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Abstract——The epilepsies are common neurologic
disorders characterized by spontaneous recurrent seiz-
ures. Boys, girls, men, and women of all ages are
affected by epilepsy and, in many cases, by associated
comorbidities as well. The primary courses of treat-
ment are pharmacological, dietary, and/or surgical,
depending on several factors, including the areas of
the brain affected and the severity of the epilepsy.
There is a growing appreciation that sex differences
in underlying brain function and in the neurobiology
of epilepsy are important factors that should be
accounted for in the design and development of new
therapies. In this review, we discuss the current knowl-
edge on sex differences in epilepsy and associated
comorbidities, with emphasis on those aspects most
informative for the development of new pharmaco-
therapies. Particular focus is placed on sex differences
in the prevalence and presentation of various focal
and generalized epilepsies; psychiatric, cognitive, and

physiologic comorbidities; catamenial epilepsy in
women; sex differences in brain development; the
neural actions of sex and stress hormones and their
metabolites; and cellular mechanisms, including brain-
derived neurotrophic factor signaling and neuronal-glial
interactions. Further attention placed on potential sex
differences in epilepsies, comorbidities, and drug
effects will enhance therapeutic options and efficacy
for all patients with epilepsy.

Significance Statement——Epilepsy is a common
neurological disorder that often presents togetherwith
various comorbidities. The features of epilepsy and
seizure activity as well as comorbid afflictions can vary
betweenmen andwomen. In this review,we discuss sex
differences in types of epilepsies, associated comorbid-
ities, pathophysiological mechanisms, and antiepilep-
tic drug efficacy in both clinical patient populations
and preclinical animal models.

I. Introduction to Epilepsy, Seizures, and the
Importance of Investigating Sex Differences

Epilepsy is the fourth most common neurologic
disorder, and approximately 1 in 26 people will develop

epilepsy in their lives (England et al., 2012). “Epilepsy”
is an umbrella term referring to a group of disorders
characterized by spontaneous recurrent seizures. A
seizure is a paroxysmal discharge of hypersynchronous
neuronal activity that can either stay confined to one

ABBREVIATIONS: ASD, antiseizure drug; BDNF, brain-derived neurotrophic factor; CSD, cortical spreading depression; DHT, dihy-
drotestosterone; FSH, follicle-stimulating hormone; GABAAR, GABA receptor, type-A; GAERS, Genetic Absence Epilepsy Rats from Stras-
bourg; GBL, gammabutyrolactone; GEPR, genetically epilepsy-prone rat; GFAP, glial fibrillary acidic protein; GnRH, gonadotropin-releasing
hormone; HI, hypoxia/ischemia; HPA, hypothalamic-pituitary-adrenal; HPG, hypothalamic-pituitary-gonadal; KA, kainic acid; KCC2, po-
tassium-chloride cotransporter 2; LH, luteinizing hormone; NKCC1, sodium-potassium-chloride cotransporter 1; NMDA, N-methyl-D-
aspartate; PCOS, polycystic ovarian syndrome; PR, progesterone receptor; PRL, prolactin; PTZ, pentylenetetrazole; SE, status epilepticus;
SUDEP, sudden unexpected death in epilepsy; SWD, spike-and-wave discharge; THDOC, tetrahydrodeoxycorticosterone; TLE, temporal
lobe epilepsy; TrkB, tropomyosin receptor kinase B; WAG/Rij, Wistar Albino Glaxo/Rijswijk.
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brain region (focal), start synchronously across many
brain regions (generalized), or start as a focal seizure
and then generalize (as with focal-to-bilateral tonic-
clonic seizures). As described in further detail below,
there are many different epilepsy syndromes, classified
by the International League Against Epilepsy primarily
bywhether the seizures are focal, generalized, combined
focal-generalized, or unknown, together with behavioral
manifestations, electroencephalographic and imaging sig-
natures, and other clinical factors, including age of onset,
family history, and probable etiology (Scheffer et al.,
2017). Furthermore, seizures and epilepsy can arise from
many different causes and etiologies, including genetic
mutations, or can be acquired in response to a neural
insult such as a fever, infection, stroke, or traumatic brain
injury (Lucke-Wold et al., 2015; Pitkanen et al., 2016;
Ramantani and Holthausen, 2017). Postinsult epilepsies
often arise after a process of epileptogenesis, consisting of
myriad neural circuit reorganization and functional
changes in which a group of brain cells or a brain region
converts from one that will not generate a seizure to one
that can spontaneously (that is, without precipitation by
an immediate trigger) produce a seizure, the electrical
signal of which is referred to as ictal activity.
Boys, girls, men, and women of all ages across the

human lifespan are affected by seizures and epilepsy.
Current treatment options focus primarily on antisei-
zure drugs (ASDs), with the selection, number, and
dosage depending on the type of epilepsy and the age of
the patient. In some cases, typically in children, dietary-
based therapies are used as adjunctive treatments in
addition to ASDs (Martin-McGill et al., 2018). Unfortu-
nately, a large proportion of patients (at least one-third)
are refractory to current treatments (Kwan and Brodie,
2000; Kobau et al., 2008). Although resection of the
tissue that is the seizure focus (the area from which the
seizures arise) is an option for some patients, it is not
feasible for others and can often produce adverse side
effects. In addition, a variety of psychiatric, cognitive,
and physiologic comorbidities are present at higher
rates in people with epilepsy compared with the general
population.
In the ongoing quest to identify cures for epilepsies,

there is a growing appreciation that sex differences in
underlying brain function and in the neurobiology of
epilepsy are important factors that should be accounted
for in the design and development of new therapies.
This review is aimed at providing an overview of the
current knowledge on sex differences in epilepsy and
associated comorbidities, with particular emphasis on
those aspects that should be informative for and taken
into consideration in the development of new
pharmacotherapies.

A. Note on Terminology: Sex and Gender

Although “sex” and “gender” are often used inter-
changeably, there are important distinctions between

these two terms. As defined by the World Health
Organization, “sex” refers to biologic and physical
features, from genetic to physiologic to organismal, that
are distinct and usually classified as male or female and
largely determined by sex chromosomes. “Gender,”
however, refers to a psychosocial construct of norms,
roles, and interactions typically classified as character-
istics of men or women but culminating in an overall
identification and self-perception of an individual along
a spectrum of gender identities (Manandhar et al.,
2018). A person may identify with a gender that is not
the same as the biologic sex assigned at birth (trans-
gender); therefore, it is erroneous to equate sex and
gender. The study of epilepsy in transgender persons is
a nascent area of research, and as such, there is an
absence of epidemiologic studies in this population
(Johnson and Kaplan, 2017). Therefore, at this point
in time for the purposes of literature review, we must
rely on the descriptions in clinical studies of the gender
of subjects as men or women and operate under the
supposition that this also reflects the respective sex. In
addition, it is important to note that the term “gender”
should not be applied to preclinical animal studies, as
the gender identification of a given animal cannot be
assessed meaningfully. Therefore, the proper usage of
terminology in preclinical studies is to describe the sex
of the animal (Torgrimson and Minson, 2005). As our
goal in this review is to cohesively discuss both clinical
and animal studies of epilepsy, we will use the term
“sex” throughout for consistency.

II. Sex Differences in Epilepsies and
Comorbidities: Clinical Conditions and

Animal Models

The epilepsies, as a whole, are slightly more common
in males as compared with females (McHugh and
Delanty, 2008). This finding has been replicated in
several epidemiologic studies (Hauser et al., 1993;
Jallon et al., 1997, 1999, 2001; Dogui et al., 2003;
Christensen et al., 2007; Adelow et al., 2009;
Hesdorffer et al., 2011a; Fiest et al., 2017), although
the difference tends to be small and, in some cases, of
borderline or no significance. That said, in a population-
based study of the Danish National Hospital Register,
arguably the largest sample available, a heightened
male prevalence was present in most age groups
(Christensen et al., 2007).

A variety of factors have been proposed to account for
this difference, including lifestyle and environmental
considerations. However, the epilepsies are a diverse
group of conditions that differ in symptomology, etiol-
ogy, and prevalence across sex. In the sections below, we
first briefly review the human epidemiologic data and
then describe relevant animal models of 1) generalized
motor seizures, 2) generalized nonmotor (absence)
seizures, and 3) focal seizures. We also refer the reader
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to several reviews of sex differences in human epilepsies
(McHugh and Delanty, 2008; Savic, 2014).

A. Generalized Motor Seizures

In keeping with the current International League
Against Epilepsy operational guidelines for classifica-
tion of seizures and the epilepsies (Fisher et al., 2017),
this category of seizure includes tonic-clonic (formerly
known as “grand mal”), tonic, atonic, and myoclonic
seizures.
1. Clinical Studies. Some studies have reported

a greater rate of generalized tonic-clonic seizures in
males (Hauser et al., 1993; Kishk et al., 2019), although
other studies have found either no sex difference
(Carlson et al., 2014) or increased generalized tonic-
clonic seizures in females (Mullins et al., 2007). The
variability in these effects across studies may reflect
relatively small sample sizes and/or differences in
reporting across countries. Similarly, atonic seizures
were more common in males in the Epilepsy Phenome/
Genome Project data set (Carlson et al., 2014). This
finding differs from those regarding generalized genetic
epilepsies, including juvenile myoclonic epilepsy, which
has been reported to occur in females at higher rates
(Kleveland and Engelsen, 1998; Christensen et al.,
2005). Some X-linked syndromes, such as Rett syn-
drome, are more common in females (Fehr et al., 2011)
because of high in utero or early life mortality in males;
others, such as seizures in Fragile X syndrome, have
been reported to be more common in males (Berry-
Kravis et al., 2010). For some other early life epilepsies,
such as infantile spasms, there are mixed reports, with
some suggesting a higher prevalence in males than in
females (Cowan et al., 1989; Luthvigsson et al., 1994;
Pellock et al., 2010) and others finding no sex difference
(Trevathan et al., 1999; Chen et al., 2004; Jia et al.,
2018).
2. Animal Models. The animal models described

in this section all display some degree of generalized
tonic, clonic, tonic-clonic, or myoclonic seizure activity,
although for many of the pharmacological models, the
seizure phenotype is highly dose-dependent. We do not
include common models of status epilepticus (SE) or
other models of what have been referred to as “limbic”
seizures in this section but rather discuss them in the
context of focal seizures.
a. GABAergic chemoconvulsants. GABA antago-

nists are one of the most commonly families of chemo-
convulsants in epilepsy research. Of this class of drugs,
pentylenetetrazole (PTZ) remains a component of the
National Institute of Neurological Disorders and
Stroke–funded Epilepsy Therapy Screening Program
(https://panache.ninds.nih.gov/CurrentModels.aspx). PTZ
and the other GABA antagonists, in a dose-dependent
manner, evoke absence-like generalized spike-and-
wave discharges (SWDs), clonic seizures, and gener-
alized tonic-clonic seizures. Surprisingly, although

these drugs (PTZ, picrotoxin, bicuculline, etc.) share
a common target, they differ in terms of sex differences
(Table 1).

The threshold for picrotoxin-induced generalized
tonic-clonic seizures is higher in male than female rats
(Pericic et al., 1985; Schwartz-Giblin et al., 1989).
Similarly, the latency to picrotoxin-induced akinetic
seizures is also longer in males than females (Tan and
Tan, 2001). This sex difference is also evident in cats,
with female cats displaying a greater frequency of
spinal motor neuron discharge than males following
picrotoxin (Pericic et al., 1986). In mice, males showed
increased sensitivity to picrotoxin compared with
females (Pericic et al., 1986). In addition, mortality
rates after picrotoxin are greater in male mice than
female mice (Pericic et al., 1986) and are elevated in
proestrous compared with estrous rats (Tan and Tan,
2001). Sex hormones influence picrotoxin responses,
with estradiol treatment increasing sensitivity to pic-
trotoxin in male rats (Pericic et al., 1996). By contrast,
testosterone increases susceptibility in females and
decreases susceptibility in males (Tan and Tan, 2001).
Consistent with the picrotoxin effects, female rats
display greater sensitivity to allylglycine-induced con-
vulsive seizures than do male rats (Thomas and Yang,
1991). Thus, in rats, females are more sensitive to
picrotoxin than males, a pattern that is reversed
in mice.

Interestingly, the threshold for PTZ-evoked clonic
seizures is ;10% lower in male rats compared with
female rats (Kokka et al., 1992); this finding is some-
what counterintuitive when compared with the data on
picrotoxin given that these drugs share a similar mech-
anism of action (i.e., both are GABA receptor channel
blockers). In mice, PTZ responses are greater in females
(Medina et al., 2001), and female mice display lower
thresholds for response (Min et al., 2013), which is
generally consistent with the effects of picrotoxin.
Chronic administration of PTZ produces a progressive
worsening of seizure severity (i.e., a kindling effect).

TABLE 1
Sex differences in models of epilepsy and seizure induction

Sex Difference
Generalized (Motor)

Picrotoxin Rats: ♀ . sensitivity
Mouse: ♀ , sensitivity

Pentlyenetetrazole Rats: ♀ , sensitivity
Mouse: ♀ . sensitivity

Bicuculline Rats: ♀ , sensitivity
Electroshock Rats, mouse: ♀ . sensitivity
Generalized (Absence)
WAG/Rij ♀ = ♂
GAERS ♀ = ♂
Focal
Kainic acid Rats: ♀ , sensitivity

Mouse: ♀ . sensitivity
Pilocarpine Rats: ♀ , sensitivity

Mice: mixed reports
Kindling Amygdala kindling: ♀ = ♂

Hippocampus kindling: ♀ , sensitivity
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Male and female rats acquire PTZ kindling at similar
rates despite differing sensitivities to acute PTZ (Haeri
et al., 2016).
As with PTZ, the threshold for myoclonus, running/

bouncing clonus, and tonic hindlimb extension following
intravenous bicuculline is lower in male rats compared
with females (Finn and Gee, 1994; Pericic and Bujas,
1997). Similarly, males show lower thresholds than
females to myoclonus, running/bouncing clonus, and
tonic hindlimb extension induced by methyl-6,7-dime-
thoxy-4-ethyl-beta-carboline-3-carboxylate, a negative
allosteric modulator of GABAA receptors (Finn and Gee,
1994).
b. N-methyl-D-aspartate. Injection of the glutamate

receptor agonist N-methyl-D-aspartate (NMDA) in rat
pups primed by gestational betamethasone exposure is
a common model of infantile spasms, and in this model,
sex differences in seizures are not evident (Chachua
et al., 2011), a pattern consistent with the clinical
literature.
c. Electroshock. As with chemoconvulsant models,

maximal electroshock remains a vital part of the
screening pipeline for antiseizure medications. The
endpoint of this model, tonic hindlimb extension, is
particularly relevant for tonic and tonic-clonic seizures.
Female rats display lower maximal electroshock

thresholds than do male rats (Woolley et al., 1961;
Kokka et al., 1992). Consistent with this finding,
a comprehensive analysis by sex in 10 strains found
that females displayed, on average, a 10%–15% lower
threshold for electroshock-evoked minimal, maximal,
and psychomotor seizures (Frankel et al., 2001).
d. Inbred genetic models. Two of the most well

established genetically epilepsy-prone rat (GEPR) mod-
els of epilepsy are the GEPR-3 and GEPR-9 strains. In
response to acoustic stimulation, GEPRs display wild
running, bouncing clonus, and, depending on the sub-
strain, tonic extension. Neither the GEPR-3 nor the
GEPR-9 substrains display sex differences in the on-
togeny of audiogenic seizures (Reigel et al., 1989).
However, in both the -3 and -9 strains, the penetrance
of the audiogenic phenotype is greater in females than
males (Kurtz et al., 2001). Moreover, female GEPR-9s
display shorter latencies to seizures and more severe
seizure scores than do age-matched GEPR-9 males
(Mishra et al., 1988a,b). Inhibitors of adenosine metab-
olism cause heightened mortality in females compared
with male GEPR-9s (Kommajosyula et al., 2016).
Similarly, in the GEPR-3 strain, females display
shorter latencies to wild running than do matched
males (Mishra et al., 1989) and greater anticonvulsant
responses to transient receptor potential cation channel
subfamily V receptor 1 antagonists than males (Cho
et al., 2018).
The Ihara’s Epilepsy Rat model displays a striking

sex difference in penetrance; though essentially all male
rats display tonic-clonic seizures, only ;20% of females

show similar responses (Amano et al., 1996). The Noda
Epileptic Rat model also displays generalized tonic-
clonic seizures with a high penetrance (.95%) in both
sexes (Noda et al., 1998).

