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Abstract
Fluorides are thought to be a major cause of osteocarcinogenesis, due to their widespread industrial use, ability to accumulate 
in bone tissue, and genotoxic and probable carcinogenic properties. In vitro experiments investigating the genotoxic potential 
of fluorides in bone tissue models can provide valuable indirect information on their involvement in osteocarcinogenesis. 
Here, we investigated whether sodium fluoride (NaF) has the ability to induce DNA damage and chromosomal abnormali-
ties in human osteosarcoma cells after 48 and 72 h of exposure. The cell cultures were treated with NaF in concentrations of 
0, 20, 100 and 200 μg/ml. The level of DNA damage was assessed by the comet assay, and the frequency of chromosomal 
abnormalities by a micronucleus test. A significant increase in DNA damage indicators was noted in the samples treated with 
fluoride concentrations of 100 and 200 µg/ml, after 48 and 72 h of exposure. The micronucleus test revealed a dose-dependent 
increase in cells with micronuclei, nucleoplasmic bridges and nuclear protrusions. Increasing the concentration of NaF led to 
an increase in the prevalence of cytogenetic indicators after both treatment durations. This demonstrated ability of fluorine to 
exert genotoxic effects on bone cells indirectly indicates the possible importance of fluoride in the aetiology of osteosarcoma.
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Introduction

Despite their relative rarity, primary oncological diseases of 
bone tissue pose a significant problem for modern biomedicine. 
Along with these cancers being therapeutically challenging, the 
causes of pathology also remain uncertain. Determining the 
aetiology of this type of disease is thus an important issue, as 
knowing its cause(s) will allow us to achieve significant pro-
gress in prevention and treatment. The main factor in the devel-
opment of osteocarcinogenesis is believed to be environmental 
exposure. Fluorides are thought to be the environmental factors, 
due to their widespread industrial use, ability to accumulate in 
bone tissue [1], and genotoxic [2] and probable carcinogenic 
properties [3, 4]. This assumption is based on previous ecolog-
ical-epidemiological studies [5] and studies of the correlation 

of fluoride in sera with the frequency of oncogenic mutations 
of the p53 gene in human tumour tissues [6]. However, some 
publications have presented evidence against the involvement 
of fluoride in osteocarcinogenesis [7, 8]. To test the fluoride 
hypothesis, an experimental assessment of the genotoxic effects 
of fluoride-ion exposure on human osteoblast cells is necessary. 
To date, a limited number of experiments on non-human bone 
cell cultures have been conducted. When cultured with sodium 
fluoride (NaF), an increase in the frequency of chromosomal 
aberrations in the primary culture of rat vertebral cells was 
observed [9], as was an increase in DNA damage in the UMR 
106 rat osteosarcoma [10]. Surprisingly, though, no studies on 
human bone models have been conducted.

In vitro experiments investigating the genotoxic poten-
tial of fluorides in bone tissue models can provide valuable 
indirect information on the involvement of these species in 
osteocarcinogenesis. Hence, the purpose of this work was 
to determine the genotoxicity of NaF to human bone cells.
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Materials and methods

Cell culture

The human osteosarcoma cell line (HOS) was used as a 
model of bone tissue, and was obtained from the collection 
of the State Research Center of Virology and Biotechnology 
VECTOR (Novosibirsk, Russia). Removal of culture from 
cryopreservation was performed by rapid warming in a water 
bath (37 °C), with further washing of the cryoprotectant by 
centrifugation (1000 × g), followed by replacing the environ-
ment and seeding the cells in a culture flask. The seeding 
concentration was 75,000–100,000 cells per ml. The culture 
environment consisted of 90% Dulbecco’s modified Eagle’s 
medium (DMEM) as nutrient (containing l-glutamine and 
an antibiotic Penicillin–Streptomycin (Biolot, St. Petersburg, 
Russia)) and 10% blood serum of cow embryo (HyClone, 
Logan, United States). The cells were incubated at 37 °C 
and in a humidified atmosphere of 5%  CO2. Passaging was 
carried out every 3–5 days. The cells were removed from 
the monolayer using trypsin–Versen solution (1:1) (Biolot, 
St. Petersburg, Russia). After the accumulation of cell mass, 
they were seeded in culture plates. The maximum exposure 
concentration was determined by a preliminary assessment 
of substance cytotoxicity in different concentrations. An 
experiment was conducted with final concentrations of NaF 
of 50, 100, 200, 300 and 400 μg/ml. The cytokinesis-block 
proliferation index (CBPI) was evaluated and the permissible 
concentrations of the test substance were determined. Subse-
quently, an experiment was conducted with NaF concentra-
tions causing cytotoxicity of less than 55% (CBPI > 1.55).

