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Abstract

Fast Fourier transform (FFT)-based protein ligand docking together with parallel simulated 

annealing for both rigid and flexible receptor docking are implemented on graphical processing 

unit (GPU) accelerated platforms to significantly enhance the throughput of the CDOCKER and 

flexible CDOCKER — the docking algorithms in the CHARMM program for biomolecule 

modeling. The FFT-based approach for docking, first applied in protein-protein docking to 

efficiently search for the binding position and orientation of proteins, is adapted here to search 

ligand translational and rotational spaces given a ligand conformation in protein-ligand docking. 

Running on GPUs, our implementation of FFT docking in CDOCKER achieves a 15,000 fold 

speedup in the ligand translational and rotational space search in protein-ligand docking problems. 

With this significant speedup it becomes practical to exhaustively search ligand translational and 

rotational space when docking a rigid ligand into a protein receptor. We demonstrate in this paper 

that this provides an efficient way to calculate an upper bound for docking accuracy in the 

assessment of scoring functions for protein-ligand docking, which can be useful for improving 

scoring functions. The parallel molecular dynamics (MD) simulated annealing, also running on 

GPUs, aims to accelerate the search algorithm in CDOCKER by running MD simulated annealing 

in parallel on GPUs. When utilized as part of the general CDOCKER docking protocol, 

acceleration in excess of 20 times is achieved. With this acceleration, we demonstrate that the 

performance of CDOCKER for re-docking is significantly improved compared with three other 

popular protein-ligand docking programs on two widely used protein ligand complex datasets — 

the Astex diverse set and the SB2012 test set. The flexible CDOCKER is similarly improved by 

the parallel MD simulated annealing on GPUs. Based on the results presented here, we suggest 

that the accelerated CDOCKER platform provides a highly competitive docking engine for both 

rigid-receptor and flexible-receptor docking studies, and will further facilitate continued 

improvement in the physics-based scoring function employed in CDOCKER docking studies.
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1 INTRODUCTION

Protein-ligand docking methods aim to predict how ligands bind with a target protein, i.e., 

binding poses of ligands and their binding affinities.1 They are widely employed in drug 

discovery processes to virtually screen libraries of a large number of small molecules to 

search for hit compounds that could provide a basis for the development of novel small 

molecule therapeutics.2 Multiple off-the-shelf protein-ligand docking programs, either 

commercial or free, are available for use,3 such as CDOCKER,4 Autodock,5 Autodock Vina,
6 DOCK,7 and Glide.8,9 Most protein-ligand docking programs consist of two essential 

components — a scoring function for the assessment and ranking of ligand-binding poses 

and a search algorithm that facilitates the search for and discovery of those low free energy 

binding poses.4 The scoring function quantifies the fit between a ligand’s binding pose and 

the protein receptor and is expected to be able to differentiate the correct binding pose from 

incorrect ones through the assertion that the correct binding pose has the best score. When 

used to predict binding affinities, the scoring function is also expected to approximate the 

binding free energy between ligands and target proteins. The search algorithm is utilized to 

sample potential ligand binding poses and identify the binding pose with the best score. 

Because the scoring functions used in protein-ligand docking programs are not convex 

functions and typically have multiple local minima, heuristic search algorithms such as 
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genetic algorithms and simulated annealing are often used in search for optimal binding 

poses.4,6

CDOCKER,4 a CHARMM10 module for protein-ligand docking, is one of the protein-ligand 

docking programs that are widely used in both academia and industry for drug discovery. It 

uses the interaction energies between proteins and ligands calculated with the CHARMM 

force field10 for proteins and the CGenFF force field11 for ligands as its scoring function. To 

search for the lowest energy pose of ligands, CDOCKER utilizes molecular dynamics (MD) 

based simulated annealing followed by energy minimization. In the MD based simulated 

annealing, MD is used to simulate the dynamics of protein-ligand interaction and the 

temperature of the MD first increases to a high value and then slowly decreases. As the 

temperature of the MD decreases, ligands are expected to adopt low energy poses. The 

resulting ligand poses from simulated annealing are further optimized by energy 

minimization. As the MD-based simulated annealing is a heuristic search approach, it is not 

guaranteed that the ligand will converge to the lowest energy pose in each trial of MD-based 

simulated annealing. To increase the chance that the lowest energy pose of the ligand is 

identified, multiple trials of simulated annealing are employed. In each trial, the ligand is 

first initialized with a random conformation,12 a random orientation, and a random position 

within the binding pocket before going through the MD-based simulated annealing and 

energy minimization. After the energy minimization, the resulting poses, one from each trial, 

are ranked by their energies that include the intra-interaction energy of the ligand and the 

interaction energy between the ligand and the protein. The pose with the lowest energy is 

predicted to be the binding pose. In a typical application of CDOCKER, a large number of 

ligands need to be docked with a protein. Therefore, the docking procedure has to run fast 

enough to make the method practical. To accelerate the docking procedure and help search 

for the lowest energy pose of ligands, CDOCKER utilizes a cubic grid representation of the 

binding pocket and soft-core potentials,1,4 respectively, both of which will be described in 

detail in following sections.

In this paper two new features — fast Fourier transform (FFT)13 docking and parallel MD 

simulated annealing — are added to CDOCKER to further accelerate the search algorithm in 

CDOCKER. Both features are implemented such that they can take advantage of the parallel 

computing power of graphical processing units (GPUs). In addition, the original CDOCKER 

routine used for computing protein grid potentials is also updated such that it can run on 

GPUs.