The El/Suz mouse (Suzuki and Nakamoto, 1982) is
a selectively bred polygenic model of generalized epi-
lepsy. These mice display handling-induced seizures
and behavioral comorbidities (Bond et al., 2003;
McFadyen-Leussis and Heinrichs, 2005) and are
hyper-responsive to stress (Forcelli et al., 2007). Though
the penetrance of the seizure phenotype does not differ
as a function of stress in this strain (Leussis and
Heinrichs, 2006), female El mice but not male El mice
display increased cell density in the amygdala (Forcelli
et al., 2007).

The DBA/1 inbred strain of mice has been used as
a model of sudden unexpected death in epilepsy
(SUDEP) (Faingold et al., 2010). In response to acoustic
stimulation, these animals display tonic seizures, which
end with hindlimb extension and respiratory arrest.
Although the rate of SUDEP is higher in males than
females in clinical populations (Hesdorffer et al.,
2011b), the rate of SUDEP in DBA/1 mice is equivalent
across sexes (Faingold and Randall, 2013).

e. Other genetic models. The explosion of genetic
models of epilepsy over the last three decades makes
a thorough characterization of effects difficult for
several reasons. First, many models for the same
“syndrome” exist, and in many cases, these models
differ from one another. Second, differing genetic back-
grounds of mice exert strong modulatory effects on
seizure phenotype (Hawkins et al., 2016; Kang et al.,
2018). Thus, only a few examples are provided below.

In the Brd2+/2 model of juvenile myoclonic epilepsy,
males show reduced clonic seizure threshold, whereas
females have reduced tonic-clonic threshold (Velí�sek
et al., 2011). Males and females also differ in open-field
performance, with males displaying decreased anxiety-
like behavior compared with wild-type littermates and
females displaying increased anxiety-like behavior
(Chachua et al., 2014). In models of Dravet syndrome
(e.g.,Scn1a+/2mice), there have been reports of females
showing greater mortality than males (Niibori et al.,
2020) as well as reports of no sex differences (Kang
et al., 2018). Therefore, more comprehensive screening
for sex differences across genetic models is clearly
needed.

B. Generalized Nonmotor Seizures (Absence Seizures)

1. Clinical Studies. Absence seizures are particu-
larly well studied in the context of childhood and
juvenile absence epilepsy syndromes. These seizures
are characterized by disrupted consciousness and gen-
eralized SWDs at a characteristic 3-Hz frequency
(Panayiotopoulos, 2008). Absence epilepsies have been
reviewed elsewhere (Tenney and Glauser, 2013).
Among the available clinical epidemiologic data for
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sex differences in epilepsy, those for absence epilepsy
are stronger and generally more consistent than other
epilepsy types. Specifically, multiple studies have
reported childhood absence epilepsy and juvenile ab-
sence epilepsy both occur at higher rates in females
compared with males (Hauser et al., 1993; Camfield
et al., 1996; Waaler et al., 2000; Larsson and Eeg-
Olofsson, 2006; Mullins et al., 2007).
2. Preclinical Genetic Models. Sex differences in

preclinical absence epilepsy models have been reviewed
in detail previously (van Luijtelaar et al., 2014) and are
summarized in brief here. Two of the most common
models for absence epilepsy are the Wistar Albino
Glaxo/Rijswijk (WAG/Rij) strain of inbred rats (van
Luijtelaar and Coenen, 1986) and the Genetic Absence
EpilepsyRats fromStrasbourg (GAERS) (Vergnes et al.,
1982). Both of these strains display a high (near 100%)
penetrance of SWDs that have been proposed to model
generalized nonconvulsive seizures in humans. In both
these strains, unlike typical absence epilepsy, seizures
increase in frequency with age. Although human ab-
sence epilepsy is more common in females than males,
in theWAG/Rij rats, the SWDburden is the same across
sexes (Coenen and Van Luijtelaar, 1987).
As in theWAG/Rij, in theGAERS, the penetrance and

frequency of SWDs does not differ as a function of sex
(van Luijtelaar et al., 2014). Though seizures do not
differ, however, comorbid social behavior impairments
do; female, but not male, GAERS display deficits in
sociability (Henbid et al., 2017). By contrast, the Brown
Norway rat strain also displays SWDs, albeit with
a different penetrance than the other models. In these
rats, the phenotype is more common in males than
females (Jando et al., 1995). SWDs discharges have also
been reported in wild-type Sprague-Dawley rats, with
discharges emerging earlier in females than in males
(Pearce et al., 2014).
In addition to the above rat strains, several mouse

strains display absence-like seizures, including mice
with deletion of the a1 subunit of the GABAA receptor
(Arain et al., 2012), the stargazer mouse (Noebels et al.,
1990), and mice lacking gria4 (Beyer et al., 2008).
Though for these latter strains, to the best of our
knowledge, sex differences have not been carefully
examined, both the stargazer and gria4 models show
absence seizures in both sexes. In a1 subunit of the
GABAA receptor–knockoutmice, sex differences depend
on genetic background of the strain; in animals on a C57
background, females display a greater incidence of
absence seizures than males but the incidence does
not differ as a function of sex when the animals are on
a DBA/2J background (Arain et al., 2012).
3. Pharmacological Models. Inhibition of choles-

terol synthesis in the first month of life produces
a permanent alteration in brain development that leads
to the emergence of atypical SWDs in rats. Sex differ-
ences in this model emerge before puberty, with females

showing two- to threefold increases in SWD duration
compared with males (Persad et al., 2002). Consistent
with the enhanced sensitivity of females in this model,
females show profound downregulation of a1 and g2
subunits of the GABAA receptor in the somatosensory
thalamus, whereas males show no significant change
(Li et al., 2007).

The gamma hydroxybutyrate and gammabutyrolac-
tone (GBL) models of absence epilepsy are acute, drug-
induced models with cross-species validity (Venzi et al.,
2015). In the GBL model, males display a greater
seizure burden than females. The increased sensitivity
in males is primarily due to longer discharge duration
as compared with an increase in the frequency of
discharges (Santos et al., 2018).

C. Focal Seizures and Temporal Lobe Epilepsy

1. Clinical Studies. Though some studies have
reported greater incidence of focal seizures in males
(Hauser et al., 1993), others have reported similar
occurrence of focal seizures in both sexes (Manford
et al., 1992). This pattern also holds true for temporal
lobe epilepsy (TLE), with reports of increased frequency
in males (Hauser and Kurland, 1975), no differences as
a function of sex in symptomatic TLE (Christensen
et al., 2005), and increased cryptogenic cases of TLE in
females (Christensen et al., 2005). Focal seizure semi-
ology has also been reported to differ by sex, with one
report suggesting that autonomic, visceral, epigastric,
and psychic symptoms, as well as déjà vu, are more
common in females. Many other symptoms, however,
displayed no difference between sexes in this study
(Carlson et al., 2014). This profile differed from that
observed in a smaller study, which found increased
occurrence of isolated auras in females but no other sex
differences (Janszky et al., 2004). Beyond semiology, it
has also been suggested that the pattern of ictal spread
can differ as a function of sex. For example, in a small
study incorporating both clinical electroencephalo-
graphic and postictal positron emission tomography
imaging, both hypometabolism and ictal spread to the
ipsilateral frontal cortex were reported to be more
common in males, whereas hypometabolism and ictal
spread in contralateral temporal cortex was more
common in females (Savic and Engel, 1998). Consistent
with this observation, a more recent voxel-based mor-
phometry study of 120 persons with TLE reported
greater predominance of temporal lobe changes in
females and higher rates of frontal lobe changes in
males (Santana et al., 2014). Although these findings
rely on smaller samples than large epidemiologic
studies, they are intriguing and merit follow-up efforts.

Although status epilepticus (SE) is not confined to
TLE, we include it in this section because it is one of the
most commonmodels used to induce TLE in rodents (see
below). Clinical data regarding sex differences in SE are
varied, with some studies reporting higher rates of SE
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in males compared with females (DeLorenzo et al.,
1996; Hesdorffer et al., 1998; Coeytaux et al., 2000;
Knake et al., 2001) and others reporting a slight female
preponderance (Vignatelli et al., 2003, 2005; Leitinger
et al., 2019).
2. Kainic Acid. Kainic acid (KA) is a glutamate

receptor agonist and has, for the past three decades,
been commonly used in modeling TLE (Ben-Ari et al.,
1979). KA, when administered either intracerebrally or
systemically, produces repeated “limbic” seizures char-
acterized by clonus of the face and forelimbs as well as
loss of postural control. Prolonged seizure activity
(i.e., SE) triggered by KA results in the emergence of
spontaneous recurrent seizures in the days to weeks
following the initial insult.
Female Wistar rats display shorter latencies but

fewer limbic seizures after KA administration (Mejias-
Aponte et al., 2002). Unlike rats, female C57BL/6 mice
display greater sensitivity to KA than males. This is
marked by greater mortality, more severe behavioral
seizures, and more neurodegeneration (Zhang et al.,
2008).
In the intrahippocampal KA model of TLE in mice,

males show greater seizure severity, greater hippocam-
pal cell loss, increased hippocampal gliosis, poorer
survival, and more severe long-term memory deficits
than females (Li and Liu, 2019). Another report
shows that across three strains of mice, intrahippo-
campal KA results in faster onset of spontaneous
seizures in females than in males; indeed, in females,
there is no obvious latent period (Twele et al., 2016).
Electrographic seizure patterns in the model also
differ as a function of sex. Males display frequent
focal hippocampal discharges in addition to convul-
sive seizures and nonconvulsive spike-and-wave dis-
charges. By contrast, focal hippocampal discharges
are absent in females despite a similar rate of
convulsive seizures and spike-and-wave discharges
(Twele et al., 2016).
3. Pilocarpine. Like KA, treatment with the mus-

carinic agonist, pilocarpine (or alternatively lithium
and pilocarpine), produces repetitive seizures and SE
(Honchar et al., 1983; Turski et al., 1983). As with KA,
this model also produces spontaneous recurrent seiz-
ures after a period of epileptogenesis (Leite et al.,
1990).
In the lithium-pilocarpine model, female rats display

longer latencies to seizure onset compared with male
littermates (Persinger et al., 1988; Peternel et al., 2009).
Similar results have been reported after pilocarpine
alone (Mejias-Aponte et al., 2002), with females dis-
playing longer latency to seizures, a lower rate of SE,
and a lower rate of mortality. In addition to lower
susceptibility to pilocarpine-evoked status, females, as
compared with males, display reduced lipid peroxida-
tion and reduced glutathione peroxidase activity after
pilocarpine (Peternel et al., 2009).

In mice, there have been mixed reports, with some
showing equivalent susceptibility to pilocarpine-induced
SE between sexes (Muller et al., 2009; Oliveira et al., 2015)
and another showing a greater rate of status inmales than
in females across the lifespan (Buckmaster and Haney,
2012). Both of these studies reported equivalent survival
between sexes. However, it is clear that strain, and even
substrain, differences can influence seizure susceptibility,
which may account for these disparate findings (Muller
et al., 2009).

4. Kindling. Originally described in the late 1960s,
kindling is a process by which repeated stimulation of
the brain produces permanent reductions in seizure
threshold (Goddard et al., 1969). Kindling can be
accomplished through electrical stimulation of a vari-
ety of brain regions (most commonly amygdala or
hippocampus), through repeated chemoconvulsant
treatment, and even through repeated electroshock
seizures. In electrical kindling models, the threshold
current needed to produce an epileptiform pattern of
activity that outlasts the stimulation (i.e., an after-
discharge), is a common dependent measure. Across
models, behavioral seizure severity is also a common
measure (Racine, 1972).

In the amygdala kindling model, female rats display
a greater reduction in afterdischarge threshold over the
course of kindling than males and display a greater
response rate to phenytoin treatment (Ebert et al.,
1994; Borowicz et al., 2003). In response to callosal
stimulation, female rats kindle at a similar rate to male
rats but display a more rapid dendritic reorganization
and simplification in the neocortex than males (Teskey
et al., 1999). Pharmacological kindling through re-
peated administration of subconvulsant doses of nico-
tine (Bastlund et al., 2005) is faster in female rats
than male rats, and females show greater kindling-
associated oxidative stress responses throughout hip-
pocampus, cortex, and striatum (Gomes et al., 2013).
Unlike nicotine kindling, repeated ethanol withdrawal,
which also produces a kindling-like phenomenon, is
only evident in males. Interestingly, the protective
effect in females in the repeated ethanol withdrawal
model is independent of ovarian hormones (Veatch
et al., 2007). Sex differences are also apparent in
epileptogenic seizures produced from hippocampal kin-
dling, with males exhibiting a significantly faster pro-
gression to a fully kindled state as well as greater
behavioral and electrographic seizure activity (Reddy
et al., 2019).

Corneal (electroshock) kindling in mice is an alterna-
tive to traditional kindling methods (e.g., amygdala or
hippocampal kindling). In this model, kindling is in-
duced by repeated transcorneal minimal electroshock
seizures (Matagne and Klitgaard, 1998). Although the
ultimate rate of kindling in this model does not differ
as a function of sex, female mice are more sensitive
to the initial stimuli and show an early emergence
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of behavioral seizures than do males (Potschka and
Loscher, 1999).