The process of cell growth and plating in culture plates 
was repeated. Next, 24 h after passage, the samples were 
treated with PBS (Eco-service, St. Petersburg. Russia) (the 
control group) or NaF (Vecton, St. Petersburg, Russia) to a 
final concentration of 0, 20, 100 and 200 μg/ml (the same 
concentrations that were used in similar studies on other 
types of cell culture. Additionally, part of the samples was 
cultured as a positive control with mitomycin C (Sigma-
Aldrich) at a final concentration of 12.5 ng/ml for the micro-
nucleus test and with hydrogen peroxide for the comet assay 
(100 μM for 2 min, with further cultivation for 48 or 72 h). 
Subsequently, the cells were cultured for 48 or 72 h. Six 
samples were tested for each combination of a concentra-
tion of NaF and duration of exposure. The samples intended 
for the micronucleus test with cytochalasin blocking were 
treated 24 h before the end of cultivation of with cytocha-
lasin B (Pan Eco, Moscow, Russia), to a final concentration 

CBPI =
((no. ofmononucleate cells) + (2 × no. of binucleate cells) + (3 × no. ofmultinucleate cells))

(Total number of cells).

of 6 μg/ml. After the end of cultivation, the cells were trans-
ferred to suspension and subjected to sample preparation for 
the micronucleus test and the comet assay. The experiment 
was repeated 3 times.

Micronucleus test

The micronucleus test was performed in accordance with 
the recommendations of Fenech [11]. After cultivation, the 
preparations were treated with a hypotonic solution of KCl 
(Vecton, St. Petersburg, Russia) and fixed using Carnoy’s 
fixative. Then, staining was performed using a 2% solution 
of Giemsa stain (Pan Eco, Moscow, Russia). The resulting 
preparations were analysed using a Nikon Eclipse 80i micro-
scope at 1000 × magnification. The selection criteria for the 
cells to be included in the analysis, and the criteria for the 
recording of cytogenetic damage, were consistent with gen-
erally accepted recommendations [12]. In each preparation, 
the nuclei of 1000 binuclear cells were analysed, in which 
micronuclei (Fig. 1), nucleoplasmic bridges (Fig. 2) and 
nuclear protrusions (Fig. 3) were observed.

Comet assay

The comet assay was performed in an alkaline modification 
developed by Singh and colleagues [13]. The fragmentation 
parameters were estimated by photomicrographing prepara-
tions stained with SYBR Green using a Zeiss Axio Imager 2 
fluorescence microscope. A total of 200 randomly selected 
comets from each sample were photographed with a mag-
nification of 200 × (Fig. 4). The subsequent processing of 

Fig. 1  MNBN in HOS
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the photographs was carried out using the CASP software 
package (Krzysztof Konca, http://caspl ab.com). Two param-
eters, namely the percentage of DNA in the comet’s tail and 
the DNA-comet index, were calculated as follows: index of 
DNA comet (IDC) = (0n0 + 1n1 + 2n2 + 3n3 + 4n4)/Σ, where 
 n0–n4 are the numbers of comets of each type, Σ is the sum 
of the calculated DNA-comets.

Statistical analysis

Statistical analysis of the data was carried out using the 
Statistica 10.0 package (StatSoft, TIBCO Software). The 
average values and the limit of the 95% confidence interval 
(CI 95) were calculated for the two quantitative indicators. 
Group comparisons were performed using the Mann–Whit-
ney U-test.