2 METHODS

2.1 Accelerated routine for computing soft-core grid potentials

In CDOCKER’s docking protocol, most of the computational time is spent on calculating 

forces on ligand atoms and the ligand’s interaction energy with the protein for a large 

number of ligand poses. To accelerate the force and energy calculation, a cubic grid 

representation of the binding pocket is used. Specifically, the binding pocket inside a protein 

is discretized onto a cubic grid (Figure 1A). Probe atoms are placed on each of the grid 

points and their interaction energies with the protein are saved in a lookup table. Then the 

interaction energy of a ligand atom with the protein can be rapidly calculated by looking up 
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values in the tables, instead of explicitly calculating its interaction with all of the protein 

atoms. When a ligand atom’s position is not on any grid points, its interaction energy with 

protein atoms is calculated using a trilinear interpolation of the energy values on the eight 

grid points of the cell which contains the ligand atom. The force acted by protein atoms on a 

ligand atom is approximated using the local energy gradient. To accurately approximate the 

interaction energy between different ligand atoms and a protein, multiple grids are needed 

and calculated based on the protein. One of the grids is for computing the electrostatic 

interaction energy and the remaining grids are for computing the van der Waals interaction 

energy for ligand atoms with different atom types. In total, 26 grid potentials are computed 

based on the structure of the protein receptor in CDOCKER.

Soft-core potentials in CDOCKER are used to smooth the energy landscape, which can help 

the MD-based simulated annealing search escape from local minima and identify the ligand 

pose with the lowest energy. Specifically, when using soft-core potentials, the van der Waals, 

electrostatic attractive, and electrostatic repulsive energies are approximated using the 

formula:

Eij = Emax − a ⋅ rijb if Eij
∗ > |Emax|

2 , (1)

where Eij
∗  is the regular interaction energy; Emax is a parameter controlling the “softness” of 

the potential; Given Emax, a and b are automatically determined using the condition that the 

energy and the force calculated using Eq. 1 have to be equal to that calculate using the 

regular formula at the switch distance where Eij* = |Emax|/2.

In the previous version of CDOCKER, the routine for computing soft-core grid potentials 

for the protein receptor can only run on central processing units (CPUs), which can be slow 

due to the large number of grid points and protein atoms. For instance, to compute 26 grid 

potentials, each of which has 43×43×43 lattice points, for a target protein of 8757 atoms, the 

number of float point operation is on the order of 43×43×43×26×8, 757 = 18, 102, 312, 774. 

It took 2,100 seconds for the previous implementation running on a CPU(Intel® Xeon® 

Processor E5520) to compute these grid potentials. Here, we added a parallel 

implementation of the routine such that it can calculate the soft-core grid potentials on 

GPUs. To do the same computation, it only takes 2.5 seconds for the new implementation 

running on a CPU (NVIDIA® GEFORCE® GTX 1080). Therefore, our new 

implementation on GPUs is more than 800 times faster than the previous implementation on 

CPUs. The details of the new implementation on GPUs are included in the Supporting 

Information.

2.2 Fast Fourier transform docking

The FFT approach for docking was first used in rigid protein-protein docking.14 In this 

approach, proteins are represented as three dimensional grids such that the surface 

complementarity of two proteins can be formulated as the correlation function between two 

grids.14 Calculating the correlation function between two grids can be greatly accelerated 

using the FFT algorithm.15 Since its first use in protein-protein docking,14 the FFT approach 
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has been extended and improved in several aspects. In addition to the original potential term 

representing protein shape complementarity,14 potential terms representing desolvation and 

electrostatic interactions were added into the scoring function16–18 to more accurately model 

the physical interaction between proteins. Moreover, the FFT approach was further 

accelerated by using spherical polar Fourier correlations19–21 and GPUs.22,23 With these 

extensions and improvements, the FFT approach has been widely adopted in multiple 

protein-protein docking programs.18,20,24

In contrast to FFT’s wide application in protein-protein docking, its application in protein-

ligand docking is largely unexplored.25 One difficulty in adopting the FFT approach for 

protein-ligand docking is to represent the scoring function as a correlation function between 

grids, because the scoring function used in protein-ligand docking is often more complicated 

than that in protein-protein docking. In addition, the FFT approach assumes both protein and 

ligand are rigid bodies, whereas, in protein-ligand docking, at least the ligand needs to be 

modeled as flexible. Therefore multiple FFTs are required to search the ligand’s 

conformation space. This in turn requires a fast implementation of the FFT for it to be 

practical. Otherwise running multiple FFTs will take too much time.

Here we investigated the use of the FFT approach for protein-ligand docking in the context 

of CDOCKER where the CHARMM force field10,11 is used as the scoring function. The 

interaction energy, including electrostatic and van der Waals energy, between proteins and 

ligands is represented as the sum of multiple correlation functions between multiple pairs of 

grids and the calculation of correlation functions is accelerated using FFTs. Moreover, 

calculating multiple FFTs is further accelerated using GPUs.

2.2.1 Representing the non-bonded interaction energy between proteins and 
ligands as correlation functions between grids.—In order to use the FFT approach 

for protein-ligand docking, the interaction energy between a protein and a ligand needs to be 

expressed as a set of correlation functions between grids. Because CDOCKER uses the 

CHARMM force field10,11 as its scoring function, the interaction energy between proteins 

and ligands includes electrostatic and van der Waals interactions terms.4

The electrostatic interaction energy between proteins and ligands is calculated as

Uelec = ∑
i ∈ L

∑
j ∈ P

1
4πϵ

qiqj
ri − rj

= ∑
i ∈ L

qi ⋅ ∑
j ∈ P

1
4πϵ

qj
ri − rj

= ∑
i ∈ L

qi ⋅ V elec ri , (2)

where L and P are collections of ligand atoms and protein atoms, respectively; qi and qj are 

atom partial charges; ri and rj are atom coordinates. V elec ri = ∑j ∈ P
1

4πϵ
qj

ri − rj
 is the 

protein electrostatic potential at position ri. As Eq. (2) shows, the electrostatic interaction 

energy between protein and ligand atoms can be calculated as an inner-product between the 

ligand charge vector qL = (qi)i∈L and the protein electrostatic potential vector Velec = 

