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ABSTRACT: Antimicrobial peptides are a potential solution to the threat of Peptides
multidrug-resistant bacterial pathogens. Recently, deep generative models v X
including generative adversarial networks (GANs) have been shown to be

capable of designing new antimicrobial peptides. Intuitively, a GAN controls % §§
the probability distribution of generated sequences to cover active peptides as

much as possible. This paper presents a peptide-specialized model called

PepGAN that takes the balance between covering active peptides and dodging nonactive peptides. As a result, PepGAN has superior
statistical fidelity with respect to physicochemical descriptors including charge, hydrophobicity, and weight. Top six peptides were
synthesized, and one of them was confirmed to be highly antimicrobial. The minimum inhibitory concentration was 3.1 pg/mL,
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indicating that the peptide is twice as strong as ampicillin.

1. INTRODUCTION

Antibiotic resistance is a serious and immediate threat against
humanity as currently available antibiotics become increasingly
obsolete. The annual deaths due to antimicrobial resistance are
expected to exceed 10 million by 2050." Antimicrobial
peptides (AMPs) are a possible solution to this problem.”
They are considered as less prone to resistance because
microbes have been exposed to natural AMPs for millions of
years, but widespread resistance against them has not been
reported. Given the huge peptide space, however, it is very
likely that numerous AMPs are yet to be found.

Deep generative models’ show encouraging results when
applied to material and drug discovery.*™” They are also one of
the viable ways to boost the speed of AMP discovery, and
several studies have been reported so far. Purely computational
studies employing recurrent neural networks (RNNs),®
variational auto encoders,” and generative adversarial networks
(GANs)'” showed promising results in statistical terms, but
experimental validation is yet to be done. Nagarajan et al.''
were the first to show that a RNN can generate AMPs that
works in vitro. They identified two peptides with a minimum
inhibitory concentration (MIC) of 4 yg/mL against Escherichia
coli. The potency of these peptides is at ampicillin-level
because their MIC is comparable to that of ampicillin (6.25
ug/mL), a widely used antibiotic. Their neural network model
has two parts. First, an RNN (i, generator) trained with
known AMPs generates a large number of peptides. Next, a
classifier neural network trained with peptide-MIC pairs ranks
the generated sequences, and the top-ranked peptides are
subject to experimental validation.

Drawbacks of the model by Nagarajan et al.'" are as follows.
(1) LSTM is an obsolete model that is often outperformed by
GANs."” (2) The generator is trained only with positive
examples (i.e, AMPs) despite the fact that a plenty of negative
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examples (i.e, non-AMPs) are available. Aiming to solve the
drawbacks, we develop a specialized model called PepGAN by
engineering LeakGAN, one of the state-of-the-art sequence
generators. ~ PepGAN enhances the performance of LeakGAN
with the help of activity predictor that is trained separately with
positive and negative examples together (Figure 1).

Another challenge in deep-learning-based AMP design is
how to incorporate physicochemical properties such as charge,
hydrophobicity, normalized van der Waals volume, and
polarity. Deep learning models are essentially a language
model, and it is not clear how to incorporate such information.
To this aim, Nagarajan et al.'" included several filtering steps in
the model. Instead of complicating our model further, we
simply chose to rerank PepGAN-generated peptides with an
external AMP prediction tool (i.e, CAMP server' ") trained
with various physicochemical features. As a result of our
experimental validation, the MIC of the best peptide was as
low as 3.1 pg/mL, that is, twice as strong as ampicillin. We
made a Python library of PepGAN publicly available at
https://github.com/tsudalab/PepGAN to contribute in the
developing open-source ecosystem of peptide design.

2. RESULTS AND DISCUSSION

2.1. Generative Model. In various tasks including
scheduling and maze solving, reinforcement learning has
been used to generate a sequence of actions that maximizes
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Figure 1. De novo AMP discovery with PepGAN. PepGAN receives
sequence data consisting of AMPs and non-AMPs and creates new
peptides with a generator and a discriminator. The generator samples
a number of sequences stochastically. The reward for the sequences is
evaluated by the discriminator and transmitted back to the generator
to update the parameters. In normal GANSs, the reward function
represents fidelity, that is, how the sequences are similar to AMPs. In
PepGAN, an activity predictor (shown in red) is incorporated in
reward computation. Finally, top peptides are subject to experimental
validation.
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a reward function.> A reward function represents the quality
of a generated sequence. In traditional settings, it is given a
priori and stays unchanged during training. When optimizing
multiple reward functions at once, a linear combination of
them is used in many cases. '