D. Comorbidities

1. Psychiatric and Affective Disorders.
a. Clinical studies. Psychiatric comorbidities are

common in epilepsy (Josephson and Jetté, 2017) and
estimated to occur in 25%–50% of patients (LaFrance
et al., 2008), although higher incidence has been
reported, with the highest prevalence observed in
association with TLE (Bragatti et al., 2010) and drug-
resistant epilepsy (depression = 55%; anxiety = 28.7%)
(Kwon and Park, 2014; Jansen et al., 2019). The in-
cidence of depression in epilepsy has been reported in
11%–80% of patients compared with 4.9%–17% in the
general population (LaFrance et al., 2008). Similarly,
the incidence of anxiety is higher in patients with
epilepsy (15%–20%) (Brandt et al., 2010) compared with
5%–7% in the general population (LaFrance et al., 2008;
Kanner, 2011; Kwon and Park, 2014; Brandt and Mula,
2016; Salpekar and Mula, 2018). It is important to note
that the incidence of psychiatric comorbidities is even
more prevalent in epilepsy as compared with other
chronic illnesses such as cancer, diabetes, or asthma
(Hermann et al., 1996). Furthermore, patients with
psychiatric disorders, such as depression, are at ahigher
risk for developing epilepsy (Josephson and Jetté,
2017). Therefore, it is thought that psychiatric disorders
and epilepsy may share a common underlying patho-
physiological mechanism (Kanner, 2003).
Despite the high incidence of psychiatric comorbid-

ities in epilepsy and the well established sex differences
in anxiety and depression in the general population
(Altemus et al., 2014), few studies have investigated sex
differences in psychiatric comorbidities in epilepsy. The
incidence of anxiety and depression is twice as common
in females than in males in the general population
(Altemus et al., 2014), and this is also true for patients
with epilepsy. A retrospective study found that the
incidence of depression was 15.5% in males and
26.8% in females with epilepsy (Chan et al., 2015).
Similarly, anxiety disorders were found in 9.65% of
males and 17.4% in females with epilepsy (Chan et al.,
2015). These few studies suggest that there may be sex
differences in psychiatric comorbidities in epilepsy.
This represents a significant concern for epilepsy
treatment given that psychiatric comorbidities are
associated with worse epilepsy outcomes (Josephson
and Jetté, 2017). Further studies are required to un-
derstand the extent of sex differences in psychiatric
comorbidities in epilepsy and the impact on epilepsy
outcomes.
b. Animal models. Similar to clinical studies, the

majority of studies investigating sex differences in
psychiatric disorders in experimental epilepsy models
have focused solely on males, leaving us with limited
information regarding sex differences in psychiatric

comorbidities in preclinical epilepsy models. Existing
studies suggest that there are sex differences in seiz-
ures in experimental animals as highlighted above [for
review, see Scharfman and MacLusky (2006)]. In the
few studies that have examined associated psychiatric
comorbidities, increased anxiety- and depression-like
behaviors have been observed in numerous experimen-
tal epilepsy models, including both genetic (Aguilar
et al., 2018) and acquired epilepsy models (Mazarati
et al., 2008; Becker et al., 2015; Hooper et al., 2018;
Zeidler et al., 2018). However, none of these studies to
date have demonstrated sex differences in anxiety- or
depression-like behaviors in epilepsy models, although
only a few have looked. In fact, Zeidler et al. (2018) state
that no significant sex differences in depression- or
anxiety-like behaviors were observed in chronically
epileptic mice in the intrahippocampal KA model of
epilepsy but provide the disclaimer that their experi-
ments were not designed to test for sex differences. One
study demonstrated subtle sex differences in behavior
in a genetic epilepsy model, including differences in
head dips off the open arms, an effect primarily driven
by females (Aguilar et al., 2018). Some outcome meas-
ures also showed amain effect of sex but not a strain-by-
sex interaction (Aguilar et al., 2018). Although overall
these findings do not support sex differences in psychi-
atric comorbidities in epilepsy by using traditional
behavioral tests and assessments of standardized out-
come measures, there is an increased appreciation that
males and females may exhibit different behaviors in
these tests, and care should be taken in how to properly
interpret these data (Shansky, 2018). Furthermore, the
limited information on this subject is evident from this
review, and additional studies are required for a better
understanding of the mechanisms contributing to sex
differences in comorbid psychiatric disorders in
epilepsy.

2. Reproductive Endocrine Disorders and Sexual
Dysfunction.

a. Clinical studies. Both men and women with
epilepsy are at increased risk for reproductive endocrine
disorders compared with the general population
(Herzog, 2008; Koppel and Harden, 2014). Up to
90% of men with epilepsy may present semen abnor-
malities, including low sperm count or abnormal sperm
morphology or motility, and a population-based study
quantified a 40% lower birth rate in men with epilepsy
(Taneja et al., 1994; Artama et al., 2004; Herzog, 2008).
It should be noted, however, that lower birth rates can
be affected by many social factors (Mameni�skien _e et al.,
2017) and are not necessarily a direct representation of
fertility. Furthermore, changes in semen quality and
sperm count are highly associated with the use of
certain enzyme-inducing ASDs, such as valproic acid,
carbamazepine, and oxcarbazepine (Roste et al., 2003;
Isojarvi et al., 2004; Hamed et al., 2015; Ocek et al.,
2018) and may thus be independent of epilepsy-induced
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changes. In women, common ailments include anovula-
tory menstrual cycles, oligomenorrhea (irregular cycle
periodicity and infrequent menstruation), polycystic
ovaries, and polycystic ovarian syndrome (PCOS)
(Cummings et al., 1995; Bauer et al., 1998, 2000a,b;
Morrell et al., 2002; Herzog et al., 2003a; Lofgren et al.,
2007). Specifically, an estimated 10%–25% of women
with TLE are diagnosed with PCOS compared with
4%–6% of the general population (Webber et al., 1986;
Herzog and Schachter, 2001), and another 12% of
women with TLE develop hypothalamic amenorrhea
compared with 1.5% of the general population (Herzog
et al., 1986b). Although much focus has been placed on
these comorbidities in the context of TLE and other focal
epilepsies, several studies have also documented these
comorbidities in women with generalized epilepsy dis-
orders (Morrell et al., 2002; Lofgren et al., 2007). In
addition, although ASD treatment is highly associated
with development of reproductive endocrine problems
in bothmen andwomen (for examples, see Isojarvi et al.,
1993, 2004; Murialdo et al., 1997; Harden, 2005a; Ocek
et al., 2018), several lines of evidence indicate that
seizure activity itself is a primary driver of these
comorbid issues. In particular, multiple groups have
documented a pattern in which women with TLE and
seizures originating on the left side of the brain (i.e., left-
sided TLE) show increased rates of PCOS, whereas
women with TLE seizures originating in the right
hemisphere (right-sided TLE) exhibit higher rates of
hypothalamic amenorrhea (Herzog, 1993; Drislane
et al., 1994; Herzog et al., 2003a,b; Kalinin and
Zheleznova, 2007; Quigg et al., 2009). The findings
indicate that distinct reproductive endocrine disorders
may be related to the area of the brain primarily
affected by seizure activity and suggest that specific
neural pathways act as substrates to drive altered
endocrine functions.
Investigations of the pathophysiology of reproductive

endocrine comorbidities of epilepsy have naturally
focused on the hypothalamic-pituitary-gonadal (HPG)
axis, which links the brain to the control of fertility and
reproduction in all mammalian species. Gonadotropin-
releasing hormone (GnRH) neurons in the hypothalamus
release the GnRH peptide to stimulate gonadotrope cells
of the anterior pituitary to produce the gonadotropin
hormones, luteinizing hormone (LH), and follicle-
stimulating hormone (FSH). In both sexes, LH and
FSH act on the gonads to induce gametogenesis and
production of sex steroid hormones. LH and FSH can be
readily detected in the peripheral bloodstream. There-
fore, measurements of these hormones are commonly
used as surrogate readouts of activity at the hypotha-
lamic level of the HPG axis in humans, including in
patients with epilepsy. An important feature of both LH
and FSH is that these hormones are released in in-
termittent boluses, or pulses. Therefore, the pattern of
pulsatility of these hormones as well as changes in

mean basal levels are important indicators of disrup-
tions to the hypothalamic-pituitary axis in people with
epilepsy. In brief, several studies of both women and
men with epilepsy have documented changes in the
frequency of LH pulses (Meo et al., 1993; Drislane et al.,
1994; Quigg et al., 2002; Herzog et al., 2003a), although
others did not find a difference in LH pulsatility
(Murialdo et al., 1995). Furthermore, impaired LH
response to exogenous GnRH treatment is also com-
monly observed in both women and men with epilepsy
(Herzog et al., 1982; Bilo et al., 1988; Murialdo et al.,
1995), along with changes in mean LH or FSH levels
(Bilo et al., 1988; Meo et al., 1993; Morrell et al., 2002;
Herzog et al., 2003a). These changes in pituitary
gonadotropin levels suggest that activity at the hypo-
thalamic level, as well as further upstream in the brain,
is altered such that pituitary response to GnRH and/or
gonadotropin synthesis and release are commonly
affected in both women and men with epilepsy, partic-
ularly TLE. These pathophysiological changes are
challenging to assess in human patients but are begin-
ning to be addressed in animal models.

As described in further detail below, the sex steroid
hormones estradiol, progesterone, and testosterone
exert strong effects on neural function with major
implications for seizure activity. Therefore, disruptions
to normal patterns of sex steroid synthesis and release
can have profound impacts on seizure control. In this
regard, it is notable that both women and men with
epilepsy commonly show changes in circulating levels of
these hormones. Although these changes often arise as
side effects of treatment with ASDs, particularly val-
proic acid (Isojarvi et al., 1993, 2004; Harden, 2005a;
Roste et al., 2005; Isojarvi, 2008; Ocek et al., 2018),
epilepsy and seizure activity have also been indepen-
dently associated with changes in hormone levels,
particularly regarding testosterone. In men, for exam-
ple, decreased testosterone has been documented in
menwith TLE, with recovery to normal levels often seen
after temporal lobe resection and improved seizure
control (Bauer et al., 2000c, 2004). It should be noted,
however, that not all studies have found changes in
testosterone in male patients (Mikkonen et al., 2004).
Furthermore, testosterone may be lower in men with
TLE compared with men with seizure foci outside of the
temporal lobe (Bauer et al., 2004), suggesting specific
etiologies related to downstream hormone changes de-
pendent on the neural circuits primarily affected by the
seizure activity. Conversely, elevated testosterone is
often observed in women with TLE (Herzog et al.,
2003a) or idiopathic generalized epilepsy (Lofgren
et al., 2007). Particularly interesting findings were that
women with left-sided TLE showed higher testosterone
compared with women with right-sided TLE (Herzog
et al., 2003a) and that women with right-sided TLE
showed significantly decreased estradiol levels compared
with women with left-sided TLE (Herzog et al., 2003b).
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These results further suggest that downstream hormone
changes can reflect impairments and disruption to
specific neural circuits.
Another pituitary hormone critical to proper regula-

tion of HPG axis function is prolactin (PRL), which is
produced under the control of dopaminergic synaptic
inputs projecting from the hypothalamic arcuate nu-
cleus into the posterior pituitary. This direct synaptic
connection is thus anatomically poised to provide an
uninterrupted link between seizure activity in the brain
and altered pituitary PRL release. Because elevated
PRL levels suppress the GnRH-LH axis, hyperprolacti-
nemia can be another mechanism of impaired repro-
ductive endocrine function in patients with epilepsy.
With respect to changes in PRL in womenwith epilepsy,
some studies have documented increased levels (Bilo
et al., 1988), whereas others have not found baseline
differences (Dana-Haeri et al., 1984; Herzog et al.,
2003a). Acute postictal increases in prolactin have also
been reported in women with epilepsy (Collins et al.,
1983; Dana-Haeri et al., 1983; Pritchard et al., 1985).
Approximately 10% of men with TLEmay show signs of
hyperprolactinemia (Herzog et al., 1986a), although
other studies have documented acute increases in PRL
immediately after seizure activity without a change in
mean levels (Abbott et al., 1980; Collins et al., 1983;
Dana-Haeri et al., 1983; Pritchard et al., 1985; Quigg
et al., 2002). Still other studies documented similar
postictal increases in PRL, but the sex of the subjects
was not specified (Trimble, 1978; Sperling et al., 1986).
Therefore, seizure-associated changes in PRL levels
may be seen in both men and women with epilepsy,
particularly TLE. Indeed, acute measurement of serum
PRL postictally has been suggested as a possible di-
agnostic tool to distinguish epileptic seizures from
psychogenic nonepileptic seizures (Chen et al., 2005a).
In addition to impairments of reproductive endocrine

systems, many men and women with epilepsy also
complain of sexual dysfunction. Although some studies
have failed to find higher rates of such complaints in
people with epilepsy (Jensen et al., 1990), others have
documented a variety of symptoms [for comprehensive
reviews, see Harden (2005b), Luef and Madersbacher
(2015)]. For example, several studies have documented
hyposexuality, decreased sexual drive, and lower arous-
ability in substantial proportions of men and women
with epilepsy (Demerdash et al., 1991; Christianson
et al., 1995; Murialdo et al., 1995; Morrell and Guldner,
1996; Daniele et al., 1997; Duncan et al., 1997; Silveira
et al., 2001; Baird et al., 2003; Kuba et al., 2006;
Henning et al., 2019). Furthermore, deficits in arous-
ability, genital blood flow, and erectile function appear
to reflect physiologic impairments (Morrell et al., 1994;
Guldner andMorrell, 1996; Morrell and Guldner, 1996).
Disproportionate rates of sexual dysfunction observed
in patients with right-sided TLE compared with left-
sided TLE also suggest primary neural components

drive these comorbidities (Daniele et al., 1997; Herzog
et al., 2003b) in addition to more frequent observations
of temporal lobe seizure foci in women with epilepsy
that exhibit sexual dysfunction compared with patients
that do not exhibit the comorbidity (Demerdash et al.,
1991). It should be noted, however, that sexual dysfunc-
tion can also be associated with ASD treatment (Herzog
et al., 2005; Luef and Madersbacher, 2015), although
some studies have not observed such an effect (Henning
et al., 2019). In summary, various presentations of
sexual dysfunction are commonly observed in both
men and women with epilepsy.

b. Animal models. The investigation of reproductive
endocrine comorbidities of epilepsy is one of the few
areas of preclinical research in which the studies
investigating female animals far outnumber those
examining males. This is primarily due to the common-
alities between the estrous cycle of female rodents and
menstrual cycle in humans [Fig. 1; see also Fig. 2 in
Scharfman and MacLusky (2014b)] such that disrup-
tions to the estrous cycle are useful experimental
models with which to investigate the pathophysiological
mechanisms of reproductive endocrine disorders in
epilepsy. In this regard, female rodents tested in
various models of epilepsy have also shown high pro-
pensity for developing disrupted estrous cycles and
other indicators of reproductive endocrine dysfunction.
For example, female Wistar rats tested in the intra-
hippocampal KA model of TLE were found to spend
decreased time in the stages of proestrus and estrus and
increased time in metestrus (Amado et al., 1987). In
recent studies examining female mice in a similar
intrahippocampal KA model, prolongation of estrous
cycle period, typically characterized by more time spent
in diestrus, was observed in the majority of mice (Li
et al., 2016, 2018). Furthermore, these differences did
not appear for at least 6 weeks after the KA injection,
indicating that it was the chronic epileptic condition,
and not the acute effects of KA excitotoxicity, that drove
the cycle disruption (Li et al., 2016). In studies employ-
ing the pilocarpine post-SE model of TLE, Wistar rats
showed more time spent in diestrus from 2 to 6 weeks
after injection (Amado and Cavalheiro, 1998), and
Sprague-Dawley rats showed a variable response, with
one-third showing immediate cessation of cycling after
pilocarpine-induced SE, one-third developing irregular
cycles over time, and the remaining animals maintain-
ing regular cyclicity (Scharfman et al., 2008). Disrupted
estrous cycles have also been described in pilocarpine-
treated mice (Fawley et al., 2012). Lastly, amygdala
kindling models have also been linked with estrous
cycle disruption, producing increased time in estrus
and/or decreased time in diestrus in Sprague-Dawley
and Wistar rats in some studies (Edwards et al., 1999d;
Pan et al., 2013) and cycle period lengthening without
induction of persistent estrus in others (Hum et al., 2009).
In summary, these studies indicate that disruptions to the
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estrous cycle are commonly observed in rodent models of
epilepsy.
Changes in pituitary gonadotropin (LH and FSH)

release or content, as observed in human patients, have
also been documented in several rodent models of
chronic epilepsy and acute seizure induction in both
males and females (Bhanot and Wilkinson, 1982; Fujii

et al., 1984; Amado and Cavalheiro, 1998), although
changes in LH pulsatility patterns have not yet been
tested in either sex. These changes appear to be at least
partially due to paroxysmal activity in limbic struc-
tures, as several studies have shown changes in LH
and/or FSH release following electrical stimulation of
hippocampus and/or amygdala in both male and female
animals (Velasco and Taleisnik, 1969; Gallo et al., 1971;
Kawakami et al., 1973a,b).