(Velec(ri))i∈L. However, the protein electrostatic potential vector Velec still depends on the 

positions of the ligand atoms that are not known in advance. To get rid of this dependency, 

grid representations are used for both the protein electrostatic potential and the charges of 
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ligand atoms (Fig. 1). Specifically, the binding pocket of a protein is discretized using a 3 

dimensional grid and protein electrostatic potentials at all the grid points are calculated and 

saved in a lookup table (Fig. 1A). The protein electrostatic potential at the grid point (l, m, 

n) is represented as V elec
grid (l, m, n). Because the protein electrostatic potential is calculated 

only at the grid points, in order to calculate the electrostatic interaction energy between 

proteins and ligands, the partial charges of ligand atoms are also distributed onto a three 

dimensional grid (Fig. 1B) in a trilinear manner. The aggregated charge at the grid point (l, 
m, n) is represented as Qgrid(l, m, n). Then the electrostatic interaction energy between 

protein atoms and ligand atoms can be approximated using the inner-product of protein 

electrostatic potential grid and ligand charge grid (Fig. 1C):

Uelec ≈ ∑
l = 0

Nx − 1
∑

m = 0

Ny − 1
∑

n = 0

Nz − 1
Qgrid(l, m, n) ⋅ V elec

grid(l, m, n), (3)

where Nx, Ny, and Nz are the numbers of grid points along the X, Y, and Z directions, 

respectively. Moreover, when the ligand is translated within the binding pocket by i, j, and k 
grid spacing units in the X, Y , and Z directions, respectively, the electrostatic potential 

energy between the protein and ligand can be similarly approximated using (Fig. 1D):

Uelec(i, j, k) ≈ ∑
l = 0

Nx − 1
∑

m = 0

Ny − 1
∑

n = 0

Nz − 1
Qgrid(l, m, n) ⋅ V elec

grid(l + i, m + j, n + k), (4)

where V elec
grid  is extended into a periodic grid, i.e., 

V elec
grid (l, m, n) = V elec

grid l mod Nx , m mod Ny , n mod Nz . As shown in Eq. 4, as the ligand 

moves within the binding pocket by distances of multiple units of grid spacing in each 

direction, the electrostatic interaction energy between the protein and ligand can be 

approximated as a cross correlation function between the protein electrostatic potential grid 

V elec
grid  and the ligand charge grid Qgrid. An advantage of using the grid representation, as in 

Eq. 4, over that in Eq. 2 is that V elec
grid  is independent of the ligand and can be calculated with 

only the protein. Similarly, grid Qgrid is independent of the protein and can be calculated 

with only the ligand.

The van der Waals interaction energy between proteins and ligands is calculated using the 

Lennard-Jones potential:

Uvdw = ∑
i ∈ L

∑
j ∈ P

ϵij
rijmin

rij

12
− 2 rijmin

rij

6

= ∑
i ∈ L

∑
j ∈ P

ϵiϵj
rimin + rjmin /2

ri − rj

12
− 2 rimin + rjmin /2

ri − rj

6

= ∑
i ∈ L

ϵi ⋅ V vdw ri, rimin ,

(5)
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where rimin, rjmin, ϵi, and ϵj are parameters of the Lennard-Jones potential and are parts of the 

CHARMM force field;

V vdw ri, rimin = ∑
j ∈ P

ϵj
rimin + rjmin /2

ri − rj

12
− 2 rimin + rjmin /2

ri − rj

6
. (6)

Eq. 5 for the van der Waals energy is similar to that in Eq. 2, except that V vdw ri, rimin

depends on both ligand coordinates ri and parameters rimin, whereas Velec(ri) only depends 

on ligand coordinates ri. Because of this difference, the approach used to represent the 

electrostatic energy between proteins and ligands as a cross correlation function between a 

pair of grids can not be directly applied to the van der Waals interaction. In the CHARMM 

force field, parameters rmin of ligand atoms depend on their atom types and the total number 

of atom types is finite. Therefore, there are only a finite number of possible values for rmin. 

Taking advantage of this fact, we can group the terms in Eq. 5 based on the value of rmin:

Uvdw = ∑
i ∈ L

ϵi ⋅ V vdw ri, rimin = ∑
rmin ∈ Rmin

∑
i ∈ Lrmin

ϵi ⋅ V vdw
rmin ri

= ∑
rmin ∈ Rmin

Uvdw
rmin,

(7)

where Rmin is the set of possible values of rmin for ligand atoms and Lrmin is the set of ligand 

atoms that have the parameter of rmin. The individual van der Waals energy corresponding to 

rmin is Uvdw
rmin

= ∑i ∈ Lrmin ϵi ⋅ V vdw
rmin

ri , which is similar to the Eq. 2 and can be calculated 

as a cross correlation function between grids using the same approach used for calculating 

the electrostatic energy. Therefore, the total van der Waals interaction energy can be 

approximated as the sum of multiple correlation functions between multiple pairs of grids.

2.2.2 Calculating cross correlation functions between grids using FFTs in 
parallel on GPUs.—Based on the convolution theorem,15 the cross correlation function 

for the electrostatic energy in Eq. 4 can be calculated by applying a Fourier transform and an 

inverse Fourier transform successively on both sides of the equation, i.e.,

Uelec = ℱ−1 ℱ Qgrid * ⋅ ℱ V elec
grid . (8)

The FFT algorithm is utilized to efficiently calculate both the Fourier transform and the 

inverse Fourier transform operations. In contrast to the naive algorithm which requires 

O NxNyNz
2  number of operations to calculate the cross correlation function, the FFT 

algorithm only needs O NxNyNz log NxNyNz  number of operations. Similarly, the FFT 

algorithm can also be used to calculate the van der Waals interaction energy in Eq. 7. 