Recently, Yu et al'® introduced SeqGAN that employs a
machine-learned reward function for generating texts that
resembles real sentences. A deep neural network called
discriminator is trained to discriminate generated ones against
real ones, and the training loss is adopted as the reward
function. High reward implies high statistical fidelity:
generated sequences are statistically indistinguishable from
real ones. Later, SeqGAN is extended to LeakGAN'" by
introducing the ideas of hierarchical reinforcement learning.19

In LeakGAN, the reward function for a sequence Y is
designated as the output of the discriminator D(Y), that is, the
probability of Y being real. The reward function of our model,
PepGAN, is described as

R(Y) = AD(Y) + (1 — A)E(Y)

where F(Y) is a separately trained activity predictor and A4
denotes the mixing constant. The activity predictor has a gated
recurrent unit”’ with 256 hidden variables. Given a sequence Y,
it computes a hidden vector at each position. The hidden
vector is fed to a one-layer dense neural network to yield a
partial score at each position. Finally, it is summarized to a final

score by max-pooling. The output of the activity predictor
represents the probability that Y is active and trained with both
positive and negative examples.

Since LeakGAN is not informed of negative examples, it is
likely to generate sequences that are similar to negative
examples. By mixing the predicted activity into the reward
function, we aim to shift the distribution of PepGAN-
generated sequences away from the negative examples. In
other words, PepGAN is more activity-aware than LeakGAN.

2.2, Statistical Fidelity. As training examples, we collect
sequences not longer than 52 amino acids from the following
databases: APD,”! CAMP,”> LAMP,*> and DBAASP.**
Redundant sequences are removed via multiple sequence
alignment with a cutoff ratio of 0.35. The final dataset contains
16,648 positive sequences (ie, AMPs) and 5583 negative
sequences (ie, non-AMPs). The activity predictor is first
trained with all sequences, and later the rest of PepGAN is
trained only with positive sequences. Statistical performance of
the activity predictor is shown in Figure S3. PepGAN is used
with three different parameter settings 4 = 0, 0.5, and 1. Notice
that LeakGAN corresponds to the case 4 = 1. For each setting,
10,000 peptide sequences are generated.

We investigate the statistical fidelity of generated sequences
from multiple viewpoints. The generated sequences are
regarded as high-quality if their statistics match well with
those of the positive sequence set. First, we investigate the
following physicochemical properties: length, molar weight,
charge, charge density, isoelectric point, aromaticity, global
hydrophobicity, and hydrophobic moment. ModIAMP pack-
age® was used to compute these properties. Obtained statistics
are summarized in Table 1. In addition, the activity predictor
scores of generated peptides are shown in Table S1. With
respect to seven in eight properties, PepGAN with the activity
predictor (4 = 0 and 0.5) was better than LeakGAN (4 = 1).
This result shows that the activity predictor has a favorable
impact in statistical fidelity. In the following experiments, 4 =
0.5 is adopted because it achieved the best result here.

Next, k-gram counts are employed as the statistics to
investigate the performance of PepGAN as a text generator.
We employ BLEU (bilingual evaluation understudy) to
measure the agreement of two distributions of k-gram
counts.'” Table 2 summarizes the BLEU scores at 2, 3, 4,
and S g of PepGAN and the following three baseline models,
MLE," CVAE,” and SeqGAN.'® On average, PepGAN
variants were better than the baseline models, and PepGAN
(4 = 0.5) was slightly worse than LeakGAN (4 = 1). Since
BLEU is concerned only with positive examples, the avoidance

Table 1. Statistical Fidelity in Physicochemical Descriptors®

descriptor AMPs A=0 A=0.5 A=1

length 28.01 + 9.39 36.40 + 10.66 33.78 + 9.70 3549 + 10.16
molar weight 3125 + 1049 4032 + 1226 3682 + 1062 3901 + 1148
charge 3.27 + 3.68 6.57 + 6.00 5.88 + 5.14 6.49 + 5.69
charge density 0.0011 + 0.0012 0.0016 + 0.0013 0.0016 + 0.0013 0.0017 + 0.0013
isoelectric point 9.52 + 2.47 10.30 + 2.08 10.31 + 1.96 10.39 + 1.97
aromaticity 0.087 + 0.069 0.064 + 0.056 0.063 + 0.055 0.060 + 0.053
global hydrophobicity 0.004 + 0.29 —0.056 + 0.37 —0.019 + 0.34 —0.047 + 0.35
hydrophobic moment 0.293 + 0.19 0.298 + 0.19 0.30 + 0.19 0.32 + 0.19