Results

Comet assay

The highest average value of percentage of DNA in the 
comet’s tail was observed in the samples cultured for 48 h 
in 200 µg/ml NaF (Table 1).

A significant increase in the percentage of DNA in the 
comet’s tail was observed in samples with a NaF con-
centration of 20, 100 and 200 µg/ml with 48 h exposure 
(p < 0.01), and in those with concentrations of 100 and 
200 µg/ml with 72 h exposure (p < 0.01), compared with 
the control samples (0 μg/ml). In addition, a significant 
increase in the percentage of DNA in the comet’s tail was 
observed with an increase in the NaF concentration from 
20 to 200 µg/ml and after 48 h of exposure.

Similar to the trend observed with the percentage of 
DNA in the comet’s tail, the highest value of the DNA-
comet index was observed in samples exposed for 48 h to 
a NaF concentration of 200 µg/ml (Table 2). Compared 
with the control, significant increases in the DNA-comet 
index were observed in samples with a NaF concentration 
of 20, 100 and 200 µg/ml with 48 h of exposure (p < 0.01), 
and in the samples with 100 and 200 µg/ml NaF with 72 h 
of exposure (p < 0.01). In addition, a significant increase 
in this index was observed with an increase in the NaF 
concentration from 20 µg/ml to 200 µg/ml with 48 h of 
exposure (p < 0.05). Additionally, samples exposed to 100 
and 200 µg/ml NaF for 72 h showed a significant increase 
in the DNA-comet index compared with those exposed to 
only 20 μg/ml NaF for the same duration (p < 0.05). There 
was also a significant decrease in the DNA-comet index in 
the positive control samples with an exposure time of 72 h 
compared with those exposed for 48 h (p < 0.01).

Fig. 2  Binucleated cell with nucleoplasmic bridge

Fig. 3  Binucleated cell with nuclear protrusion

Fig. 4  DNA-Comets in HOS

http://casplab.com
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Micronucleus test

The results of the micronucleus test are presented in 
Table 3. Compared with the control, the concentration of 
NaF of 20 µg/ml in the culture medium did not generate a 
statistically significant increase in the frequency of binu-
cleated cells with a micronucleus (MNBN), nucleoplas-
mic bridges or nuclear protrusion at either exposure time. 
In the case of a NaF concentration of 100 µg/ml, com-
pared with the control, a statistically significant increase 
was observed in the numbers of MNBNs (p < 0.05 with 
48 h exposure and p < 0.01 with 72 h exposure), binu-
cleated cells with nucleoplasmic bridges (p < 0.01 at 48 
exposures and p < 0.05 at 72 h exposure) and binucleated 

cells with nuclear protrusions at 72 h exposure (p < 0.05). 
In the case of a NaF concentration of 200 μg/ml in the 
culture medium, compared with the control there was a 
statistically significant increase in the number of MNBNs 
(p < 0.01 at 48 h exposure and p < 0.01 at 72 h exposure), 
binucleated cells with nucleoplasmic bridges (p < 0.05 at 
48 h exposure and p < 0.01 at 72 h exposure) and binu-
cleated cells with nuclear protrusions (p < 0.05 at 48 h 
exposure and p < 0.05 at 72 h exposure). In addition, a 
statistically significant increase in the number of MNBNs 
was observed with an increase in exposure time from 48 
to 72 h in samples with a NaF concentration of 200 μg/
ml (p < 0.01).

Table 1  The percentage of DNA in the comet’s tail, in the studied samples, means [95%, CI], %

**p < 0.01, Significant differences against samples treated with 0 µg/ml of sodium fluoride; ##p < 0.01, Significant differences against samples 
treated with 20 µg/ml of sodium fluoride

Cultivation time The percentage of DNA in the comet’s tail, in the studied samples (%)