Although the FFT algorithm can significantly accelerate the calculation of cross correlation 

functions, one cross correlation function can only provide interaction energies between a 
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proteins and a ligand as the ligand translates within the binding pocket with a fixed 

conformation and a fixed orientation. In other words, FFTs only accelerate the search of the 

ligand translational space. However, in protein-ligand docking where at least the ligand is 

modeled as flexible, the interaction energies need to be calculated for different 

conformations and orientations of the ligand, in addition to different positions. Therefore, 

multiple FFTs, each for one particular conformation and orientation of the ligand, are 

needed in protein-ligand docking. To accelerate this calculation, multiple FFTs are run on 

GPUs in a batch mode to take advantage of the pipelined parallel computing power of 

GPUs.26

2.3 Parallel MD-based simulated annealing with GPUs

One of the advances in using MD simulations to study both chemical and biological systems 

has been the utilization of GPUs.27–30 Compared with CPUs, the parallel computing power 

of GPUs enables us to run MD simulations orders of magnitude faster and simulate longer 

timescale dynamics of chemical and biological systems, which makes MD suitable to study 

processes that were not accessible before.27–30 Although GPUs have been widely employed 

in running MD simulations of large chemical and biological systems, they are rarely used to 

accelerate protein-ligand docking methods. Here we investigated the utilization of GPU 

computing to accelerate CDOCKER for protein-ligand docking by running MD-based 

simulated annealing of multiple copies of ligands and any included flexible receptor regions 

in parallel on one GPU.

Because protein-ligand interaction energy landscapes have many local minima and the MD-

based simulated annealing is a heuristic search method, multiple trials of simulated 

annealing have to be employed to search for the lowest energy pose. As the number of trials 

increases, the docking accuracy usually improves until it reaches a plateau. In addition, in a 

typical application, CDOCKER needs to dock a large number of ligands with a protein. 

Therefore, accelerating multiple trials of MD-based simulated annealing can help 

CDOCKER to dock a large number of ligands in a limited time while maintaining docking 

accuracy. Because trials of MD-based simulated annealing are independent, one way to 

accelerate the calculation is to run them in parallel with multiple processors. In the existing 

implementation of CDOCKER, multiple trials of MD-based simulated annealing can be run 

in parallel with multiple CPUs. Here we introduce a new feature into CDOCKER to enable 

it to run multiple trials of MD-based simulated annealing simultaneously on GPUs.

As there are already implementations of MD engines running on GPUs, instead of writing a 

new MD engine specifically for running multiple trials of MD-based simulated annealing on 

GPUs, we utilize the existing GPU-enabled MD engine that is part of the CHARMM/

OpenMM interface.31 To utilize the MD engine from OpenMM for our purpose, we make a 

customized system consisting of multiple copies of a ligand and any included flexible 

receptor regions and one copy of the potential grids of the protein. Atoms in each copy of 

the ligand and the flexible receptor group interact with atoms in the same copy and the 

potential grids, but do not interact with atoms in all other copies of flexible groups. 

Therefore, although the system includes multiple copies of the flexible atoms, these copies 

are independent from each other and the dynamics of each copy is the same as if there is just 
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one copy. Running one trial of MD-based simulated annealing with this customized system 

on GPUs is equivalent to running multiple trials of simulated annealing using the previous 

implementation on CPUs.

The parallel MD-based simulated annealing with GPUs is implemented for both rigid 

receptor and flexible receptor docking.1 In rigid receptor docking, protein grid potentials are 

computed using all protein atoms and the customized OpenMM system consists of multiple 

copies of ligand atoms. In flexible receptor docking, side chains of multiple amino acids 

near the binding pocket are modeled as flexible regions. The protein atoms of these flexible 

side chains are modeled similarly as ligand atoms, except that they are attached to fixed 

protein backbone atoms through bonded interaction. These protein atoms of flexible side 

chains are excluded when computing protein grid potentials and the customized OpenMM 

system consists of multiple copies of both ligand atoms and atoms in flexible side chains. 

More detailed information on flexible receptor docking in CDOCKER is available in the 

original paper describing flexible CDOCKER.1

3 RESULTS

3.1 Benchmark datasets and computational details

Three sets of protein-ligand complexes are used as benchmark datasets to evaluate the 

protein-ligand docking methods just described. The Astex diverse set32 and the SB2012 

set33 are used for evaluating rigid receptor docking. The SEQ17 dataset34 is used for 

evaluating flexible receptor docking. The Astex diverse set contains 85 diverse high-

resolution protein-ligand complexes and has been widely used for benchmarking different 

protein-ligand docking methods.32 In this study, 70 of the 85 protein-ligand complexes that 

do not include cofactors are used. Compared to the Astex diverse set, the SB2012 set33 is a 

much larger set of protein-ligand complexes. It contains 1043 protein-ligand complexes, out 

of which the 1003 complexes that do not have cofactors and can be typed using CGenFF35 

are used in this study. The 1003 protein-ligand complexes from the SB2012 set overlap with 

69 out of 70 complexes from the Astex diverse set. Protein-ligand complexes with cofactors 

are excluded because force field parameters of the cofactors are not readily available in the 

CHARMM force field. Unlike protein-ligand docking methods that use empirical scoring 

functions, CDOCKER uses physical interaction energies based on the all-atom CHARMM 

force field. Cofactors have to be parameterized based on the CHARMM force field in order 

to be included in docking. Because not all cofactors in the benchmark datasets can be 

accurately parameterized using CGenFF, we excluded all protein-ligand complexes with 

cofactors such that the complexes in the benchmark datasets are more consistent and the 

docking accuracy is not affected by the errors introduced in the parameterization of 

cofactors. The SEQ17 dataset, which was originally used to benchmark the flexible receptor 

docking method AutodockFR,34 contains 17 pairs of apo-holo structures. These 17 systems 

were selected to represent a wide range of receptors.