“The mean and standard deviation of each descriptor are shown for the three variants of PepGAN (A = 0, 0.5, and 1) and the positive sequence set
(AMPs). The variant whose mean is the closest to that of AMPs is highlighted.
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Table 2. BLEU Scores Based on k-grams (k = 2, 3, 4, and §)
for Three Baseline Models (MLE, CVAE, and SeqGAN) and
Three Variants of PepGAN (4 = 0, 0.5, and 1)

MLE CVAE SeqGAN 1=0 1=05 41=10

BLEU-2 0.939 0.975 0.947 0.922 0.938 0.930
BLEU-3 0.711 0.714 0.729 0.759 0.778 0.776
BLEU-4 0.374 0.331 0.388 0.469 0.487 0.493
BLEU-S 0.182 0.149 0.188 0.246 0.257 0.264
average 0.551 0.542 0.563 0.599 0.615 0.616

“The best method is highlighted.

of negative examples with the activity predictor might have
worked adversely to BLEU.

It is reported that samples generated by GANSs tend to lose
diversity because of mode collapse.'” To check if mode
collapse happened or not, the diversity of PepGAN-generated
sequences is measured as follows. For each sequence, a BLEU
score between that and all other sequences is computed. The
diversity score called self-BLEU is then computed as the
average of all BLEU scores. Table 3 shows the self-BLEU

Table 3. Self-BLEU Scores Based on k-grams (k = 2, 3, 4,
and §) for Three Variants of PepGAN (4 = 0, 0.5, and 1)
and the Positive Sequence Set (AMPs)

AMPs A=0 A=05 A=1
sel-BLEU-2 0.965 0.969 0.970 0.970
self-BLEU-3 0.802 0.835 0.842 0.846
self-BLEU-4 0.550 0.592 0.608 0.621
self-BLEU-S 0.393 0.372 0.381 0.405

scores for the positive sequence set (ie, AMPs) and the
generated sequence sets of PepGAN variations. In all cases, the
generated sequences were as diverse as the positive set, and
mode collapse did not happen.

2.3. Experimental Validation. For experimental valida-
tion, generated peptides are prioritized according to the AMP
likelihood computed by the CAMP server.'* Top six peptides
are shown in Table 4. In addition, the worst four sequences are
chosen as negative controls. Figure 2 shows the helical wheel
plots of these peptides’® together with their hydrophobic
moments.”” Cell-penetrating peptides tend to have a high
relative abundance of positively charged amino acids and

Table 4. Results of Experimental Validation”

net
MiC charge
ID sequence (ug/mL) atpH 7

AMP1 ILPLLKKFGKKFGKKVWKAL 25 8
AMP2 IKALLALPKLAKKIAKKFLK NY 8
AMP3 GLRSSVKTLLRGLLGIIKKF >100 6
AMP4 GLKKLFSKIKIIGSALKNLA 3.1 6
AMPS FLPAFKNVISKILKALKKKV 12.5 7
AMP6 FLGPIIKTVRAVLCAIKKL 25 4.9
AMP7NC LFTMADPIQSIEKEI >100 -1
AMPSNC KRFLPSCVRSIQNLDDALPTPEEF >100 -0.1
AMPONC EIEYGNPGVGTDR >100 -1
AMP10NC TLPEWDDRRVVNS >100 0
ampicillin 6.25

“AMP1—AMP6 are the top-ranked peptides chosen from PepGAN-
generated sequences. AMP7NC—AMP10NC are negative controls.

contain an alternating pattern of polar and hydrophobic amino
acids (i.e, amphiphilicity).” Our top peptides are observed as
highly cationic and amphiphilic because they contain a large
number of positively charged amino acids and no negatively
charged ones, and their hydrophobic moments are high (0.58
+ 0.048). In comparison, negative controls are neither cationic
nor amphiphilic.

The potency of the peptides is evaluated based on MIC
against E. colii MIC is determined as the minimum
concentration of an antimicrobial at which the growth of a
target microbe is suppressed. We found that as many as five
out of six AMP peptides exhibited effective antimicrobial
activity. Among them, AMP4 exhibited the best antimicrobial
performance, 3.1 pug/mL, which is better than a well-known
antimicrobial, ampicillin (6.25 pg/mL). The high production
ratio, 5/6, and the sufficiently low MIC of AMP4 validate
PepGAN’s ability to generate industry-level peptides. In
contrast, all four negative control peptides did not exhibit
effective antimicrobial activity.