0 µg/ml NaF 20 µg/ml NaF 100 µg/ml NaF 200 µg/ml NaF H2O2
100 μM for 2 min

48 h 1.38 [1.24–1.52] 3.79 [3.46–4.13]** 4.09 [3.86–4.33]** 4.47 [4.20–4.76]**,## 4.89 [4.65–5.13]
72 h 1.18 [1.01–1.36] 1.15 [1.01–1.30] 2.16 [1.89–2.43]**,## 2.76 [2.30–3.21]**,## 3.42 [3.05–3.80]

Table 2  Index of the DNA-Comets, means [95%, CI]

**p < 0.01, Significant differences against samples treated with 0 µg/ml of sodium fluoride; #p < 0.05, Significant differences against samples 
treated with 20 µg/ml of sodium fluoride

Cultivation time Index of the DNA-Comets

0 µg/ml NaF 20 µg/ml NaF 100 µg/ml NaF 200 µg/ml NaF H2O2
100 μM for 2 min

48 h 0.31 [0.28–0.42] 0.88 [0.80–0.95]** 0.97 [0.92–1.03]** 1.07 [1.00–1.14]**,# 1.17 [1.11–1.23]
72 h 0.24 [0.21–0.27] 0.26 [0.23–0.29] 0.54 [0.47–0.61]**,# 0.72 [0.60–0.84]**,# 0.90 [0.79–1.01]

Table 3  The results of the micronucleus test, means [95%, CI] (‰)

*p < 0.05, Significant differences against samples treated with 0 µg/ml of sodium fluoride; **p < 0.01, Significant differences against samples 
treated with 0 µg/ml of sodium fluoride

Cultivation time The frequency of micronucleus test’s indicators (‰)

0 µg/ml NaF 20 µg/ml NaF 100 µg/ml NaF 200 µg/ml NaF 12.5 ng/ml Mitomycin C

MNBN
 48 h 32.33 [25.16–9.50] 42.00 [24.90–9.09] 60.67 [51.26–70.07]* 69.11 [62.08–76.13]** 88.78 [82.57–94.98]
 72 h 35.00 [17.09–2.91] 32.00 [25.42–8.57] 73,91 [61.34–86.48]** 90.21 [88.82–91.60]** 100.07 [76.42–123.71]

Binucleated cells with nucleoplasmic bridges
 48 h 7.67 [0–15.41] 9.33 [1.74–16.92] 23.66 [19.87–27.46]** 21.82 [19.22–24.42]* 33.98 [28.05–39.90]
 72 h 7.66 [1.93–13.40] 12.67 [6.63–18.71] 17.32 [9.52–25.13]* 24.54 [20.44–28.64]** 38.09 [29.29–46.89]

Binucleated cells with nuclear protrusion
 48 h 11.67 [7.87–15.46] 6.67 [0–13.84] 18.67 [7.46–29.87] 33.43 [25.03–41.83]* 27.02 [19.5–34.54]
 72 h 7.33 [5.90–8.77] 7.67 [4.80–10.53] 22.73 [18.61–26.85]* 23.41 [21.16–25.67]* 29.19 [22.36–36.01]



341Toxicol Res. (2020) 36:337–342 

1 3

Discussion

The results of this study showed that NaF was able to 
induce damage to the DNA of osteoblast cells. In the 
comet assay, both the percentage of DNA in the comet’s 
tail and the DNA-comet index increased with the concen-
tration of fluorine in the growth medium. In the case of 
48 h of exposure, both parameters differed significantly 
in samples with NaF concentrations of 20 or 100 µg/ml, 
compared with the control sample (0 µg/ml). In samples 
with a concentration of 200 µg/ml, a further significant 
increase was noted relative to the cell cultures exposed to 
only 20 µg/ml. In the case of 72 h of exposure the level of 
DNA damage was lower, possibly because of the activation 
of DNA repair or apoptotic programs in cells with most 
DNA damage.