The MD-based simulated annealing in CDOCKER is conducted over several stages and 

different stages use protein grid potentials with different softness, i.e., grid potentials 

calculated using different Emax (Eq. 1). Three sets of values for the parameter Emax are used 

for rigid receptor docking and they are summarized in Table 1. The stages of simulated 
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annealing for rigid receptor docking are as follows. Using the soft-core grid potential I, the 

ligand is heated up from 300K to 700K over 3000 MD integration steps with a step size of 

1.5 femtoseconds and then cooled down from 700K to 300K over 14000 steps. Then using 

the soft-core grid potential II, the ligand is further cooled down from 500K to 300K over 

7000 steps and then from 400K to 50K over 3000 steps. Final, the ligand is minimized using 

the soft-core grid potential III for 200 steps.

Similar stages of MD-based simulated annealing are used in flexible receptor docking except 

that soft-core grid potentials with different softness are used. Specifically, the soft-core grid 

potential I is changed and is adopted from the flexible docking protocol outlined by Gagnon 

et al.1 to prevent ligands from leaving the binding pocket during the initial searching and 

heating stages of simulated annealing. The soft-core potential III is designed to give a more 

native-like energy landscape. Since there are more explicit atoms involved in flexible 

receptor docking, these values are larger than those used for rigid receptor docking. Detailed 

values for the softness parameter Emax used in flexible receptor docking are summarized in 

Table 2. More details on simulate annealing procedures are available in the CHARMM 

scripts included in the Supporting Information.

3.2 Fast Fourier transform docking

3.2.1 Energy calculation acceleration with FFTs and GPUs—When a ligand has 

a fixed conformation and a fixed orientation, its interaction energy with a protein as the 

ligand translates on grid points can be represented as the cross correlation function between 

grids and both FFTs and GPUs are used to accelerate the calculation of these cross 

correlation functions. To see the extent to which FFTs and GPUs can accelerate the 

calculation, we applied the FFT approach to a test example utilizing the protein-ligand 

complex 1G9V(PDB ID). The ligand in 1G9V has dimensions of 5.8Å × 14.5Å × 8.5Å in 

the X, Y, and Z directions, respectively. With a grid spacing distance of 0.5Å, the ligand grid 

has 13 × 30 × 18 points. The binding pocket is defined as a cubic box with a dimension of 

29.5Å, and the protein potential grid with the same grid spacing distance as the ligand grid 

has 60 grid points in all three directions. Therefore, within the binding pocket, the ligand has 

59, 220 = 47 × 30 × 42 possible positions. The interaction energy between the protein and 

the ligand for all possible positions of the ligand are calculated using three methods: the 

naive method, which explicitly calculates the interaction energy for each position on a CPU, 

FFTs running on a CPU, and FFTs running on a GPU. The wall times used by the three 

methods are summarized in Table 3. Compared with the naive method, the FFT approach 

with CPUs accelerates the calculation by more than 100 times and running FFTs on GPUs in 

a batch mode further accelerates the calculation by 140 fold. Overall, compared with the 

naive method, the speedup of using both FFTs and GPUs is about 15,000 fold.

3.2.2 Scoring function accuracy: identifying ligand native orientations and 
positions.—With the acceleration from both FFTs and GPUs for calculating the 

interaction energy between ligands and proteins, it becomes feasible to systematically search 

ligand orientations and positions in a reasonable computation time. This, in turn, enables us 

to investigate the scoring function’s accuracy in terms of identifying native orientations and 

positions given the conformations of both the ligand and the protein. Using the Astex diverse 
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set and the SB2012 set as test sets, we applied the FFT-based approach with GPUs to rigidly 

dock ligands onto proteins using the native conformations of ligands and proteins. To 

systematically search the orientation and translation space of ligands, 100,000 randomly 

sampled orientations of each ligand are used. For each orientation, the ligand’s translational 

space is uniformly covered by a three dimensional grid with a grid spacing distance of 05Å. 

The docked pose of a ligand is chosen to be the lowest energy pose among the poses with all 

possible combinations of sampled orientations and translations.

For both test sets, the docking accuracy first increases as the number of randomly sampled 

ligand orientations increases and reaches a plateau when 100,000 random orientations are 

used (Fig. 2A). Here the docking accuracy is defined as the percentage of protein-ligand 

complexes in the benchmark datasets for which the root mean square deviation (RMSD) of 

the docked pose is within 2.0Å with respect to the native pose. Because the lowest energy 

pose is not necessarily within 2.0Å to the native pose for all the protein-ligand complexes in 

the benchmark datasets, the accuracy on the Y axis does not reach 100%. The plateau occurs 

at a docking accuracy of about 66.34% and 66.22% for the Astex diverse set and the SB2012 

set, respectively. (Fig. 2B). When the native orientation is included, in addition to the 

100,000 random orientations, the docking accuracy increases to about 67.75% and 67.63% 

for the Astex diverse set and the SB2012 set, respectively. (Fig. 2B). It is notable that this 

small difference suggests that the use of 100,000 rotational samples is sufficiently dense to 

cover the rotational space. The docking accuracy at the plateau, which is around 68%, 

represents the accuracy of the CHARMM force field in identifying the native orientations 

and positions of ligands assuming the native conformations of ligands are given. This 

accuracy should be an upper bound of the CHARMM force field’s accuracy in identifying 

native ligand poses, which includes the native conformations in addition to the native 

orientations and positions. Although the size of the SB2012 set is more than ten times larger 

than the Astex diverse set, the results on the two sets are quite similar. The good agreement 

between different benchmark datasets suggests that the physics-based scoring function used 

in CDOCKER is potentially transferable among a large variety of protein ligand complexes.