The major advantage of animal models is increased
direct access to the hypothalamic components of the
HPG axis, particularly the GnRH neurons. In this
regard, earlier studies limited to immunocytochemical
staining for the GnRH peptide yielded conflicting
results, with decreased GnRH immunoreactivity found
in female rats after intra-amygdalar injection of KA or
systemic pilocarpine induction of SE (Amado et al.,
1993; Friedman et al., 2002) but no difference in GnRH
staining in pilocarpine-injected female mice (Fawley
et al., 2012). A recent study, however, provided the first
direct documentation of functional changes in GnRH
neuron activity and excitability, showing that in female
mice, the rate and pattern of GnRH neuron firing was
altered in the intrahippocampal KA model of TLE and
that the direction of change in KA-injected mice com-
pared with controls shifted from diestrus to estrus.
Specifically, GnRH neurons from KA-injected mice
showed higher firing on diestrus and suppressed firing
on estrus, and these differences were most profound in
the mice that concomitantly showed prolonged cycle
length. Moreover, male mice tested in the same model
showed a more modest effect, with only a subset of
GnRH neurons (those with cell bodies in the medial
septum) displaying elevated firing activity (Li et al.,
2018) (Fig. 2).

As in human patients with epilepsy, several ani-
mal studies have documented changes in circulating
levels of the sex steroids in preclinical models of TLE,
with variations dependent on the species and specific
epilepsy induction model (Table 2). For example,
amygdala-kindled female Wistar rats that became
acyclic developed higher baseline estradiol levels along
with higher estradiol and testosterone levels following
progesterone treatment (Edwards et al., 1999d). De-
creased progesterone levels were also documented in
female rats tested in the intrahippocampal KAmodel of
TLE (Amado et al., 1987). Sprague-Dawley rats treated
in the pilocarpine post-SE model of TLE, however, did
not show differences in estradiol or progesterone when
measured on diestrus but did show elevated testoster-
one (Scharfman et al., 2008), whereasWistar rats tested
in the pilocarpine model displayed increased estradiol
and decreased progesterone (Amado and Cavalheiro,
1998). By contrast, in a recent study using the intra-
hippocampal KA model of TLE in female mice, the
pattern of change in estradiol or progesterone levels as
measured 2 months after KA injection changed with

Fig. 1. Changes in seizure susceptibility associated with fluctuations in
ratios of estradiol (E, pg/ml) and progesterone (P, ng/ml) levels in the
human menstrual and rodent estrous cycles. (A) E:P (solid line) and P:E
(dashed line) ratios in the human menstrual cycle and associated
catamenial seizure clustering. Hormone data are adapted from
Thorneycroft et al. (1971). See section III. Catamenial Epilepsy:
Fluctuations in Seizure Occurrence across the Menstrual Cycle for
discussion of catamenial seizure clustering. (B) E:P and P:E ratios in
the rat estrous cycle. Hormone data are adapted from Smith et al. (1975).
(C) E:P and P:E ratios in the mouse estrous cycle. Hormone data are
adapted from Walmer et al. (1992). See section IV.B.1. Estrous Cycle–
Associated Changes in Seizure Susceptibility for discussion of changes in
seizure susceptibility associated with the estrous cycle in rats and mice.
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estrous cycle stage and depended on whether the mice
developed prolonged, disrupted estrous cycles. Specifi-
cally, progesterone levels were suppressed in KA-
injected mice that developed long cycles but not in

KA-injectedmice that retained normal cycle periodicity,
and this pattern was observed on both diestrus and
estrus. Regarding estradiol, however, no differences
were observed between groups in levels of this hormone
on diestrus, but KA-injected mice, independent of
estrous cycle period, displayed elevated levels compared
with controls (Li et al., 2018). With respect to male
animals, in one study, amygdala-kindled rats appeared
to show increased testosterone, but acute maximal
electroshock-induced seizures transiently decreased
testosterone levels (Edwards et al., 1999a). These
findings suggested that focal and generalized seizures
may have different downstream impacts on testoster-
one production and/ormetabolism.Malemice treated in
the intrahippocampal KA model of TLE, however, did
not show a change in testosterone levels when mea-
sured 2 months after KA injection (Li et al., 2018). So
far, PRL has received less attention in studies of animal
models of epilepsy, with conflicting reports of higher
PRL levels described in amygdala-kindled female rats
(Edwards et al., 1999d), decreased levels observed in
male rats following acute electrical stimulation in the
amygdala (Kawakami et al., 1973a), and no change
observed in pilocarpine-treated female rats (Scharfman
et al., 2008). In summary, although the specific direc-
tions and degrees of change in sex steroid levels may
display species differences and vary across epilepsy
models, these effects may have important implications
for understanding and interpreting features of epilep-
tiform activity that are both distinct between and
common to male and female animals.

To date, sexual dysfunction in animal models of
epilepsy has received less investigatory emphasis than
reproductive endocrine disorders. In one study, male
cats displayed reduced sexual behavior for at least
6 months following intra-amygdalar injection of alumi-
num hydroxide to induce focal epilepsy (Feeney et al.,
1998). In studies using the pilocarpine post-SEmodel of
TLE in Wistar rats, males showed longer latency to
initiate sexual activity and reduced numbers of mounts
and intromissions, and females displayed reduced
sexual interest in a male rat (proceptivity) and sup-
pressed receptivity (readiness to allow copulation as
exhibited by the lordosis response) following estradiol

Fig. 2. Sex differences in impacts of epilepsy on GnRH neuron firing
activity. Mean 6 S.E.M. for mean firing rate of GnRH neurons from
saline-injected controls (white bars) and KA-injected female mice
recorded on diestrus and on estrus (A) and male mice (B). KA-injected
females are divided into KA-long (red bars) and KA-regular (blue bars)
groups based on estrous cycle length (long = $7 days, regular = 4–6 days).
Cells are classified based on anatomic location of somata in medial
septum (MS), preoptic area (POA), and anterior hypothalamic area
(AHA). Adapted from Li et al. (2018).

TABLE 2
Summary of observed changes in circulating sex steroid levels in various rodent models of TLE

TLE model
Species Estradiol Progesterone TestosteroneAmygdala kindling

Male Rats – – ↑ Edwards et al., 1999a
Female Rats ↑ Edwards et al., 1999c – –

Systemic pilocarpine
Female Rats ↑ Amado and Cavalheiro, 1998 ↓ Amado and Cavalheiro, 1998 ↑ Scharfman et al., 2008

↔ Scharfman et al., 2008 ↔ Scharfman et al., 2008
Intrahippocampal KA
Male Mice – – ↔ Li et al., 2018
Female Rats – ↓ Amado et al., 1987 –

Mice ↑ (Estrus) Li et al., 2018 ↓ (Diestrus and estrus) Li et al., 2018 –
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and progesterone priming treatment sufficient to in-
duce estrus in control rats (Andersen et al., 2012;
Alvarenga et al., 2013). Therefore, in line with the
common observation of hyposexuality in people with
epilepsy, animal models also appear to display at least
some degree of sexual dysfunction in both sexes. Given
the increased feasibility of measuring sex behavior in
rodent models of epilepsy in the absence of confounding
antiepileptic drug treatment, further investigation in
this area is likely to yield insights into physiologic links
between epileptiform and seizure activity and altered
sexual function.
3. Cognitive and Learning Deficits.
a. Clinical studies. A large body of work has accu-

mulated evidence for functional sex differences in
human cognition and various forms of learning and
memory, at least when assessed on average, although
the specific features and underlying mechanisms are
a matter of ongoing debate (Andreano and Cahill, 2009;
Hamson et al., 2016; Asperholm et al., 2019). As many
forms of epilepsy reflect seizure activity and, in some
cases, pathologic damage to brain regions that partici-
pate in these cognitive functions, it is not surprising
that cognitive and learning deficits are major comorbid-
ities of epilepsy. Comprehensive discussion of the links
between epilepsy and cognition across the lifespan, and
the various forms of memory and neurocognitive func-
tion that can be affected, are beyond the scope here and
are available in many recent reviews (Bell et al., 2011;
Lin et al., 2012; Helmstaedter and Witt, 2017; Semple
et al., 2019). It should be noted as well that there is
growing appreciation for a comorbid relationship be-
tween epilepsy and Alzheimer disease, as discussed in
other recent reviews (Chin and Scharfman, 2013; Sen
et al., 2018). Assessing sex differences in the relation-
ship between epilepsy and Alzheimer disease, however,
is somewhat complicated by differential incidence and
progression of Alzheimer disease and other forms of
aging-related dementia in women and men (Hebert
et al., 2013; Pike, 2017; Ferretti et al., 2018). The
documented increase in risk for Alzheimer disease in
postmenopausal women compared with age-matched
men (Ferretti et al., 2018), however, underscores the
need to identify causal mechanisms that produce sex-
specific outcomes as well as features common to both
sexes. Such insights will require studies aimed at
understanding the mechanisms of sex differences in
epilepsy and Alzheimer disease separately as well as
the comorbid interactions between the two neurologic
disorders in the context of both aging-dependent and
-independent changes. In this section, we will focus on
those studies that suggest sex differences in the pre-
sentation of cognitive comorbidities in children and
adults, without the confounds of dementia-related dis-
orders that could lead to cognitive impairment inde-
pendently of the effects of epilepsy and seizures.
Furthermore, wewill focus particularly on those studies

that specifically assessed and described whether a sex
difference was observed.

Children with epilepsy are at particular risk for
cognitive impairments and learning deficits, and sex
can play a role in the presentation and features of these
comorbidities. For example, in a study of children and
adolescents with intractable epilepsy examining
impairments in episodic verbal and visual memory,
girls exhibited better delayed recall of stories and
learning of a word list, but no sex difference was
observed in performance on delayed recall of words or
in visual tasks (Smith et al., 2009). Both boys and girls
with epilepsy exhibit higher rates of autism, intellectual
disability, and attention-deficit/hyperactivity disorder
compared with children in the general population
(Socanski et al., 2013; Aaberg et al., 2016; Williams
et al., 2016). Although some studies document higher
numbers of boys with epilepsy affected than girls
(Aaberg et al., 2016), these findings may reflect an
underlying male bias of these neurodevelopmental
disorders in the general population, independent
of specific effects of epilepsy and seizure activity
(Rucklidge, 2010; Baron-Cohen et al., 2011; May et al.,
2019). Other studies, however, have found similar rates
of attention-deficit/hyperactivity disorder in both boys
and girls with epilepsy [for review, see Williams et al.
(2016)]. In addition, an analysis of data on children with
epilepsy from the National Longitudinal Survey of
Children and Youth in Canada found a slight pre-
ponderance of learning disabilities in girls (Prasad
et al., 2014). The outcomes of epilepsy in children are
also of interest given the increased potential for plas-
ticity and functional compensation early in develop-
ment. In this regard, it is interesting that patients who
exhibit left-sided temporal lobe seizures by 1 year of
age, when examined in early adulthood, can display sex-
specific outcomes in cognitive impairment, and this
effect is influenced by the lateralization of language
function. Specifically, males were found to show gener-
alized cognitive impairment of both verbal and non-
verbal functions, independent of whether the left
hemisphere remained dominant for speech. This effect
contrasted with the outcomes in female patients exam-
ined, in which only some verbal functions were im-
paired, but nonverbal functions were largely unaffected
if the left hemisphere remained dominant for speech
(Strauss et al., 1992). Altogether, these and other
studies suggest that neurobehavioral outcomes are
prominent comorbidities in children with epilepsy, that
these comorbidities can exhibit sex-specific features or
prevalence, and that the long-lasting outcomes later in
life can continue to exhibit sex differences in presenta-
tion and/or underlying mechanism.

Neuropsychological testing of adults with epilepsy
has yielded interesting insights into sex differences in
various forms of learning and memory, both in relation
to epilepsy and to human cognition in general. To a large
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extent, and perhaps as to be expected, most of the focus
in this domain has been in studying patients with
TLE. In general, most studies indicate that women
with epilepsy typically display better verbal memory
than men with epilepsy (Berenbaum et al., 1997;
Helmstaedter et al., 1999, 2004; Berger et al., 2017,
2018), although it should be noted that not all studies
show a sex difference (Davies et al., 1998). After surgical
resection of epileptogenic tissue of the anterior tempo-
ral lobe, women often continue to display superior
performance (Trenerry et al., 1995; Berenbaum et al.,
1997; Davies et al., 1998; Bengtson et al., 2000; Bjornaes
et al., 2005; Berger et al., 2017). Overall, therefore, it
appears that women in general display better perfor-
mance on verbal learning and memory tests, and this
sex difference confers a degree of resilience to decline in
these measures in the face of epilepsy. Similarly,
women without epilepsy, women with TLE, and women
with generalized epilepsy all show better delayed face
recognition memory when compared with men in these
respective groups (Bengner et al., 2006). With regard to
spatial memory as measured by hippocampal activation
during an object location memory task in a virtual
environment, it appears that in healthy controls,
women display a left-lateralized activation pattern,
whereas men display a right-lateralized pattern (Frings
et al., 2006). In patients with TLE, by contrast, the
lateralization pattern in this same task appears de-
termined by the side of the seizure focus, not sex (Frings
et al., 2008). Taken together, these studies suggest that
various forms of memory and/or the organization of
underlying neural substrates for these functions are
changed in epilepsy, with impacts and features reflect-
ing the sex of the patient.
b. Animal models. As would be expected from the

observations of prominent cognitive comorbidities in
patients with epilepsy, similar changes have also been
well documented in various animal models of epilepsy.
For a recent comprehensive review of behavioral comor-
bidities in preclinical models of epilepsy, see Holmes
(2015). As is the case regarding other aspects of pre-
clinical studies of epilepsy and seizure activity, how-
ever, few studies have specifically investigated the
potential impact of sex as a biologic variable on these
measures. Two recent studies of different genetic mouse
models, however, have yielded some interesting sex-
specific differences. First, the ELmouse, which displays
autism-like behavioral features and comorbid epilepsy,
appears to respond to ketogenic diet treatment in
a sex-specific manner, with females showing greater
improvement in sociability and stronger reduction in
stereotyped repetitive self-grooming behavior (Ruskin
et al., 2017). In addition, a recent study investigating
heterozygous potassium voltage-gated channel subfam-
ily Q member 2 knockout mice, which do not show
spontaneous seizures but do show a reduced seizure
threshold, observedmale-specific increases in compulsive

marble-burying and social dominance (Kim et al., 2020).
By contrast, a recent study investigating both males and
females in the GEPR-3 rat model documented that these
rats display impaired novel object recognition, and
a greater proportion of animals failed to explore the
objects compared with Sprague-Dawley control counter-
parts, but it did not observe a sex difference in this effect
(Aguilar et al., 2018).

