Table 2.
Test metrics of the 3 algorithms for all 3 classification tasks as well as average model performance at 500 features for each classification task.
| Test metrics and performance | Logistic regression | Bernoulli naïve Bayes | Random forest | ||||||||||
| Acca | F | Precb | Recc | Acc | F | Prec | Rec | Acc | F | Prec | Rec | ||
| Underage JUUL use | 0.94 | 0.94 | 0.95 | 0.92 | 0.78 | 0.71 | 0.99 | 0.57 | 0.99 | 0.99 | 0.99 | 0.99 | |
| Positive sentiment | 0.72 | 0.69 | 0.82 | 0.69 | 0.69 | 0.63 | 0.83 | 0.53 | 0.82 | 0.82 | 0.80 | 0.75 | |
| Negative sentiment | 0.78 | 0.77 | 0.85 | 0.73 | 0.72 | 0.66 | 0.98 | 0.50 | 0.91 | 0.91 | 0.90 | 0.94 | |
| Average model performance | 0.81 | 0.80 | 0.87 | 0.78 | 0.73 | 0.67 | 0.93 | 0.53 | 0.91 | 0.91 | 0.90 | 0.89 | |
aAcc: accuracy
bPrec: precision
cRec: recall