We presented PepGAN, a generative model for designing
peptides, and demonstrated its statistical and in vitro success in
AMP design. AMP-specific tricks are intentionally left out of
our Python library. Thus, our library can directly be applicable
in development of other kinds of peptides such as drug-
delivery peptides”® and anti-cancer peptides.”” To achieve our
goal of boosting the speed of peptide development,
experimental researchers, who are not necessarily familiar
with machine learning, should be able to use computational
tools such as PepGAN. Although we made our code public, we
have not reached this level of utility. Open-source ecosystems
in machine translation and computer vision are well-developed
to the point that nonexperts can use them without difficulty. In
the future work, we will continue to develop PepGAN with an
aim to make it a core of the emerging ecosystem of peptide
design tools.

3. METHODS

3.1. Peptide Synthesis. We synthesized all peptides on
rink amide resin (ProTide, CEM Corporation, NC, USA)
using an automated microwave peptide synthesizer (Liberty
Blue, CEM Corporation). Each peptide was cleaved from resin
and purified by reversed-phase high-performance liquid
chromatography using a C18 column (COSMOSIL SC18-
AR-II, 10 mm LD. X 250 mm; Nacalai Tesque, Japan). In the
purification, a mixture of solvent A [0.1% v/v trifluoroacetic
acid (TFA) in water] and B (0.1% v/v TFA in acetonitrile) at
25 °C was used as the mobile phase, and a linear gradient from
20 to 80% B for SO min at a flow rate of 2.5 mL/min was
applied. The masses of the 10 purified peptides were verified
by matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (microflex LT, Bruker Daltonics, USA);
AMP1, m/z: 2340.377 [M + H]", calcd m/z: 2341.537; AMP2,
m/z: 2234.103 [M + H]*, calcd m/z: 2234.577; AMP3, m/z:
2198.801 [M + HJ*, caled m/z: 2198.423; AMP4, m/z:

2141.044 [M + H]*, caled m/z: 2141.390; AMPS, m/z:
2284.861 [M + HJ*, caled m/z: 2284.500; AMP6, m/z:
2082.569 * caled m/z: 2082.335; AMP7NC, m/z:

[M + H]
1733915 [M + H]*, caled m/z: 1733.856; AMPSNC, m/z:
2774.047 [M + H]*, caled m/z: 2774.430; AMPINC, m/z:
1406.266 [M + H]", calcd m/z: 1405.671; AMP10NC, m/z:
1585.632 [M + H]*, calcd m/z: 1585.809 (monoisotopic mass
for all). We quantified the purities of the peptides using
another C18 column (COSMOSIL SC18-AR-II, 4.6 mm X
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(9) AMP7NC (h) AMP8NC

(d) AMP4

(i) AMPONC (j) AMP10ONC

Figure 2. Helical wheel plots of top-ranked peptides (AMP1—AMP6) and negative controls (AMP7NC—AMP10NC). Positively and negatively
charged residues are shown in blue and red, respectively. The numbers and the corresponding arrows show Eisenberg’s hydrophobic moment.

250 mm; Nacalai Tesque, Japan) (Figure S1). The ellipticities
of the peptides were recorded using a circular dichroism (CD)
spectrometer (J1500; JASCO, Japan) to clarify the secondary
structures of the peptides (Figure S2).

3.2. MIC Determination. The MICs of the peptides were
determined using the microdilution test with some mod-
ifications. We used E. coli TOP10 (Thermo Scientific, MA,
USA) in the late-log phase for this test. The colony forming
unit (cfu) of E. coli was determined using optical density at 600
nm. For each peptide, we prepared 11 wells containing 150 uL
of § X 10° cfu/mL of E. coli and the series of concentration of
each peptide from 10 to 0.01 pg/mL (2-fold dilution for 10
times). We also prepared one well containing only 150 uL of §
X 10° cfu/mL of E. coli without the peptide. Similarly, we
prepared 11 wells for ampicillin in the same well-plate. We
incubate the plates for 26 h at 37 °C for the growth of E. coli.
To read the optical density for each well, we set the plates in a
plate reader (EnSpire 2300, PerkinElmer). After shaking the
plate for 10 s at 300 rpm in double-orbital motion (diameter 1
mm), we measured the optical density of each solution (600
nm).
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