Skip to main content
. 2020 Sep 2;6(3):e19975. doi: 10.2196/19975

Table 2.

Test metrics of the 3 algorithms for all 3 classification tasks as well as average model performance at 500 features for each classification task.

Test metrics and performance Logistic regression Bernoulli naïve Bayes Random forest
Acca F Precb Recc Acc F Prec Rec Acc F Prec Rec
Underage JUUL use 0.94 0.94 0.95 0.92 0.78 0.71 0.99 0.57 0.99 0.99 0.99 0.99
Positive sentiment 0.72 0.69 0.82 0.69 0.69 0.63 0.83 0.53 0.82 0.82 0.80 0.75
Negative sentiment 0.78 0.77 0.85 0.73 0.72 0.66 0.98 0.50 0.91 0.91 0.90 0.94
Average model performance 0.81 0.80 0.87 0.78 0.73 0.67 0.93 0.53 0.91 0.91 0.90 0.89

aAcc: accuracy

bPrec: precision

cRec: recall