Nonetheless, the average extent of genotoxic effects 
increased with the concentration of NaF in the growth 
environment, as in the case of 48 h exposure. In the posi-
tive control, the DNA-comet index decreased in the case 
of 72-h cultivation compared with 48-h cultivation, in 
agreement with the abovementioned conclusions. The 
extent of DNA damage in samples with an NaF concen-
tration of 100 µg/ml and 200 µg/ml was far greater than 
that in samples with concentrations of 0 and 20 µg/ml. The 
obtained data are consistent with the results from similar 
studies conducted on mammalian cells. Specifically, sev-
eral authors have studied the ability of NaF in concentra-
tions from 0 to 100 mM to cause DNA damage, using 
methods for assessing the extent of DNA fragmentation. 
It has been determined that exposure to fluoride ions can 
lead to dose-dependent DNA damage in rat osteosarcoma 
cell lines [10], primary mouse hepatocytes [14, 15] and 
primary rat kidney cells [16].

When assessing the extent of chromosomal damage 
with a micronucleus test, a dose-dependent increase in 
cells with micronuclei, nucleoplasmic bridges and nuclear 
protrusions was noted. An increase in the concentration 
of NaF for both exposure durations led to an increase in 
the numbers of these cytogenetic indicators. Notably, an 
increase in the exposure time did not lead to a decrease 
in the number of cytogenetic markers, in contrast to the 
increased extent of DNA damage. On the contrary, a 
significant increase in the number of MNBN cells was 
observed at 72 h of exposure, as opposed to 48 h.

The obtained results are consistent with data from other 
authors. Cultivation of cells in the presence of fluoride 
ions led to an increase in chromosome aberration and 
sister chromatid exchanges in cell cultures of the Syrian 
hamster embryo [17, 18], Indian muntzhak [19] and the 
red bone marrow, hippocampal neurons and tracheal epi-
thelium [20–22] of rats. In vitro experiments on human 

cell lines showed that fluoride was significantly genotox-
icity at low concentrations. The ability of fluoride ions 
to induce DNA damage and increase the frequency of 
clastogenic effects in human leukocytes has been noted 
[23–25] for buccal epithelial cells [26], fibroblasts [27], 
JHU-1 foreskin fibroblasts [28], HL-60 human leukae-
mia cell lines [29] and human primary hepatocytes [30]. 
The results of these studies, as well as the present work, 
are in conflict with a number of other works in which the 
genotoxic potential of fluoride ions was not confirmed in 
experiments on primary cells of mice, sheep, cows [31, 32] 
and human leukocytes [33].

Taken together, the published data strongly suggest that 
genotoxicity is connected to the ability of fluoride ions to 
induce mitochondrial damage and oxidative stress. Such 
events usually culminate in either apoptosis of cells, sub-
sequent to activation of proapoptotic caspases (caspase 
3, 9 and others), or necrosis. Some authors have demon-
strated that fluoride in low concentrations induces oxida-
tive stress, leading to apoptosis of human lymphocytes 
in vitro [34]. Similar observations have been made in rat 
foetal hepatocytes [30]. According to other research, the 
influence of fluoride contributes to the synthesis of active 
forms of oxygen with the induction of SIRT1/autophagy, 
via signalling of the c-Jun N-terminal kinase in amelo-
blasts. Other observed effects of fluoride are its triggering 
of the release of cytochrome C, weakening of ATP syn-
thesis and phosphorylation of γH2AX [35]. Simultaneous 
treatment of a cell line with fluoride ions and catalase 
greatly reduced the apoptosis of cells, suggesting that the 
reactive oxygen species (ROS)-mediated genotoxic mecha-
nism of fluoride is a primary mechanism underpinning 
its activity [36]. There is also evidence of fluoride ions’ 
ability to inhibit the active state of enzymes involved in 
the biotransformation of phase I and II xenobiotics, as well 
as enzyme markers of oxidative stress [37]. Moreover, it 
has been noted that low concentrations of fluoride ions 
affected the progression of the cell cycle [34] and, that 
they lead to DNA fragmentation through activation of cas-
pase 3 [38].

In this study it has been shown that NaF influenced 
the genomic integrity of human bone cells. It was noted 
that short-term cultivation of tumour osteoblasts in the 
presence of NaF increased the extent of DNA damage 
and chromosomal aberrations. The results indirectly tes-
tify to the possible roles of fluorides in the aetiology of 
osteosarcoma.
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