With respect to pharmacological models of seizure
induction and epilepsy, one study examining the be-
havioral consequences of KA-induced SE in newborn
(4–6 days of age) rat pups documented that males
showed stronger deficits in spatial learning as tested
in a Barnes maze at 16–19 days of age than did the
corresponding female pups (Akman et al., 2015). Con-
versely, however, in another study inwhich newborn rat
pups were exposed to subconvulsive doses of domoic
acid [which can lead to behavioral abnormalities sug-
gestive of focal seizures as well as a lowering of seizure
threshold (Gill et al., 2010)], the female, but not male,
rats showed impaired spatial learning in aMorris water
maze (Doucette et al., 2007). A series of studies all
testing C57BL/6J mice have also documented varying
effects. For example, one study of adult mice tested
2 months after pilocarpine-induced SE showed male-
specific impairments in object exploration and reduced
immobility in a forced swim test but no sex differences on
other parameters, including open-field exploration and
object recognition (Oliveira et al., 2015). Another recent
study examining the short-term effects (within 5 days) of
systemic KA induction of SE documented that male mice
showed worse performance than females on novel object
recognition, but it should be noted that the males also
showed increased seizure susceptibility in response to the
KA injection (Li and Liu, 2019). Therefore, the sex differ-
ences in behavioral consequences may simply reflect sex
differences in the initial seizure severity. Conversely,
direct unilateral injection of KA into the hippocampus
canproducedeficits in spatialmemory inmice inamanner
that does not appear to differ between males and females
(Zeidler et al., 2018).

Although most investigations have focused on the
neurobehavioral consequences of epilepsy and seizure
activity, one recent study provides an intriguing poten-
tial sex-specific link between underlying performance
on the Morris water maze in control conditions and
subsequent seizure susceptibility. When Wistar rats
were tested first in the Morris water maze and then
challenged with PTZ seizure induction, the female rats
displayed a correlation between maze performance and
later seizure susceptibility that was absent in the
males, with better maze performance correlating with
reduced subsequent seizure susceptibility (Haeri et al.,
2016). Altogether, only a few studies of animalmodels of
epilepsy document sex differences in cognitive comor-
bidities, and others document the lack of a sex difference
in a given behavioral parameter tested. However, there
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have not been sufficient studies performed to suggest
that sex differences in cognitive comorbidities in animal
models are largely absent. Systematic inclusion of both
male and female animals, and formal statistical testing
for the presence of any sex differences, would greatly
help to improve our understanding of which cognitive
comorbidities, if any, show a sex-specific predominance.
4. Migraine and Others.
a. Clinical studies. In addition to the prominent

psychiatric, reproductive, and cognitive comorbidities
described in the previous sections, people with epilepsy
are also at increased risk for a variety of other somatic
conditions. Among these, urinary tract infection, hypo-
thyroidism, and migraine are in the top 10 conditions
for women, whereas cancer, coronary artery disease,
and gastroesophageal reflux disease are in the top 10 for
men (Wilner et al., 2014). Of these, the best studied is
migraine, which also exhibits a higher prevalence in
women in the general population worldwide (Stewart
et al., 1992, 2008; Sakai and Igarashi, 1997; Vetvik and
MacGregor, 2017).
The relationship between migraine and epilepsy is of

particular interest for several reasons. First, both are
episodic disorders (Haut et al., 2006; Rogawski, 2012);
second, migraine is the most common type of headache
observed in patients with epilepsy (Mainieri et al.,
2015); third, the presence of comorbid migraines can
negatively impact the prognosis of becoming seizure-
free (Velio�glu et al., 2005); and fourth, many ASDs are
effective as prophylactic treatments for migraines, pro-
ducing a reduction in the number of episodes (Sprenger
et al., 2018). Of note, migraine is far more commonly
observed in patients with epilepsy than epilepsy is
observed in migraine sufferers, simply because mi-
graine on its own is far more prevalent (Bigal et al.,
2003). Several studies have documented higher rates of
migraine in people with epilepsy (for review, see Bigal
et al., 2003; Haut et al., 2006; Rogawski, 2012), although
there are exceptions (Brodtkorb et al., 2008; Tonini
et al., 2012). Intriguingly, however, the sex difference in
migraine prevalence observed in the general population
appears to be largely equalized in the face of epilepsy.
Whether focusing on acute postictal headache or peri-
ictal headache, or migraine in general, relatively sim-
ilar rates have been observed in both men and women
with epilepsy (Forderreuther et al., 2002; Karaali-
Savrun et al., 2002; Ito et al., 2004; Syvertsen et al.,
2007; Mameniskiene et al., 2016), and the sex of the
patient does not appear to influence the type of
headache (e.g., migraine, tension, or unclassified) asso-
ciated with seizure activity (Leniger et al., 2001). This
does not exclude the possibility, however, that the
underlying mechanisms and triggers of migraine and
other headaches in epilepsy may be different between
men and women.
b. Animal models. There is growing investigation of

the underlying neurobiological mechanisms of migraine

in animal models (for review, see Bolay et al., 2011;
Ferrari et al., 2015; Pavlovic et al., 2017). Most of the
focus in animal models has been on measures of cortical
spreading depression (CSD), which is postulated to
underlie the migraine aura (Charles and Baca, 2013).
In this regard, it is intriguing that CSD susceptibility in
rodent models also exhibits certain sex differences. For
example, the threshold for triggering CSD in wild-type
C57BL/6 mice appears to be lower in females, in both
the potassium chloride and tetanic stimulation mod-
els of CSD induction (Brennan et al., 2007). Further-
more, mouse models of familial hemiplegic migraine
type 1, which harbor mutations in the Cacna1a gene
encoding the a1A subunit of Cav2.1 channels, exhibit
sex differences, with females exhibiting increased
susceptibility to CSD and neurologic motor deficits
than males and increased propagation of CSD into
subcortical structures (Eikermann-Haerter et al.,
2009, 2011).

In terms of potential links between migraine and
epilepsy, only a handful of studies have addressed this
issue in animal models. Nevertheless, a study of Wistar
audiogenic rats indicated intriguing sex differences that
reversed with exposure of the rats to audiogenic kin-
dling stimulation. Specifically, when tested prior to
audiogenic kindling, the female and male rats showed
higher and lower CSD conduction velocity, respectively,
compared with controls of the same sex. After audio-
genic kindling, however, the female rats showed lower
CSD propagation than controls, whereas males showed
higher CSD propagation (Guedes et al., 2009). Con-
versely, mice that harbor heterozygous or homozygous
knockout mutations of proline-rich transmembrane
protein 2, which underlie a group of disorders including
epilepsy and migraine, do not appear to exhibit sex
differences in PTZ or audiogenic seizure induction or in
different motor or cognitive behaviors (Michetti et al.,
2017). Lastly, a pair of recent studies examining
a mouse model of familial hemiplegic migraine type 2,
a subtype of severe migraine with aura and comorbid
epilepsy, have documented sex differences in some
parameters but not others. These mice, which carry
a mutation in the astrocyte-specific a2-isoform of the
Na+/K+ ATPase, may exhibit sex differences in certain
behavioral comorbidities, including open-field explora-
tion, and elevated cortical and hippocampal glutamate
levels in adult females (Bottger et al., 2016). In tests of
CSD susceptibility, a sex difference was not observed in
young mice, but susceptibility was lowered specifically
in aged, reproductively senescent females; however,
these mice do not appear to show a sex difference in
susceptibility to epileptiform activity (Kros et al., 2018).
Altogether, the few studies that have accounted for
seizures or epilepsy have primarily focused onmodels of
rare, more severe subtypes of migraine. Therefore, it is
unclear how the findings may relate more broadly
to heterogeneous epilepsies and to the milder forms
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of migraine observed more generally in people with
epilepsy.

III. Catamenial Epilepsy: Fluctuations in Seizure
Occurrence across the Menstrual Cycle

Perhaps themost prominent sex difference in epilepsy
is that women with epilepsy commonly show a pattern of
cyclical occurrence of seizure exacerbations during partic-
ular phases of the menstrual cycle (Newmark and Penry,
1980; Reddy, 2004b; Herzog and Fowler, 2008). In this
section, we will review this phenomenon, “catamenial
epilepsy,” with particular focus on the clinical presenta-
tions and ongoing development of preclinical models to
study this sex-specific aspect of epilepsy etiology and
treatment.

A. Types and Prevalence

The types of epilepsies and seizures that are suscep-
tible to catamenial fluctuations are not yet thoroughly
defined. However, it appears that seizures in both focal
epilepsies (such as TLE) and certain primary general-
ized epilepsies (such as juvenile myoclonic epilepsy) can
exhibit catamenial exacerbations. Catamenial epilepsy
is a widespread condition that affects between 25% and
70% of women with epilepsy who are of reproductive age
(Reddy, 2009). The reason for the large range is due to
differences in definition or diagnostic criteria. As a result
of cyclic fluctuations in hormones and subsequent changes
in the levels of neurosteroids, women suffering from
catamenial epilepsy experience exacerbations of epileptic
seizures associated with particular phases in the men-
strual cycle (Herzog, 1999;Reddy, 2004b). Presently, there
is no specific Food and Drug Administration–approved
drug therapy for the treatment of catamenial epilepsy. In
many cases, women diagnosed with epilepsy who are
experiencing increased cyclic-related seizures are pre-
scribed conventional ASDs. Unfortunately,many patients
still experience menstrual cycle–related seizures despite
drug treatment, indicating their condition is not respond-
ing to conventional ASDs; these seizures can thus be
classified as pharmacoresistant.
Catamenial epilepsy is observed in women with both

ovulatory and anovulatory cycles. In one study (Herzog
et al., 2004), about 16.5% of subjects were found to have
anovulatory cycles and an inadequate luteal phase.
Altogether, three types of catamenial seizures have
been identified, perimenstrual, periovulatory, and in-
adequate luteal phase, based on seizure exacerbation in
relation to the menstrual cycle (Herzog et al., 1997;
Reddy, 2009) [see Fig. 2 in Harden and Pennell (2013)].
The specific pattern of incidence can be identified
simply by charting menses and seizures, along with
measuring mid-luteal–phase serum progesterone levels
to distinguish between normal and inadequate luteal
phase cycles (Herzog and Fowler, 2008; Quigg et al.,
2009). The diagnosis of catamenial epilepsy is mainly

based on the assessment of menstruation and seizure
records. Using the first day of menstrual bleeding as the
first day of a regular 28-day cycle, themenstrual cycle is
divided into four phases: 1) menstrual phase, days23 to
+3; 2) follicular phase, days +4 to +9; 3) ovulatory phase,
days +10 to +16; and 4) luteal phase, days +17 to 24.
The number of seizures in each phase is checked for at
least two cycles, and a twofold or greater increase in
frequency during a particular phase of the menstrual
cycle can be used as diagnostic criteria of catamenial
epilepsy. In perimenstrual catamenial epilepsy, the
most common clinical type, women with epilepsy expe-
rience an increase in seizure activity on days 23 to 3 of
the cycle (Reddy, 2009).

B. Preclinical Models

Preclinical models have been developed that mimic
the perimenstrual seizures of catamenial epilepsy. This
seizure condition can be induced with pharmacologic
agents or by electrical stimulation in rodents with
suitable manipulation of neuroendocrine milieu
(Reddy, 2009; Scharfman et al., 2009; Reddy et al.,
2012). Neurosteroid levels fluctuate during the ovarian
cycle phases. They are generally found in high concen-
trations during the luteal phase and lower concentra-
tions during the perimenstrual phase. Furthermore,
perimenstrual catamenial epilepsy could be triggered
by physiologic reductions of neurosteroids. There is
some clinical evidence stating that some neurosteroids
have been found to be deficient in blood plasma of
patients with perimenstrual catamenial seizures (El-
Khayat et al., 2008; Tuveri et al., 2008). Such premises
have been used to model neurosteroid withdrawal in
rodents to obtain a better understanding of the un-
derlying mechanism.

There are several features for an ideal catamenial
epilepsy model (Scharfman et al., 2005, 2008; Reddy,
2016). It should reflect pathophysiology similar to those
of catamenial seizures in women with epilepsy, exhibit
appropriate menstrual seizure phenotype consistent
with the neuroendocrine fluctuations of women with
epilepsy, exhibit appropriate latency following steroid
hormone fluctuations or withdrawal period, and re-
spond to drug therapy with resistance to certain anti-
convulsants. Because catamenial epilepsy is a complex
neurologic disorder that encompasses many causes and
seizure phenotypes, it is highly unlikely that any single
animalmodel will truly recapitulate the full spectrum of
clinical catamenial seizure features. Therefore, it is
necessary to screen potential therapeutic products and
investigate pathologic mechanisms in a battery of
animal models prior to clinical trials. In this regard,
both rat and mouse models were recently developed
with the basic premise of creating a hormonal milieu of
the perimenstrual period (Reddy, 2016), using both
healthy rats and epileptic rats as well as healthy mice
and kindled (epileptic) mice. This was done by creating
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a variety of manipulations through the use of pseudo-
pregnancies, the exogenous administration of progester-
one, and the utilization of a spontaneous seizure model.
For example, gonadotropin is used to increase endoge-
nous neurosteroid levels (Reddy et al., 2001). When
gonadotropin is administered, it induces superovulation
and the release of progesterone, followed by its conver-
sion to allopregnanolone (Fig. 3). Concurrently, when
allopregnanolone levels peak, they can be blocked by
administration of the neurosteroid synthesis inhibitor,
finasteride, to create a state of neurosteroid withdrawal.
During this neurosteroid withdrawal phase, the seizure
threshold in these animals drops significantly lower
before returning to normal levels within 72 hours.
The above paradigms were recently replicated in

mouse models, which allow for more mechanistic stud-
ies, and two distinct mouse models of perimenstrual
catamenial epilepsy were developed (Gangisetty and
Reddy, 2010; Reddy et al., 2012). These models are
based on the premise that seizure susceptibility
decreases when neurosteroid levels are high (luteal
phase) and increases during their withdrawal (peri-
menstrual periods) in females in association with
specific changes in the GABAA receptor subunit plas-
ticity. First, a chronic seizure condition was created by
using the hippocampus kindling model in female mice.
Second, the fully kindled mice were subjected to fluctu-
ating levels of neurosteroids, mimicking the ovarian
cycle. Then, two distinct pharmacological approaches
were used to induce elevated neurosteroid levels: 1)
chronic exogenous progesterone treatment protocol and
2) gonadotropin regimen for induction of endogenous
synthesis. The gonadotropin-induced neurosteroid syn-
thesis and withdrawal paradigm appears more physio-
logically relevant than the exogenous progesterone
treatment. In this model, elevated neurosteroid levels
are induced by sequential gonadotropin treatment
and withdrawal induced by finasteride (Reddy et al.,
2012). This mouse model of perimenstrual catame-
nial epilepsy is useful for the investigation of disease
mechanisms and exploring the efficacy of new therapeutic
approaches. However, there are some limitations with
these preclinical models because the actual endocrine
conditions that exist in themenstrual cycle are different
from those observed in rodent models. As discussed
above, in rodents, the estrous cycle duration is 4–7 days,
and the menstrual cycle in women lasts about 28 days.
In addition, rodents do not exhibit a true luteal phase as
observed in the menstrual cycle. This is a major concern
with most animal models developed in rodents.

