pigeons did not focus solely on the most 

relevant or predictive information, but they also attended to, or were distracted by, other, 

albeit less diagnostic information. In dramatic contrast, 90% of our human participants 

focused solely on the most predictive information and ignored everything else.

Thus, it may be that the mature mammalian PFC is necessary to suppress attention to 

irrelevant or less reliable environmental information. Such suppression or filtering of 

irrelevant or less diagnostic information may not be within the capabilities of the avian NCL 

or other forebrain structures. Without strongly developed focusing and filtering mechanisms, 

pigeons may lack the concerted abilities to sustain attention to critical information and to 
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suppress attention to irrelevant information. The same may also be the case for young 

children.

Role of formal education and prior experience

It is also possible that language, formal education, and prior experiences determine how 

different subjects approach our categorization tasks. Human adults have extensive 

experience with verbal rules to solve problems and organize facts and knowledge based on 

deterministic information. Due to these experiences, adults might be more likely to approach 

a novel categorization task with a default strategy to find deterministic features. This may 

not be the case for preschool children and nonverbal animals. Therefore, human adults may 

be more likely to try to find deterministic information, whereas animals and young children 

may be more likely to engage with other various aspects of the environment.

This experiential explanation may help to better understand our findings, but it may not be 

entirely disconnected from the neural substrates explanation. It is commonly understood that 

structural maturation of the PFC drives cognitive development, because the functional 

developmental course of executive functions (selective attention among them) closely 

follows the maturational course of the PFC (Amso, Haas, McShane, & Badre, 2014; 

Davidson, Amso, Anderson, & Diamond, 2006; Wendelken, Munakata, Baym, Souza, & 

Bunge, 2012; Zelazo et al., 2003). It may well be, as Werchan and Amso (2017) suggest, 

that adaptation, and not maturation, is the process that best describes the developmental 

changes in the PFC.

It appears that the rate of development of the PFC is not fixed, but can be impacted by a 

variety of experiences, and that executive functions reflect changes in whole brain 

connectivity above and beyond simple PFC structural maturation. According to this 

ecological account, PFC development may reflect adaptation to different purposes relevant 

to the individual in their specific environment across their life span. As the environment 

begins to require children to exercise abilities related to executive function—such as when 

children begin formal schooling—the PFC will develop appropriately to meet the demands 

of the new situations. So, maturation of the PFC may allow for selective attention, as long as 

the environment requires this selective attention to be engaged (see Werchan & Amso, 2017, 

for a very insightful approach to the interaction between experience and PFC development). 

Thus, the emphasis that formal education places on deterministic information and rule-based 

learning may shape the PFC’s functionality; this, in turn, may favor deterministic and 

unidimensional learning strategies in older children and adults, compared to younger 

children and animals.

Conclusions

In a categorization task that could be solved by selectively attending to a single deterministic 

feature or by distributing attention across multiple probabilistic features, both human adults 

and pigeons learned to rely predominately on the deterministic feature, the most predictive 

feature. However, computational modelling revealed a wide range of attentional profiles in 

both species; the vast majority of humans, but no pigeons exhibited maximal selective 

attention to the deterministic feature. These findings suggest that the interplay between 
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attention and categorization in humans and animals differs considerably. Elucidating the 

roles of focusing attention on relevant information and suppressing attention to irrelevant 

information should greatly advance our understanding of how different brain structures and 

mechanisms participate in category learning. Our experimental strategy and computational 

methods open the door to fresh possibilities for research in cognitive development and 

comparative cognition to illuminate that interplay.
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Figure 1. 
Examples of the stimuli used in Experiments 1 and 2. Each row depicts trials within a 

category. Training trials were presented in both training and testing. Prototype, Incongruent, 

Only-P, Only-D, and One-New-P trials were presented only in testing. White circles are 

novel features that were not presented during training.
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Figure 2. 
Mean percentage of correct responses (left) and reaction times (right) to the different types 

of testing trials in Experiment 1, with humans (top), and in Experiment 2, with pigeons 

(bottom). In the case of Incongruent trials, responses based on the deterministic feature were 

considered to be correct. The dashed line, at 50%, represents the chance level. Error bars 

indicate the standard error of the means.

Castro et al. Page 26

Cognition. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Normalized entropy of GCM’s best-fitting attentional weights for each individual subject. 

The violin plots depict the density distributions of normalized entropy for both species when 

the deterministic feature was presented either in the center or on the side of the category 

exemplar. A value of 0 represents maximal selectivity (when the attentional weight for one 

of the features equals 1 and the remaining weights for all other features equals 0), whereas a 

value of 1 represents minimal selectivity or maximal distribution of attention (when all 

weights are equal). The red points indicate the mean of each of the distributions. The dashed 

line, at 0.50, represents the middle value and is simply included as a reference.
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Table 1.

Category structure used in Experiments 1 and 2.

Category A Category B

Features Features

P1 P2 P3 P4 P5 P6 D P1 P2 P3 P4 P5 P6 D

Training items

1 1 0 0 0 0 0 0 0 1 1 1 1 1

0 1 1 0 0 0 0 1 0 0 1 1 1 1

0 0 1 1 0 0 0 1 1 0 0 1 1 1

0 0 0 1 1 0 0 1 1 1 0 0 1 1

0 0 0 0 1 1 0 1 1 1 1 0 0 1

Testing items

  Prototype 0 0 0 0 0 0 0 1 1 1 1 1 1 1

  Incongruent 1 1 1 1 0 0 0 0 0 0 0 1 1 1

  Only-P 0 0 1 1 0 0 N 1 1 0 0 1 1 N

  Only-D N N N N N N 0 N N N N N N 1

  One-New-P N 0 0 0 1 1 0 N 1 1 1 0 0 1

Note. The value 0 = any of seven features identical to the prototype of the category A. The value 1 = any of seven features identical to the prototype 
of the category B. The value N = new feature; it was always a white circle. P = probabilistic feature; D = deterministic feature.
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