Skip to main content
. 2020 Sep 16;10:15165. doi: 10.1038/s41598-020-71744-x

Table 2.

Results from ten-temperature melting analysis of hENT1 variants.

Module Variant Tm (C)a Tm error (±C)b ΔTm (C) ΔTm error (±C)c Repeats (n) Status
n/a Wild-type 44.6 0.7 0.0 0.9 12 n/a
Deep-sequence I380V 42.0 0.1 − 2.5 0.6 2 Destabilisng
Deep-sequence M306T 41.3 0.1 0.4 1.8 2 Neutral
Deep-sequence G225V 42.1 0.1 − 1.0 0.9 2 Destabilisng
Deep-sequence S321T 44.9 1.7 − 2.5 0.6 2 Destabilisng
Model-based R233L 37.1 1.6 − 3.8 0.6 2 Destabilisng
Model-based S152L 42.7 1.3 − 1.9 1.4 5 Destabilisng
Model-based E247M 45.8 0.6 1.2 0.8 4 Stabilising
Model-based N30F 46.8 0.4 2.2 0.8 5 Stabilising
Model-based L27E 45.5 0.7 0.9 0.9 5 Stabilising
Data-driven A401L 46.3 0.7 1.7 1.0 2 Stabilising
Data-driven T336A 43.9 0.7 − 0.7 0.9 5 Neutral
Data-driven Q246A 47.6 1.1 0.2 0.9 5 Neutral
Data-driven F153A 40.8 0.1 − 7.5 1.7 2 Destabilisng
Data-driven G207A 43.6 0.7 − 3.3 0.6 2 Destabilisng
Data-driven A88L 45.2 0.7 0.8 0.9 5 Neutral
Data-driven K263A 47.2 1.1 2.6 1.3 5 Stabilising

aAverage Tm was calculated from individual Tm estimated for each individual repeat by fitting with a four-parameter dose-response curve (variable slope) by non-linear least-squares fitting in the python package scipy.stats.

b For n > 1: standard error of the mean (SEM) shown.

c For n > 1: error calculated and propagated as detailed in “Methods and materials” section.