IV. Potential Neurobiological Bases for Sex
Differences in Seizure Susceptibility

and Epilepsy

The underlying mechanisms that give rise to the sex
differences in various types of epilepsy and associated

comorbidities are ongoing areas of investigation. In this
section, while not exhaustive, we will discuss some of
the developmental, neurobiological, endocrinological,
and metabolic effects that are likely to be involved in
driving sex-specific outcomes in the context of epilepsy
and/or comorbidities.

A. Sex Differences in Brain Development

Sex differences are evident throughout the full tra-
jectory of brain development. In humans, brain volume
differences betweenmales and females are evident from
birth and are present throughout the lifespan [see
review in Paus (2010)], including highly ictogenic
regions such as hippocampus and amygdala.

Early in development, gonadal hormone–mediated
organizational effects lead to terminal differentiation of
neurons and circuits to adopt sex-specific patterns [for
review, see McCarthy and Arnold (2011)]. This was first
described in the landmark paper of Phoenix et al.
(1959), in which guinea pigs were exposed to testoster-
one in utero, a treatment that resulted in masculiniza-
tion of females as measured by adult copulatory
behavior. The window for these organizational effects
is developmentally restricted but permanent [for re-
view, see Arnold (2009)]. These organizational effects
are complemented by activational effects, i.e., hormone-
mediated changes in function that are reversible with
removal of the hormonal influence. These effects set up
dimorphic patterns that may influence both the expres-
sion and treatment of the epilepsies.

Given that infancy is one of the peak periods of new
onset seizure occurrence, sex differences in brain de-
velopment may have stark impacts on responses to
treatment. In the sections below, we describe sex differ-
ences in the context of early-life epilepsies, with a focus on
preclinical models to understand mechanisms.

1. Neurogenesis. One of several ways sex differences
manifest is through divergent rates of neurogenesis.
This topic has been previously reviewed extensively
(Porter, 2008) and is presented in brief below. First,
basal rates of neurogenesis differ during development
as a function of sex; newborn male rats display a higher
rate of neurogenesis in the hippocampus than females
(Bowers et al., 2010). In contrast to the hippocampus,
newborn female rats display higher rates of neuro-
genesis in the amygdala than male rats (Krebs-Kraft
et al., 2010). This baseline difference in neurogenesis
may, in turn, set up divergent responses to epilepto-
genic insults.

Aberrantneurogenesis iswell characterizedasapath-
ologic feature of TLE in adult animal models (Parent
et al., 1997; Gray and Sundstrom, 1998; Scharfman
et al., 2000). Though similar findings have been
reported in younger animals (Porter et al., 2004), this
differs substantially across models and age, with some
studies reporting decreased cell birth (McCabe et al.,
2001; Liu et al., 2003), some reporting increased
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(Sankar et al., 2000), and some reporting no change
(Bender et al., 2003). There are only sparse reports
examining sex differences in survival of neurons after
early-life seizures. For example, female rats that re-
ceived febrile seizures at postnatal day 17 displayed
greater survival of newborn cells in the hippocampus
than males (Lemmens et al., 2005), but the rate of
neurogenesis did not differ by sex. In a different model
(KA-induced SE), female newborn rats showed less
survival of cells in the dentate gyrus than males
(Hilton et al., 2003). Ultimately, the number of neurons
present after injury or stimulation is determined by the
balance of proliferation and survival. The role of neuro-
genesis in epilepsy is complex, with recent studies in
adult animals showing that basal neurogenesis is pro-
tective against seizures (Iyengar et al., 2015; Jain et al.,
2019b), whereas aberrant neurogenesis following SE
contributes both to adverse cognitive outcomes and
seizure burden (Cho et al., 2015). How these findings will
translate to the developing brain, and how these findings
are modulated by sex, remains to be determined.
2. Chloride Homeostasis and GABAergic Neuro

transmission. Sex differences in the develop-
ment of GABAergic neurotransmission have been

extensively reviewed by others (Akman et al., 2014)
and are summarized below, with a focus on features of
particular relevance to epilepsy and pharmacotherapy.

First, several GABAA receptor subunits (a1, a3, and
g2) display differing expression profiles as a function of
sex and brain region (Ravizza et al., 2003; Li et al., 2007;
Chudomel et al., 2009). Consistent with this observa-
tion, a study of children undergoing positron emission
tomography imaging prior to epilepsy surgery found
greater flumazenil binding in females compared with
males (Chugani et al., 2001). Moreover, in postmortem
tissue from adults, a1, a2, a5, and b3 subunit expres-
sion is greater in males than females (Pandya et al.,
2019). As subunit composition impacts both the kinetics
of GABAergic neurotransmission and the pharmacology
ofGABAA receptors (Olsen andSieghart, 2009), a deeper
understanding of sex differences in receptor expression
and function may enable more appropriate targeting of
pharmacotherapy.

Perhaps one of the best-explored sex differences
during development in the context of epilepsy is the
shift from depolarizing to hyperpolarizing GABA, which
is regulated by the expression of solute transporters
that set the chloride gradient. Of particular interest

Fig. 3. Biosynthetic pathways of neurosteroid synthesis in the brain and nervous system. Enzymatic pathways for the production of three prototype
neurosteroids allopregnanolone (now called brexanolone), allotetrahydrodeoxycorticosterone (THDOC), and androstanediol are illustrated from
cholesterol and intermediate steroid precursors. Cholesterol is converted to pregnenolone by P450scc in the inner mitochondrial membrane.
Pregnenolone is the precursor for progesterone and other neurosteroids. Progesterone, deoxycorticosterone, and testosterone undergo two sequential
A-ring reduction steps catalyzed by 5a-reductase and 3a-HSOR to form the 5a, 3a-reduced neurosteroids. The conversion of progesterone,
deoxycorticosterone, or testosterone into neurosteroids occurs in several regions within the brain. The 5a-reductase, 3a-HSOR, and other enzymes are
present in the brain. 3b-HSD, 3b-hydroxysteroid dehydrogenase; 3a-HSOR, 3a-hydroxysteroid oxidoreductase; 17b-HSD, 17b-hydroxysteroid
dehydrogenase; P450c21, cytochrome P450 21-hydroxylase; P450scc, cholesterol side-chain cleavage enzyme. Adapted from Reddy (2013).
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are the sodium-potassium-chloride cotransporter 1
(NKCC1) and the potassium-chloride cotransporter 2
(KCC2). NKCC1 transports chloride into the cell,
whereas KCC2 transports chloride out of the cell. Early
in development, NKCC1 is highly expressed relative to
KCC2, which results in a net chloride loading of
neurons. Thus, in immature neurons, GABAA receptor
activation results in chloride efflux and depolarization
(Ben-Ari et al., 2007). This depolarizing GABA has been
suggested to contribute to the relatively poor efficacy of
first-line antiseizure medications (e.g., phenobarbital)
for the treatment of neonatal seizures (Dzhala et al.,
2005). Over the course of early postnatal development,
expression of NKCC1 decreases, expression of KCC2
increases, and an adult-like chloride equilibrium poten-
tial is reached. However, the relative timing of this
“switch” from depolarizing to hyperpolarizing GABA
differs as a function of both brain region (Glykys et al.,
2009) and sex (outlined below).
Although the developmental time course of KCC2 and

NKCC1 expression has been characterized across brain
regions in rats (Wang et al., 2002), it has only been done
so in a thorough manner for males. Similarly, though
spatio-temporal trajectories for both transcripts have
been reported for the human brain, and samples for
both males and females were included, the data were
not disaggregated by sex (Kang et al., 2011). Fortu-
nately, a handful of studies have directly compared
expression in at least a subset of brain regions across
sexes in animal models. In the hypothalamus of new-
born rats, NKCC1 expression is significantly greater in
males compared with females, and KCC2 expression is
higher in female rats than males at postnatal day 5
(Perrot-Sinal et al., 2007). Similarly, KCC2 expression
in cortex increases earlier in females than males (Kang
et al., 2015). In the substantia nigra pars reticulata,
KCC2 mRNA levels are regulated in a hormone-
dependent manner, with females displaying higher KCC2
levels than males at postnatal day 15 (Galanopoulou
and Moshe, 2003). Consistent with this pattern of
expression, gramicidin-perforated patch recordings
demonstrated hyperpolarizing GABA in female rats
and depolarizing GABA at the same developmental
stage (Galanopoulou et al., 2003). In adult animals,
however, infusion of GABA agonists into the substantia
nigra potently suppresses seizures, and during devel-
opment, a sex difference appears; in males, a proconvul-
sant effect is observed, whereas in females, either no
effect or an anticonvulsant effect is observed (Veliskova
and Moshe, 2001). This effect may be explained by the
earlier emergence of hyperpolarizing GABA in female
rats.
Likewise, in the entorhinal cortex and hippocampus,

KCC2 levels are higher in females than in males
(Murguia-Castillo et al., 2013). Functionally, this ex-
pression results in hyperpolarizing GABA in females at
ages as young as postnatal day 4, whereas in males,

the majority of neurons display depolarizing GABA
responses until postnatal days 14–18 (Galanopoulou,
2008). In sum, females display a more “adult-like”
expression pattern of NKCC1/KCC2 at earlier develop-
mental ages, which results in a mature chloride gradi-
ent and hyperpolarizing GABA signaling. In the
hippocampus, these divergent patterns of maturation
of GABAergic transmission interact with seizure his-
tory in a complex manner. KA-induced seizures on
postnatal days 4–6 induce an early shift toward hyper-
polarizing GABA in males and cause a regression to-
ward depolarizing GABA in females (Galanopoulou,
2008). In humans, NKCC1 expression in cortex peaks
around birth and then falls to adult levels in themonths
after birth. By contrast, KCC2 levels rise slowly and
consistently over the first year of life (Dzhala et al.,
2005). Though expression during development has not
been stratified by sex in human tissue, this overall
expression is consistent with rodent studies, with
a heightened ratio of NKCC1 to KCC2 expression early
in development.

As several common classes of antiseizuremedications
used in neonates (e.g., barbiturates, benzodiazepines)
exert seizure-suppressive effects through GABA-mediated
inhibition, sex differences may be of particular impor-
tance in understanding effects (or lack thereof) as
randomized controlled trials in these populations be-
come more common. At the very least, subgroup anal-
yses based on sex, which have not been reported in the
few recent trials comparing phenobarbital to other
therapies in neonates, are warranted.

3. Hypoxia and Hypoxia-Ischemia. In classic phar-
macological models used in preclinical epilepsy re-
search, little to no evidence exists for sex differences
in immature animals with respect to induction, seizure
threshold, or mortality [see Table 3 in Akman et al.
(2014)]. This effect differs from models of hypoxia or
hypoxia/ischemia (HI). HI encephalopathy is one of the
most common causes of neonatal seizures. Growing
clinical evidence suggests that females display more
favorable outcomes after HI (Smith et al., 2014).
Similarly, survival and long-term outcomes are en-
hanced in female, as compared with male, low-birth-
weight infants (Ito et al., 2017). For a thorough review of
this topic, see Hill and Fitch (2012).

What mechanisms may underlie these differences in
outcome? In mice, 1) females display smaller infarct
volume and fewer seizures, 2) males display increased
microglial activation and inflammatory cytokine pro-
duction, and 3) females display less severe behavioral
impairment (Mirza et al., 2015; Al Mamun et al., 2018).
Moreover, males show a transient but significantly
heightened seizure burden following HI at postnatal
day 7, an effect that is not observed in females (Kang
et al., 2015). Similar findings after neonatal HI have
been reported in rats, with males displaying more
severe brain damage and neurologic deficits than
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females (Hill et al., 2011). This enhanced sensitivity
in males appears to be at least partly mediated by
testosterone, as treatment with testosterone worsens
outcomes in females (Hill et al., 2011). Moreover, it has
been suggested that the X-linked inhibitor of apoptosis
may confer a protective advantage to females (Hill and
Fitch, 2012).
Clinically, phenobarbital remains the first-line ther-

apy for neonatal seizures following hypoxia or hypoxia-
ischemia (Rennie and Boylan, 2007). However, as
described above, early in postnatal development, GABA
action can result in excitation of neurons, and drugs
such as phenobarbital can thus result in a paradoxical
increase in activity. In rodent models, phenobarbital
displays a range of efficacy; after graded global hypoxia
in rats (Cleary et al., 2013), it displaysmodest efficacy at
suppressing seizures, but this action is significantly
potentiated by the NKCC1 inhibitor bumetanide. By
contrast, in a carotid ligation model in mice, phenobar-
bital suppressed seizures, and the addition of bumeta-
nide was either without effect or worsened seizure
activity (Kang et al., 2015). Interestingly, the exacerba-
tion of seizure activity by bumetanide was preferential
to females (Kipnis et al., 2019). In other models, sex has
not been explicitly addressed; however, phenobarbital
alone failed to suppress seizure activity but abolished
seizures in combination with bumetanide in in vitro
hippocampal seizures evoked by either low magnesium
(Dzhala et al., 2008) or high potassium (Dzhala et al.,
2005). Similarly, in vivo seizures triggered by KA are
poorly controlled by phenobarbital in postnatal day 10
rats but are significantly reduced by bumetanide
(Cleary et al., 2013). Based largely on the hypothesis
that the immature chloride gradient in the developing
brain contributes to the high level of refractoriness seen
with phenobarbital (Painter et al., 1999), the Neonatal
Seizure Treatment with Medication Off-patent consor-
tium trial (Pressler et al., 2015) examined adjunctive
treatment with bumetanide for neonatal seizures. The
trial was ultimately terminated because of a combina-
tion of adverse reactions (ototoxicity) and little evidence
for seizure reduction. Given the small sample size (4
female, 10 male), it is difficult to draw any conclusions
regarding sex differences, but it is interesting to note
that decreases in seizure burden were evident in a sub-
set of subjects of both sexes. Although the trial failed to
demonstrate clear efficacy, future studies targeting this
mechanism in early-life seizures may still be merited
that take into account etiology of seizure given that
bumetanide appears to have different responses across
animal models based on the etiology of the seizure and
the effect of sex.