We note that the above FFT-based rigid docking approach could be generalized to permit 

ligand conformational space to be sampled. This would involve first sampling a suitable 

ensemble of ligand conformations36 and then carrying out the rotational/translational 

sampling to identify the lowest energy conformation using GPU-accelerated FFTs. This 

protocol can readily be implemented using CHARMM scripting language.10 However, we 

instead pursue in the following integration of ligand (and possibly receptor side chain) 

sampling into an MD simulated annealing scheme as employed in CDOCKER4 and flexible 

CDOCKER.1

3.3 Parallel MD-based simulated annealing with GPUs

3.3.1 GPU accelerated parallel simulated annealing significantly accelerates 
CDOCKER—Compared with the original CDOCKER running serially on CPUs, the 

speedup of the parallel MD-based simulated annealing with GPUs is shown in Table 4. For 

the protein-ligand pairs in the Astex diverse set, when 100 and 500 docking trials are used, 

the average wall time used by the original CDOCKER with CPUs are 338.4 and 1692.0 
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seconds, respectively. In contrast, the average wall time used by the parallel MD-based 

simulated annealing with GPUs are 30.8 and 85.5 seconds, respectively, which is about 10 

fold and 20 fold faster. The speedup becomes even larger when the number of trials 

increases, because the wall time used by the original CDOCKER on CPUs is proportional to 

the number of trials.

3.3.2 Comparison with other protein-ligand docking programs for rigid 
receptor docking.—The accelerated CDOCKER is compared with three other widely 

used protein-ligand docking programs: Autodock, Autodock Vina, and DOCK. The 

computational details for setting up docking in all the docking programs presented here are 

included in the Supporting Information. To make a fair comparison between different 

protein-ligand docking programs, same settings are used for all docking programs whenever 

it is possible. For instance, for a protein-ligand complex, the docking grid box with the same 

position and size is used in all programs. The docking accuracy is calculated as the 

percentage of protein-ligand complexes in benchmark datasets for which the RMSD of the 

docked pose is less than 2.0Å with respect to the native pose.

The re-docking results on the Astex diverse set and the SB2012 set are shown in Table 5 and 

Table 6, respectively. With the acceleration achieved by the parallel MD-based simulated 

annealing with GPUs in CDOCKER, the average wall time required by CDOCKER for 

docking one protein-ligand complex is either faster than or on par with other programs. For 

CDOCKER, Autodock, and Autodock Vina, the docking accuracy one obtains depends on 

whether the ligands’ native conformation or a random conformation is used as the starting 

conformation: all of these approaches perform better when the ligand native conformation is 

used as the starting conformation. Starting with ligands’ native conformation makes the 

conformational search easier and the docking accuracies higher than those corresponding to 

using random starting conformations. Because the DOCK program uses the “anchor and 

grow” search method,7 its accuracy does not depend on the starting conformation.

Based on the results from the Astex diverse set, when ligand random conformations are used 

as starting conformations, DOCK and Autodock Vina have similar and higher docking 

accuracy. Autodock has the lowest docking accuracy and CDOCKER is in between. 

Increasing the parameter that controls the searching exhaustiveness in Autodock Vina from 8 

to 20 proportionally increases the run time, but it does not change its docking accuracy 

significantly. Compared with the results on the Astex diverse set (Table 5), the relative 

performance of the protein-ligand docking programs on the SB2012 set is the same in terms 

of docking accuracy (Table 6). However, for all of the programs, the docking accuracy is 

lower on the SB2012 set (Table 6). Although the Astex diverse set contains a diverse set of 

protein-ligand complexes, the number of protein-ligand complexes in the set is relatively 

small. Because the SB2012 dataset contains more than an order of magnitude more protein-

ligand complexes, the performance on the SB2012 set should be a more objective measure 

of the protein-ligand docking programs’ docking accuracy. The lower docking accuracy on 

the SB2012 set for all the tested protein-ligand docking programs can be attributed to either 

search algorithms or scoring functions or both. This suggests that more efforts are required 

to further improve search algorithms and scoring functions including both physics based 

score functions used in CDOCKER and DOCK and empirical scoring functions used in 
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Autodock and Autodock Vina. We note that the docking accuracies of both Autodock Vina 

and DOCK reported in this study are quite different from those reported in previous studies.
6,7,37 This is because of the fact, as shown in this study, that the docking accuracy of a 

protein-ligand docking program can vary significantly depending on ligand starting 

conformation and benchmark dataset.

