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Abstract

Background: Identification of hot spots in protein-DNA interfaces provides crucial
information for the research on protein-DNA interaction and drug design. As
experimental methods for determining hot spots are time-consuming, labor-
intensive and expensive, there is a need for developing reliable computational
method to predict hot spots on a large scale.

Results: Here, we proposed a new method named sxPDH based on supervised
isometric feature mapping (S-ISOMAP) and extreme gradient boosting (XGBoost)
to predict hot spots in protein-DNA complexes. We obtained 114 features from
a combination of the protein sequence, structure, network and solvent accessible
information, and systematically assessed various feature selection methods and
feature dimensionality reduction methods based on manifold learning. The
results show that the S-ISOMAP method is superior to other feature selection or
manifold learning methods. XGBoost was then used to develop hot spots
prediction model sxPDH based on the three dimensionality-reduced features
obtained from S-ISOMAP.

Conclusion: Our method sxPDH boosts prediction performance using S-ISOMAP
and XGBoost. The AUC of the model is 0.773, and the F1 score is 0.713.
Experimental results on benchmark dataset indicate that sxPDH can achieve
generally better performance in predicting hot spots compared to the state-of-
the-art methods.
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Background
Protein-DNA interactions play a crucial role in many biological processes, such as gene

transcription and translation, DNA repair and assembly [1, 2]. In pioneering research

work on the binding of human growth hormone to its receptor, a small number of

interface residues, known as hot spots, were found to contribute more affinity

compared with other amino acid residues [3]. In the experiments, alanine scanning

mutation technology has been used to identify hot spots when their free energy changes

exceed a certain threshold [4]. This experimental method was also used to explore the

mechanism of protein-DNA recognition. As the experimental method is high-cost and

time-consuming, the computational method provides another way for studying hot

spots prediction.

A series of methods based on feature selection have been used to study the hot spots

in protein binding interfaces. Xia et al. selected the three optimal features with the

largest contribution through a two-step feature selection approach including maximum

relevance minimum redundancy (mRMR) and exhaustive search [5]. Pan et al. used

gradient tree boosting algorithm to find the smallest optimal features from 125 candi-

dates [6]. Qiao et al. proposed a hybrid feature selection strategy, combining the feature

subsets selected by decision tree and mRMR respectively, and finally obtained six

features using pseudo sequential forward selection [7]. Deng et al. adopted a two-step

feature selection method consisting of mRMR and sequential forward selection (SFS) to

select the best 6 features from a group of 156 features [8]. Hot spots identification is of

great significance for exploring the potential binding mechanism and the stability of

protein-DNA interactions [9]. So far, many studies have focused on the prediction of

binding sites in protein-DNA complexes [10]. However, there is little research on the

prediction of hot spots in protein-DNA complexes. Recently, Zhang et al. used a com-

putational approach to predict the hot spots in protein-DNA binding interfaces [11].

The above methods have some disadvantages. For example, the mRMR-based method

has good time performance, but its classification accuracy is general and it cannot

eliminate redundancy completely [12]. Although the SFS-based method has good

feature resolution, it has high computational complexity and is easy to over-fit [13].

Manifold learning is a nonlinear dimensionality reduction method appeared in recent

years. It can map the high-dimensional input data to the low-dimensional manifold and

preserve the topological structure of the data while reducing the dimension. The

classical manifold learning methods include isometric feature mapping (ISOMAP) [14],

local linear embedding (LLE) [15], etc. However, these are unsupervised dimensionality

reduction methods, which cannot make full use of the class label information of

samples. Here, we propose a new method based on supervised manifold learning to

predict the hot spots in protein-DNA binding interfaces. We extracted 64 DNA-

binding proteins and collected 114 features based on our previous work [11]. In order

to improve prediction performance, supervised isometric feature mapping (S-ISOMAP)

[16] algorithm considering the class label information was used to implement dimen-

sionality reduction. Finally, we employed an improved version of the Gradient Boosting

algorithm, extreme gradient boosting (XGBoost) [17], to build the prediction model.