B. Hormonal and Neurosteroid Mechanisms
in Adulthood

1. Estrous Cycle–Associated Changes in Seizure
Susceptibility. Fluctuations in seizure susceptibility

across the estrous cycle, akin to catamenial patterns of
seizure clustering, have been documented in both acute
models of seizure induction and models of chronic
epilepsy in female rodents (Fig. 1). With respect to
acute induction of seizures, most studies have docu-
mented increased susceptibility on proestrus and es-
trus. For example, PTZ threshold differs across the
estrous cycle, with the lowest threshold seen during
estrus and the highest seen during diestrus (Riazi et al.,
2004). Similarly, thresholds to bicuculline-induced my-
oclonus are lower during estrus than during diestrus
(Finn and Gee, 1994), and susceptibility to seizures
induced by systemic KA injection is also higher on
estrus compared with diestrus (Maguire et al., 2005).
Moreover, sensitivity to GBL peaks during estrus and is
lowest during metestrus and diestrus (Santos et al.,
2018). After discharge, threshold with kindling stimu-
lation changes over the estrous cycle and is lowest in
proestrus (the time of peak circulating estradiol levels)
and highest during metestrus (during the peak of
progesterone secretion). Hippocampal excitability mea-
sured in ex vivo slices from rats is higher on proestrus
and estrus relative to metestrus (Scharfman et al.,
2003). Similarly, the number of SWDs increases during
proestrus in WAG/Rij rats (van Luijtelaar et al., 2001).
By contrast, however, a significantly lower percentage
of females reach SE as an endpoint after systemic
pilocarpine injection during estrus (Scharfman et al.,
2005), and the frequency of interictal spikes observed
following systemic KA injection in rats is higher on
metestrus and diestrus (D’Amour et al., 2015). Further-
more, minimal and maximal electroshock thresholds
are alsomodulated as a function of estrous cycle stage in
female rats. Minimal seizure threshold is elevated
during diestrus, lower during proestrus, and lowest
during estrus. The maximal seizure severity, as mea-
sured by the duration of tonic flexion, is greatest during
diestrus and shortest during estrus (Woolley and
Timiras, 1962a). Together, these studies indicate dy-
namic fluctuations in seizure susceptibility across
estrous cycle stages.

2. Effects of Estradiol, Progesterone, and Testosterone
on Seizure Susceptibility. Steroid hormones, specifi-
cally estradiol, progesterone, and testosterone, are
intimately involved in sex differences in epilepsy.
Estradiol is one of the three molecules that comprise
estrogen and has been known to play a role in the
exacerbation of seizures in women with epilepsy
(Logothetis et al., 1959; Bäckström, 1976; Bäckström
et al., 1984; Jacono and Robertson, 1987; Younus and
Reddy, 2016). Plasma estradiol levels are found to
increase during both the follicular and luteal phase of
the normalmenstrual cycle, and in the late luteal phase,
there is a precipitous decline in progesterone that
triggers menstruation. Therefore, an increase in the
ratio of estrogen to progesterone during the perimenst-
rual period may possibly contribute to the development
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of perimenstrual seizures (Bonuccelli et al., 1989;
Herzog et al., 1997).
a. Estradiol. Proconvulsant effects of estradiol have

been observed across diverse animal models of seizure
susceptibility (Table 3). Estradiol facilitates chemo-
convulsant PTZ kindling in ovariectomized female rats
(Hom and Buterbaugh, 1986). Estradiol decreases the
latency to KA-evoked status in ovariectomized rats
(Woolley, 2000) but interestingly decreases post-status
cell loss (Reibel et al., 2000). Estradiol also reduces
electroshock seizure threshold (Woolley and Timiras,
1962c) and accelerates both hippocampal and amygdala
kindling (Edwards et al., 1999c). Similarly, in ovariec-
tomized females, estradiol facilitates kindling from the
anterior neocortex (Buterbaugh, 1989), dorsal hippocam-
pus (Buterbaugh andHudson, 1991), and amygdala (Hom
and Buterbaugh, 1986; Buterbaugh, 1987). Estradiol also
facilitates amygdala kindling in male rats (Saberi and
Pourgholami, 2003). It should be noted, however, that
some anticonvulsant effects of estradiol have also been
observed. For example, in ovariectomized rats, the latency
to NMDA-evoked seizures can be increased by estradiol
(Vathy et al., 1998). In addition, ovariectomy results in an
increased sensitivity to NMDA marked by longer total
seizure duration and greater numbers of seizures than
control animals; this effect is normalized by estradiol
(Kalkbrenner and Standley, 2003).
b. Progesterone. Progesterone has primarily anti-

convulsant and antiepileptic properties in animals and
humans, although in a randomized placebo-controlled
trial, progesterone was primarily effective in treating
women with a perimenstrual catamenial pattern only
(Jacono and Robertson, 1987; Herzog, 1999; Reddy,
2009). Progesterone has long been known to have
antiseizure activity in a variety of animal models of
epilepsy (Table 3). In recent years, numerous studies
have confirmed the powerful anticonvulsant activity of
progesterone in diverse animal seizure models (Reddy
et al., 2004, 2010). For example, progesterone sup-
presses PTZ-evoked seizures in female mice (Frye
et al., 2002) and protects against NMDA-evoked seiz-
ures in male mice (Członkowska et al., 2000). Conse-
quently, seizure susceptibility is typically low during

physiologic conditions associated with high progester-
one. In women with epilepsy, natural cyclic variations
in progesterone during the menstrual cycle could in-
fluence catamenial seizure susceptibility, as detailed
above. It should be noted, though, that progesterone
receptor (PR) agonists may increase the number of
spontaneous seizures in female chronically epileptic
rats (Shiono et al., 2019).

Progesterone acts on the brain through two different
mechanisms. The first pathway involves binding to PRs
and exerting effects through both genomic and non-
genomic mechanisms. The second pathway involves
modulating GABAA receptors via synthesis of neuro-
steroids (Fig. 3). Neurosteroids rapidly alter neuronal
excitability through direct interaction with GABAA

receptors (Macdonald and Olsen, 1994; Belelli et al.,
2002). In the process of neurosteroidogenesis, proges-
terone is converted to allopregnanolone by sequential
A-ring reductions. Another neurosteroid, tetrahydro-
deoxycorticosterone (THDOC), is produced by reduction
of deoxycorticosterone. It was demonstrated that PRs
require longer periods of time to exhibit their effects,
whereas neurosteroid synthesis via progesterone con-
versions occur rapidly, suggesting that these conver-
sions could potentially be more relevant to developing
pharmaceutical treatments. This hypothesis was sup-
ported by comparing wild-type and PR knockout mice to
show that progesterone can still produce anticonvulsant
effects in mice that lack PRs. Blockade of progesterone
conversion to neurosteroids by finasteride treatment
prevented the anticonvulsant effects, indicating that
these outcomes were mediated by allopregnanolone
(Reddy et al., 2004).

Because endocrine fluctuations in plasma levels of
progesterone and other steroids can mediate neuro-
steroid availability, there are apparent differences
between sexes concerning concentrations of neuroste-
roids in the brain. Though neurosteroids are capable of
shaping inhibition and producing behavioral effects in
both males and females, the regulation of neurosteroid
activitymay be sex-specific (Gulinello and Smith, 2003).
Differences in maximal GABAA receptor potentiation
are observed between male and female rats for THDOC

TABLE 3
Effects of sex steroid treatment on seizure susceptibility in preclinical rodent models

Estrogen Progesterone TestosteroneGeneralized (Motor)

Picrotoxin ♀ = Anticonvulsant ♂ = Increased sensitivity ♀ = Proconvulsant
♂ = Anticonvulsant

Pentlyenetetrazole Rats, ♀ = proepileptogenic Rat: anticonvulsant Rat: anticonvulsant
NMDA Sensitivity: OVX . control Mice, ♂ = anticonvulsant

♀ = Anticonvulsant
Electroshock Proconvulsant Anticonvulsant Both pro- and anticonvulsant effects
Generalized (Absence)
WAG/Rij More seizures during proestrus
Focal
Kainic acid Rat: proconvulsant Rat: castration is anticonvulsant
Pilocarpine Rats, ♀: agonists increase seizure frequency
Kindling Rats: proepileptogenic Rats, ♀ = proepileptogenic Proepileptogenic
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but not for allopregnanolone or androgenic neuroste-
roids (Wilson and Biscardi, 1997). Sex differences in the
expression of 3a-hydroxysteroid dehydrogenase are
evident during puberty but subside in the brain as it
matures into adulthood; sex-specific gonadal and adre-
nal endocrine activity have a significant effect on
the ability of allopregnanolone to modify anxiolytic
(i.e., anxiety-reducing) actions based on variations in
biosynthesis of steroid hormones (Mitev et al., 2003).
Sex differences are evident in the anticonvulsant activ-
ity of neurosteroids; however, the potential mechanisms
remain unclear. It is likely that differences in post-
synaptic or extrasynaptic GABAA receptor expression
and function may underlie the sex differences in
seizure sensitivity and the anticonvulsant activity of
neurosteroids (Reddy et al., 2019) (Fig. 4). In this
regard, progesterone has also anecdotally been reported
to increase typical absence seizures in humans
(Grunewald et al., 1992). Moreover, allopregnanolone,
which is synthesized from progesterone, significantly
increases SWDs in WAG/Rij rats (Budziszewska et al.,
1999), consistent with postulated roles for neurosteroid-
sensitive extrasynaptic GABAA receptors in the thala-
mus in driving absence seizure activity (Banerjee and
Snead, 1998; Cope et al., 2009; Errington et al., 2011).
c. Testosterone. Testosterone is synthesized by both

the testes and the ovaries and, to a much lesser degree,
the adrenal gland, and it can also be synthesized de
novo in the brain from cholesterol. Testosterone is
converted in the brain to estradiol by aromatase or to
the nonaromatizable androgen dihydrotestosterone
(DHT) by 5a-reductase (Meinhardt and Mullis, 2002;
Swerdloff et al., 2017). The aromatase and 5a-reductase
enzymes are expressed by both neurons and glia,
although there are regional differences in which cell
types are the dominant sources of each enzyme
(MacLusky et al., 1987; Martini et al., 1993; Zwain
et al., 1997; Melcangi et al., 1998; Zwain and Yen, 1999;
Hojo et al., 2004). Castration of male rats as well as
testosterone replacement produces both pro- and anti-
convulsant effects in the model depending on timing
and duration of treatment (Woolley and Timiras, 1962b)
(Table 3). On balance, it appears that the actions of
estradiol on neuronal excitability and seizure suscepti-
bility are opposite those of DHT, with estradiol and
DHT increasing and decreasing these parameters, re-
spectively. Accordingly, aromatase inhibition has dem-
onstrated some efficacy in improving seizure control in
men with epilepsy (Harden andMacLusky, 2004, 2005).
Several findings support this working model. For
example, estradiol treatment of gonadectomized male
Wistar rats lowered the threshold to electrical kindling
stimulation of the amygdala, an effect that could be
mimicked by testosterone treatment but not DHT.
Furthermore, in gonad-intact males that produced
endogenous testosterone, aromatase inhibition blocked
the progressive decrease in threshold typically observed

over the kindling period (Edwards et al., 1999b).
Similarly, testosterone treatment of male Sprague-
Dawley rats was observed to increase susceptibility to
seizures induced by either KA or pilocarpine injection
(Mejias-Aponte et al., 2002), and gonadectomy of CF/1
mice increased susceptibility to seizures induced by
combined PTZ and strychnine treatment, an effect that
could be reversed by testosterone replacement (Pesce
et al., 2000). In another study, testosterone treatment
also increased seizure susceptibility in male rats and
mice, and this seizure exacerbation could be blocked by
treatment with the aromatase inhibitor, letrozole
(Reddy, 2004c). Conversely, however, testosterone-
treated wild-type mice exhibited an increased latency
to systemic PTZ-induced seizures, but knockout mice
lacking 5a-reductase did not show this effect of testos-
terone (Frye et al., 2001), indicating that the anticon-
vulsant effects of testosterone were likely mediated by
5a-reduction to DHT. DHT was also observed to be
anticonvulsant against PTZ-induced seizures in male
mice (Reddy, 2004c). It should be noted, however, that
in studies examining the effects of gonadectomy and
hormone replacement on excitatory synaptic spine
density in the rat hippocampus, males exhibited a re-
duction in spine density following gonadectomy that
was reversed by testosterone, but intriguingly, the
effect of testosterone appeared to be mediated entirely
byDHT (Leranth et al., 2003). This effect was inmarked
contrast to that of females, in which an upregulation of
spine density by testosterone was almost completely
blocked by letrozole, and DHT produced only a small
effect (Leranth et al., 2004). Altogether, it appears that
testosterone can exert robust effects on seizure suscep-
tibility, and the end resulting effect depends critically
on the balance of conversion to estradiol or DHT.

DHT can be further converted to the neurosteroid
androstanediol (5a-androstan-3a,17b-diol, or 3a-Diol),
which itself can be converted to androsterone (5a-
androstan-3a-ol-17-one) (Kaminski et al., 2005; Reddy
and Jian, 2010) (Fig. 3). Similar to progesterone-derived
allopregnanolone, androstanediol acts as a positive
allosteric modulator of GABAARs (Reddy and Jian,
2010) and is thus poised to exert anticonvulsant effects.
Indeed, androstanediol treatment has been observed to
be protective in various forms of seizure induction
models, including hippocampal kindling, PTZ, picro-
toxin, and b-carboline ester (Reddy, 2004a,c; Ryan and
Frye, 2008; Frye et al., 2009; Reddy and Jian, 2010).
There are conflicting reports regarding efficacy against
KA-induced seizures (Frye and Reed, 1998; Reddy,
2004a), but these discrepancies may reflect species
differences between rats andmice. Intriguingly, a recent
study suggests that female mice are more sensitive to
the anticonvulsant effects of androstanediol and that
this sex effect reflects differences in the expression of d
subunit-containing GABAARs in dentate gyrus granule
cells (Reddy et al., 2019). Similarly, androsterone
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treatment appears to produce antiseizure effects across
multiple seizure models in male mice and rats, including
6-Hz corneal stimulation, PTZ, 4-aminopyridine, pilocar-
pine, and maximal electroshock (Kaminski et al., 2005),
although actions of androsterone to lower seizure
threshold in response to KA have been reported (Mroz
et al., 2009). Overall, it appears that both androstane-
diol and androsterone exert potent anticonvulsant
effects; thus, upregulating the downstream multistep
conversion of testosterone to either androstanediol or
androsterone, or direct treatment with these metabolic
products, is a promising avenue of future ASD de-
velopment. It should be noted, however, that the
antiseizure effects of testosterone-derived neuroste-
roids outlined above may not entirely be the case for
absence seizures, reflecting the mechanism of neuro-
steroid enhancement of inhibition producing stronger
postinhibitory rebound burst firing in thalamocortical
neurons (van Luijtelaar et al., 2014). In particular, it
appears that testosterone itself (and/or DHT) may exert

antiabsence effects, but androstanediol, particularly
through enhancement of inhibition mediated by d
subunit-containing GABAARs, produces proabsence
effects. In this regard, castrated male WAG/Rij rats,
a genetic model of absence seizures, display more SWD
than intact males, suggesting that on balance, the
overall effects of testosterone are seizure-suppressive
(van Luijtelaar et al., 1996).