3.3.3 Benchmarking flexible receptor docking—The implementation of parallel 

simulated annealing on GPUs also significantly accelerates the flexible receptor docking in 

CDOCKER. To test both the docking accuracy and speed of flexible receptor docking in 

CDOCKER after the acceleration, we used the SEQ17 set which contains 17 pairs of apo-

holo structures and represents a subset of the SEQ dataset which comprises ligand-receptor 

complexes that can be successfully docked using AutoDock (RMSD < 2.0 Å) with rigid re-

docking.34 These 17 systems were selected to represent a wide range of receptors. For each 

of 17 apo-protein structures, there is at least one amino acid side chain around the binding 

pocket whose conformation in the holo structure is different from that in the apo structure by 

at least 2.5 Å (RMSD). Therefore, there would be at least one severe clash between ligand 

atoms and the receptor side chain if the ligand native conformation from the protein-ligand 

complex is directly fit onto the apo structure. In what follows, we evaluate the overall 

performance (accuracy and speed) of flexible CDOCKER for flexible receptor docking 

using this dataset and compare it with AutodockFR.34

In preparing each system for flexible receptor docking, the apo structure is superposed on 

the corresponding holo structure. The criteria used for selecting flexible side chains is the 

same as that used in AutoDockFR, except that in flexible CDOCKER the heavy atoms 

beyond Cα are considered to be flexible, whereas the heavy atoms beyond Cβ are set to be 

flexible in AutoDockFR.34 The RMSD cutoff for native-like pose is set to be 2.5 Å to be 

consistent with the evaluation criteria used by AutoDockFR.34 We performed 10 repeated 

calculations, each of which consists of 500 trials of both flexible CDOCKER and the rigid 

CDOCKER.

The docking results on the SEQ17 set are shown in Table 7. In each repeat, we first 

computed the searching accuracy. A searching success is defined as at least one native-like 

docking pose is identified among the docked poses from 500 trials of docking. The 

searching accuracy for rigid CDOCKER is 36.47% ± 5.41% when the apo structure is used 

as the receptor and 95.88% ± 2.84% when the holo structure is used. In contrast, for flexible 

CDOCKER, the search accuracies are 95.29% ± 2.48% and 80.00% ± 6.90% when the apo 

structures and the holo structure are used as receptors, respectively (Table 7). Therefore, 

flexible CDOCKER has a higher searching accuracy than rigid CDOCKER when the 

receptor binding pocket has a conformational change upon binding with ligands.

To further assess the accuracy of flexible CDOCKER for this set, we considered the 

following scoring accuracy. The docked poses from 500 trials of docking are clustered using 

a K-means clustering algorithm from the MMTSB toolset (cluster.pl)38 based on ligand 

heavy atoms with a RMSD cutoff of 2.0 Å. If the number of docked poses in a cluster is less 

than 10, then the cluster is discarded. This allows us to remove those less populated docking 

poses that are frequently away from the binding pocket. Then the minimum energy pose of 
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each cluster is selected and ranked based on the scoring function. A scoring success is 

defined as at least one of the cluster representatives is a native-like pose.34 The scoring 

accuracy of flexible docking in CDOCKER is about 57.06% when apo structures are used as 

receptors (Table 7) and the corresponding scoring accuracy of AutodockFR is 70.6%34 

which is higher than CDOCKER. However, as mentioned before, the SEQ17 dataset is 

intentionally designed to only include protein-ligand complexes that can be correctly re-

docked (RMSD < 2 Å) using the Autodock. If we do the same filtering process for 

CDOCKER, i.e., exclude protein-ligand complexes that can not be re-docked using 

CDOCKER, which include 3PTE and 2A78, the scoring accuracy of flexible docking in 

CDOCKER becomes 68.82%±3.97%, which is similar to the accuracy achieved by the 

AutodockFR.

In high-throughput virtual screening where a large number of ligands need to be docked, the 

major barrier for the use of flexible receptor docking is its speed. For flexible CDOCKER 

with parallel simulated annealing running on a GPU (NVIDIA® GEFORCE® GTX 1080), 

the average wall time required for one protein-ligand complex is about one hour. In contrast, 

AutodockFR running on a CPU (Intel® Xeon® Processor E5520) requires on average 50 × 

8.5 = 425 hours for one protein-ligand complex:34 it takes 8.5 hours for AutodockFR to run 

one round of genetic algorithm and 50 rounds of genetic algorithms are required. Therefore, 

our flexible CDOCKER based on parallel MD-based simulated annealing on GPUs greatly 

reduces the amount of time required while maintaining similar docking accuracy for flexible 

receptor docking.

4 CONCLUSIONS AND DISCUSSIONS

Two new features — fast Fourier transform (FFT) docking and parallel MD-based simulated 

annealing — are implemented and added to the protein-ligand docking program CDOCKER 

in CHARMM. The FFT docking not only utilizes the acceleration provided by FFTs but also 

employs the parallel computing power of GPUs. Overall, FFT docking with GPUs 

accelerates the search of ligand positions and orientations by as much as 15,000 fold. With 

the significant speedup achieved by FFT docking on GPUs, it becomes practical to 

exhaustively search the translation and rotation space of ligands when docking a rigid ligand 

into a binding pocket. Although FFT docking alone can not solve the protein-ligand docking 

problem in which ligands are flexible, the FFT docking can be used to quickly calculate an 

upper bound of the docking accuracy that can be achieved by a scoring function. This in turn 

can provide insights into the problems of current scoring functions and help improve the 

scoring function. In addition, because FFT docking with GPUs can efficiently calculate 

protein ligand interaction energies for an almost exhaustive list of positions and orientations 

given a ligand conformation, FFT docking could also be used to explicitly calculate the 

partition function corresponding to a ligand’s translational and rotational space. This can be 

combined with existing scoring functions in protein-ligand docking to more accurately 

estimate protein-ligand binding affinities. A similar idea has been investigated by Nguyen et. 

al.39

The parallel MD-based simulated annealing with GPUs enables CDOCKER to run about 20 

times faster when 500 trials of simulated annealing are used. The speedup becomes even 
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larger when more trials of simulated annealing are employed. With this acceleration, the 

speed of CDOCKER is on par with or faster than several other popular protein-ligand 

docking programs tested in this study. In addition, the parallel MD-based simulated 

annealing on GPUs also enables flexible CDOCKER to achieve significant speed advantages 

while maintaining similar accuracy for flexible receptor docking. We note that these 

additions to the CDOCKER and flexible CDOCKER modules described in this paper are 

part of the c43a1 development version of CHARMM and will be released for general use in 

the near feature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The electrostatic interaction energy between proteins and ligands can be calculated as a 

cross correlation function between the protein electrostatic potential grid and the ligand 

charge grid. (A) The binding pocket in the protein is discretized into a cubic grid with 

equally spaced grid points. (B) Charges of ligand atoms are distributed onto a cubic grid 

which has the same spacing and the same number of grid points as the potential grid in (A). 