C. Brain-Derived Neurotrophic Factor

Several aspects of brain-derived neurotrophic factor
(BDNF) function and regulation suggest roles in epi-
lepsy and neural excitability. For example, BDNF
application increases the excitatory:inhibitory ratio of
synaptic transmission and elevates neuronal excitabil-
ity in dentate granule cells resected from patients with
TLE (Zhu and Roper, 2001), and levels of BDNF mRNA
and protein often appear changed in resected hippo-
campal tissue from patients with TLE (Murray et al.,
2000; Chen et al., 2016; Martinez-Levy et al., 2016). The

Fig. 4. Sex differences in allopregnanolone potentiation of tonic GABAAR-mediated currents in hippocampal dentate gyrus granule cells (DGGCs) in
wild-type (WT) and d GABAAR subunit knockout mice (dKO). (A) Representative tonic current recordings from DGGCs in slices from WT male and
female mice. Allopregnanolone (AP, 0.1–1.0 mM) was applied to the bath in addition to 1 mMGABA to measure allosteric enhancement of tonic current.
(B) Summarized data of AP concentration response from male and female DGGCs in WT mice. (C) Representative tonic current recordings in the
presence of AP or/and GABA from DGGCs in slices from dKO mice. (D) Summarized data of AP concentration response from male and female DGGCs
in dKO mice. Tonic current was normalized to cell capacitance (pA/pF) as a measure of current density. The GABA-A receptor tonic current was
expressed as the outward shift in holding current after the application of gabazine (50 mM). *P , 0.05 vs. males; #P , 0.05 vs. 1 mM GABA baseline
current in the same sex (n = 628 cells per group). Adapted from Reddy et al. (2019).
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evidence for general roles of BDNF in epilepsy has
been comprehensively reviewed elsewhere (McNamara
and Scharfman, 2012; Harte-Hargrove et al., 2013;
Scharfman and MacLusky, 2014a). Therefore, in this
section, we will briefly discuss the aspects of BDNF
biology that would suggest potential roles in sex differ-
ences in epilepsy. Interestingly, the presence and/or
pattern of sex differences in BDNF content across brain
areas exhibits prominent species differences. Female
rats exhibit higher BDNF content in several regions
highly relevant to epilepsy and seizure activity, in-
cluding hippocampus, cortex, and amygdala (Bland
et al., 2005; Bakos et al., 2009; Snigdha et al., 2011),
and male rats exhibit lower levels of hippocampal
BDNF immunoreactivity compared with females, espe-
cially in the mossy fiber pathway (Scharfman et al.,
2003). This sex difference, however, is reversed in mice,
with males showing higher hippocampal BDNF content
(Szapacs et al., 2004). Although humans do not appear
to show a sex difference in hippocampal BDNF content,
women may have higher BDNF in the prefrontal cortex
(Hayley et al., 2015). Furthermore, BDNF expression
appears to be highly sensitive to steroid hormone
signaling, with estradiol, progesterone, and testoster-
one treatment, as well as removal of such hormones by
gonadectomy, all producing changed BDNF levels in the
brain (Solum and Handa, 2002; Franklin and Perrot-
Sinal, 2006; Li et al., 2012). BDNF exerts its neuro-
trophic effects through activation of tropomyosin
receptor kinase B (TrkB) receptors; heterozygous BDNF
knockout mice exhibit a sex difference in the TrkB
receptor pathway, with greater TrkB phosphorylation,
and thus increased activation of downstream extracel-
lular signal-related kinase signaling, in the frontal
cortex and striatum of males compared with females
(Hill and van den Buuse, 2011). Of particular relevance
to potential sex differences in post-traumatic epilepto-
genesis, controlled cortical impact injury can produce
sex-specific changes in BDNF content. Specifically,
male Sprague-Dawley rats, but not females, exhibit
increased BDNF in the frontal cortex ipsilateral to the
injury, whereas female rats show increased BDNF in
the contralateral hippocampus, an effect that was not
observed in males (Chen et al., 2005b). In summary,
baseline and dynamic differences in BDNF signaling
are poised to produce sex differences in various aspects
of neural functioning relevant to seizures and epilepsy.

D. Glial Mechanisms: Astrocytes and Microglia

There are nearly as many glial cells as neurons in the
human brain (von Bartheld et al., 2016), and neuron-
glia interactions are essential to normal brain function
[for review, see Khakh and Sofroniew (2015)]. Despite
the increased interest in the role of glia, particularly
astrocytes and microglia, in the pathophysiology of
epilepsy [for recent comprehensive reviews, see Eyo
et al. (2017), Patel et al. (2019)], there is a lack of

information regarding the potential role of glia in sex
differences in epilepsy. There is emerging evidence,
however, for roles of astrocytes and microglia in sex
differences in brain function. For example, several
studies have documented sex differences in expression
of the astrocyte marker glial fibrillary acidic protein
(GFAP) in the hippocampus. GFAP expression in
various hippocampal areas in Wistar rats appears to
show sex-specific differences that shift from the pre-
pubertal period into adulthood (Conejo et al., 2003,
2005; Arias et al., 2009). The number andmorphology of
astrocytes in the posterodorsal medial amygdala also
exhibits sex differences, with higher numbers of astro-
cytes and greater astrocyte morphologic complexity in
tissue from male rats (Johnson et al., 2008). Hippocam-
pal GFAP expression may also shift with the estrous
cycle in female rats, with higher numbers of GFAP-
immunopositive cells detected on proestrus compared
with diestrus in cornu ammonis 1 and cornu ammonis 3
(Arias et al., 2009). Changes in glial phenotype and
morphology across the estrous cycle have also been
described (Luquin et al., 1993; Klintsova et al., 1995). It
should be noted that mice may not show similar sex
differences in hippocampal GFAP immunoreactivity,
but GFAP expression appears to be sensitive to estra-
diol and testosterone (via aromatization to estradiol)
(McQueen et al., 1992). Cultures of astrocytes and
microglia prepared from female and male rat pups also
display sex-specific functional differences of high po-
tential relevance to seizure activity, including increased
resistance to oxygen-glucose deprivation and increased
clearance of glutamate from extracellular space by cells
from females (Liu et al., 2007; Morizawa et al., 2012) as
well as increased expression of the inflammatory
marker interleukin-1b in cells prepared from males
(Loram et al., 2012).

Unfortunately, direct examination of sex differences
in glial biology and neuronal-glial interactions in ani-
mal models of epilepsy is lacking. In one recent study,
increased expression of GFAP was detected in the
hippocampi of male C57BL/6J mice compared with
females 5 days after systemic KA injection, but this
effect may have reflected the increased acute seizure
severity observed in the same male mice in that cohort
(Li and Liu, 2019). With respect to potential roles in
post-traumatic epileptogenesis, two studies have docu-
mented increased microglia activation in proximity to
controlled cortical impact and penetrating cortical in-
jury wounds in male mice, as detected by immunoreac-
tivity for the microglial marker ionized calcium-binding
adaptor molecule 1 (Acaz-Fonseca et al., 2015; Villapol
et al., 2017). It should also be noted, however, that an
increased expression of ionized calcium-binding adaptor
molecule 1 in males at early time points after the injury
may equalize later, such that no sex difference is seen
30days later (Villapol et al., 2017). Finally,malemicemay
show a worsened outcome in experimental autoimmune
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encephalitis, a model of multiple sclerosis, and this
sex difference is abolished by astrocyte-specific
knockout of sodium voltage-gated channel alpha sub-
unit 5 (Pappalardo et al., 2018). With increased develop-
ment of tools to specifically manipulate the function of
glial cells and selectively change the expression of certain
genes and proteins in astrocytes and microglia, incorpo-
ration of specific assessment of sex differences in the
effects of thesemanipulations, and especially in relation to
synaptic function, neuronal excitability, and seizure
susceptibility, would likely yield important insights.

E. Stress Response and the Hypothalamic-Pituitary-
Adrenal Axis

Stress is a known risk factor for seizures (Neugebauer
et al., 1994; Frucht et al., 2000; Haut et al., 2003, 2007;
Nakken et al., 2005; Sperling et al., 2008) [for review,
see Lai and Trimble (1997)]. The physiologic response to
stress is mediated by the HPA axis, which coordinates
the neuroendocrine response to stress through release of
corticotropin-releasing hormone from the paraventricular
nucleus of the hypothalamus, triggering the release of
adrenocorticotropic hormone from the pituitary, which
then signals the release of cortisol from the adrenal cortex
(corticosterone in rodents). Numerous preclinical studies
have demonstrated that stress and stress hormones are
proconvulsant [for review, see Joëls (2009)]. Given this
information, it is concerning that stress hormones have
been shown to be elevated in patients with epilepsy and
are positively correlated with seizure frequency (Culebras
et al., 1987; Galimberti et al., 2005). Both clinical and
preclinical studies support a role for stress, HPA axis
activation, and elevated stress hormones in epilepsy [for
review, see Maguire and Salpekar (2013)].
In addition to the impact of stress on epilepsy out-

comes, HPA axis dysfunction has been demonstrated in
preclinical epilepsy models. Seizures have been shown
to activate the HPA axis (OToole et al., 2014), which can
negatively impact epilepsy outcomes independent of
stress. For example, HPA axis dysfunction, character-
ized by increased plasma corticosterone and deficits in
the dexamethasone suppression test, is positively cor-
related with depression-like behaviors in an acquired
epilepsy model (Mazarati et al., 2009). Similarly,
seizure-induced activation of the HPA axis increased
seizure frequency and comorbid depression-like behaviors
in a preclinical epilepsymodel (Hooper et al., 2018). Based
on the fact that hypercortisolism is a hallmark feature of
depression (Zobel et al., 2004; Kondziella et al., 2007),
HPA dysfunction associated with epilepsy has been
suggested to contribute to comorbid depression in epilepsy
(Pineda et al., 2010). In fact, the HPA axis and glucocorti-
coids have been implicated in the bidirectional relation-
ship between epilepsy and depression (Kanner, 2009), and
social defeat stress has been shown to predispose chron-
ically epileptic mice to depression‐like behaviors (Becker
et al., 2015). However, limited studies have directly tested

the mechanistic underpinnings contributing to psychiat-
ric comorbidities in epilepsy.

Clinical and preclinical evidence points to a clear
relationship between stress, HPA axis dysfunction, and
stress hormones in worsening epilepsy outcomes, in-
cluding psychiatric comorbidities in epilepsy. There are
also well established sex differences in stress reactivity
and HPA axis function (Bale and Epperson, 2015;
Bangasser et al., 2019) as well as the expression of
glucocorticoid receptors (Bourke et al., 2012; Bangasser,
2013), which could impact the relationship between
stress, epilepsy, and psychiatric comorbidities. How-
ever, to-date, there have not been any studies investi-
gating sex differences in the role of stress, HPA axis, or
stress hormones in mediating sex differences in psychi-
atric comorbidities in epilepsy. Further research is
necessary to understand the underlying neurobiology
contributing to these comorbidities and potential treat-
ments suitable for both sexes.

V. Considerations for Antiseizure
Pharmacotherapies, Drug Screening,

and Development

Although the response to antiseizure medications is
generally not considered to differ as a function of sex,
there are well recognized clinical challenges associated
with the use of ASDs that can differ by sex. This issue
has been reviewed elsewhere (Perucca et al., 2014) and
therefore is described only in brief here. First, though
sex per se is not associated with clear pharmacokinetic
differences for most ASDs, some small differences have
been reported. Therefore, sex differences in drug me-
tabolism, clearance rates, volume of distribution, and
protein binding are important variables to consider both
for existing therapeutics and those under development.
For example, diazepam has been reported to be more
highly protein-bound in males (Routledge et al., 1981),
with a larger volume of distribution in females (Greenblatt
et al., 1980). Levetiracetam clearance has been reported to
be greater in females (Alzueta et al., 2018), although
this effect was reduced when normalized for weight.
Moreover, the half-life and clearance of carbamazepine
have also been reported to differ as a function of sex,
with males displaying longer half-life and lower clear-
ance (Marino et al., 2012), consistent with the reports
of greater hepatic CYP3A4 expression in females
(Wolbold et al., 2003). Importantly, even in the absence
of baseline differences in pharmacokinetics, these
parameters change for many ASDs during pregnancy
(Pennell, 2003). These issues underscore the impor-
tance of therapeutic drug monitoring and appropriate
sex- or state- (e.g., pregnancy) specific dosing. Even in
the absence of clear sex differences in large clinical
trials, postapproval suggestions to adjust dosing have
been issued on occasion, as in the case of zolpidem [for
review, please see Farkas et al. (2013)].
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Above and beyond pharmacokinetic issues, drug
safety concerns may also differ as a function of sex.
For example, many ASDs are associated with terato-
genic effects (Tomson et al., 2018). Even in the absence
of frank teratogenesis, gestational exposure to ASDs
may cause long-lasting cognitive changes in offspring of
women with epilepsy (Meador et al., 2011; Meador and
Loring, 2016). Several ASDs can impact themetabolism
of contraceptive agents, and some contraceptive agents,
in turn, can impact ASD metabolism (Crawford, 2002;
O’Brien and Guillebaud, 2010). There is also a major
need for further studies examining the potential for
changes in ASD efficacy and pharmacokinetics with age
to address the growing need for treatments for patients
in middle-aged and elderly populations of both sexes.
It is common for initial screening and subsequent

differentiation screening of ASDs to occur in male
rodents. However, some of these models, as reviewed
above, display sex differences in response to ASDs.
Moreover, hormonal influence (sex, estrous cycle
stage) impacts responses in many screening models.
Given these established differences, screening across
sex should be considered, and, likewise, the relative
parameters of the model should be adjusted to ensure
sensitivity. For example, enhanced sensitivity to a che-
moconvulsant in one sex or the other could produce
a suprathreshold response and obscure subsequent
effects of a putative antiseizure compound. Further-
more, despite ample evidence for sex differences in early
development, sex as a biologic variable in the context of
preclinical or clinical treatments for early-life epilepsy
has been almost completely ignored. Given the robust
evidence regarding sex differences in development of
inhibitory neurotransmission, neurophysiology, and re-
sponse to injury, careful assessment of sex in studies in
developing animals is a clear priority.

VI. Concluding Remarks and Future Directions

The epilepsies and associated comorbidities promi-
nently affect both sexes, but the specific features and
treatment options have some clear distinctions. Overall,
our review of the clinical literature in epilepsy thank-
fully found many studies that included both sexes in
patient cohorts, whether by design or by convenience.
Unfortunately, the current picture for preclinical ani-
mal studies ismore skewed. In keepingwithmuch of the
preclinical and basic research conducted in neurosci-
ence over the last several decades, most studies have
primarily used male animals (Prendergast et al., 2014;
Will et al., 2017). Emerging directives from funding
agencies, such as the U.S. National Institutes of Health
mandate to address sex as a biologic variable (Clayton
and Collins, 2014), are aimed at correcting this imbal-
ance. Going forward in both clinical and preclinical
studies, we suggest that more emphasis needs to be
placed on systematic inclusion of both males and

females within the same studies to facilitate direct
comparisons and encourage funding and publishing
support for studies designed to evaluate the extent to
which findings previously obtained in male animals are
replicated in females.

Although in our review we were able to find many
pieces of literature that included both male and female
subjects, there are still gaping holes in our knowledge
regarding specific sex differences in the underlying
neurobiology of seizures, pharmacokinetics of ASDs,
and interactions between the brain and endocrine
systems, just to name a few aspects. It should also be
noted that emerging evidence suggests that some sex
differences are “latent,” such that the emergent pheno-
type does not necessarily display a major sex difference,
but the underlying mechanisms that give rise to the
phenotype are distinct (Koss et al., 2018; Jain et al.,
2019a). This prospect has so far received little attention
in the field of epilepsy but is an important possibility to
consider, particularly given the implications for efficacy
of pharmacotherapies and other forms of treatment.
Proper assessment of sex differences in underlying
neurobiological mechanisms relevant to epilepsy and
drug efficacy will improve epilepsy treatment of as
many patients as possible, no matter their sex or
gender.
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