(C,D) As the ligand translates within the binding pocket by multiple units of the spacing 

distance, the electrostatic interaction energy can be approximated using a cross correlation 

function Uelec(i, j, k) between the protein potential grid (red grids) and the ligand charge grid 

(blue grids). (C) and (D) correspond to the cases Uelec(0, 0, 0) and Uelec(1, 0, 0), 

respectively.
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Figure 2: 
Docking accuracy of the FFT approach for docking rigid ligands onto rigid proteins with the 

native conformations of both ligands and proteins using the Astex diverse set and the 

SB2012 set. (A) Docking accuracy increases as the number of randomly sampled 

orientations increases. The error bars are estimated using 10 independent repeats. (B) 
Docking accuracy when 100,000 randomly sampled orientations are used (black) and when 

100,000 randomly sampled orientations plus the native orientation are used (grey).
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Table 1:

Soft-core potentials used in rigid receptor docking

name E* max (vdw) E* max (att) E* max (rep)

soft-core potential I 0.6 −0.4 8.0

soft-core potential II 3.0 −20.0 40.0

soft-core potential III 100 −100 100

*
Emax(vdw), Emax(att) and Emax(rep) in the unit of kcal/mol are parameters for the van der Waals, electrostatic attractive, and electrostatic 

repulsive interactions, respectively.
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Table 2:

Soft-core potentials used in flexible receptor docking

name E* max (vdw) E* max (att) E* max (rep)

soft-core potential I 15.0 −120.0 −2.0

soft-core potential III 10000 −10000 10000

*
Emax(vdw), Emax(att) and Emax(rep) in the unit of kcal/mol are parameters for the van der Waals, electrostatic attractive, and electrostatic 

repulsive interactions, respectively.
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Table 3:

Wall time used by the three methods: the naive method looping through all positions on a CPU, FFTs (CPU), 

and FFTs (GPU) to calculate interaction energies between the protein and the ligand in 1G9V for the ligand’s 

59,220 positions.

Methods Naive(CPU
a
) FFTs(CPU

a
) FFTs(GPU

b
)

Wall time (seconds) 31.20 0.28 0.002
c

a
The CPU is an Intel Xeon Processor E5645 2.4GHz;

b
The GPU is a NVIDIA GeForce GTX 1080;

c
Multiple FFTs run in parallel on GPUs in a batch mode. The wall time is calculated as the wall time used to run one batch of FFTs divided by the 

batch size which is 100.
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Table 4:

Acceleration of parallel MD-based simulated annealing with GPUs compared with the original CDOCKER 

with CPUs on the Astex diverse set.

CDOCKER with CPUs CDOCKER with parallel MD-based simulated annealing with GPUs

accuracy
a 0.623 ± 0.023 0.631 ± 0.029

wall time
b
 (seconds) 338.4 30.8

wall time
c
 (seconds) 1692.0 85.5

a
The accuracy when 100 trials are used; The ligand native conformation is used as the starting conformation; The uncertainty is estimated using 10 

independent repeats.

b
The wall time used when 100 trials are used;

c
The wall time used when 500 trials are used.
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Table 5:

Docking accuracy of multiple protein-ligand docking programs on the Astex diverse set.

CDOCKER
d Autodock v4.2.6 Autodock Vina

e
Autodock Vina

f DOCK v6.7

accuracy (native
a
) 0.664 (± 0.022

g
) 0.600 (± 0.020) 0.701 (±0.019) 0.710 (± 0.009)

0.639 (± 0.016)

accuracy (random
b
) 0.537 (±0.021) 0.530 (±0.029) 0.633 (±0.014) 0.623 (±0.011)

wall time (sec)
c 85.5 279.6 82.3 202.9 50.0

a
Ligand native conformations are used as starting conformations.

b
Ligand random conformations are used as starting conformations.

c
CDOCKER is run on a GPU (NVIDIA GeForce GTX 980). All the other docking programs use one CPU (Intel Xeon Processor E5645 2.4GHz).

d
500 trials are used in CDOCKER.

e
exhaustiveness = 8.

f
exhaustiveness = 20.

g
All uncertainties are estimated using 10 independent repeats.
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Table 6:

Docking accuracy of multiple protein-ligand docking programs on the SB2012 set.

CDOCKER
c Autodock v4.2.6 Autodock Vina

d
Autodock Vina

e DOCK v6.7

accuracy(native
a
) 0.569 (± 0.006

f
) 0.477 (± 0.009) 0.631 (±0.004) 0.642 (± 0.005)

0.553 (±0.005)

accuracy (random
b
) 0.429 (± 0.007) 0.418 (±0.004) 0.532 (±0.004) 0.547 (±0.004)

a
Ligand native conformations are used as starting conformations.

b
Ligand random conformations are used as starting conformations.

c
500 trials are used in CDOCKER.

d
exhaustiveness = 8.

e
exhaustiveness = 20.

f
All uncertainties are estimated using 10 independent repeats.
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Table 7:

Docking accuracy of SEQ17 dataset using flexible CDOCKER

Receptor Structure Searching Accuracy Ranking Accuracy

Holo 95.29% ± 2.48% 78.82% ± 4.96%

Apo 80.00% ± 6.90% 57.06% ± 3.97%
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