Experimental results show that compared with the state-of-the-art prediction methods,

our method sxPDH (S-ISOMAP and XGBoost based model for prediction of protein-

DNA binding hot spots) has higher prediction performance.
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Methods
Dataset and features used in this work

In this study, we used the same dataset and features as our previous work [11]. Among

64 protein-DNA complexes, 40 complexes were selected randomly as the training data-

set including 62 hot spots and 88 non-hot spots and the other 24 complexes were used

as the test dataset with 26 hot spots and 38 non-hot spots. We obtained 114 features

from four feature groups, namely, solvent accessible surface area, sequence, structure

and network. For details, the interested readers can refer to our previous work [11].

Feature dimensionality reduction

If the dimension of the features is too high, the classifier will over-fit. Therefore, in

order to improve the prediction performance of classifiers, reducing the feature dimen-

sion is essential. Here, we used S-ISOMAP algorithm, which can make the data of the

same category close to and different categories distant from each other in the dimen-

sion reduction space, thus achieve dimensionality reduction. The framework of mani-

fold learning algorithm based on S-ISOMAP is as follows [16].

Step 1: Define the dissimilarity distance:

Assuming that the given data are (xi, yi), where xi ∈ R
D(i = 1, 2,…,N), yi is the category

label for xi, we define the dissimilarity between two points xi and xj as [16]:

D xi; x j
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp − d2 xi; x j

� �
=β

� �q
yi ¼ yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp d2 xi; x j
� �

=β
� �q

− αyi≠yi

8
<

:
ð1Þ

where d(xi, xj) represents the Euclidean distance between xi and xj, the parameter β is

used to control the growth rate of D(xi, xj), and the parameter α is used to control the

distance between different classes [16].

Step 2: Construct the neighborhood graph:

Firstly the dissimilarity distance between the sample point xi ∈ R
D and sample points

xj ∈ R
D is calculated [16]. When xj is one of the nearest K points of xi, they are adjacent,

that is, there is edge xixj in the graph G (k-neighborhood). If xj is not the nearest K

points of xi, and the Euclidean distance between xi and xj is less than the fixed value ε,

it is considered that there is edge xixj in the graph G (ε-neighborhood). Here, the

weight of the edge is set to dissimilarity distance D(xi, xj) [16].

Step 3: Compute the shortest paths:

We initialize the shortest path dG(xi, xj) =D(xi, xj), if there’s an edge xixj in graph G;

Otherwise dG(xi, xj) =∞. Then we calculate dG(xi, xj) for each data (xi, yi) [16]:

dG xi; x j
� � ¼ min dG xi; x j

� �
; dG xi; xlð Þ þ dG xl; x j

� �� � ð2Þ

where l = 1, 2, …, N.

In this way, the shortest path distance matrix DG = {dG(xi, xj)} can be obtained. This

process is called Floyd algorithm [16].

Step 4: Construct d-dimensional embedding:

Multidimensional scaling (MDS) [18] is applied to the distance matrix DG. The global

low-dimensional coordinates are obtained by minimizing the cost function E:

E ¼ τ DGð Þ − τ DYð Þk kL2 ð3Þ
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where the operator τ is defined by τ(D) = −HSH/2, in which H = {Hij} = {δij − 1/N} is

the “centering matrix”, and S = {Sij} = {D2(xi, xj)} is the square distance matrix. The

eigenvector corresponding to the maximum d eigenvalues λ1, λ2, ⋯, λd of τ(DG) is u1,

u2, ⋯, ud [16]. Then Y ¼ diagðλ1=21 ; λ1=22 ;⋯; λ1=2d Þ½u1;u2;⋯; ud�T is the d-dimensional

embedding result [16].

Model construction

XGBoost has achieved the most advanced results in many machine learning challenges

based on the idea of continuously reducing the residual of the previous model in the

gradient direction to obtain a new model. As an improved version of the Gradient

Boosting algorithm, XGBoost performs a second-order Taylor expansion on the loss

function to obtain the optimal solution for the regular term outside the loss function.

The advantages of multi-core CPU parallel computing is fully utilized to improve the

accuracy and speed. Therefore, we established a prediction model for hot spots in

protein-DNA binding interfaces based on XGBoost. In order to achieve good experi-

mental results, the XGBoost was tuned using a grid search method, and obtained the

optimal parameters with n_estimators = 500, learning_rate = 0.1, and max_depth = 30.

Evaluation criteria

The computer model used in the simulation is an ASUS FX503VD, the CPU is a dual-

core processor i7-7700HQ model with a main frequency of 2.8 GHz, and its memory is

8G. In order to improve the robustness of the prediction model, we used 10-fold cross

validation and performed 20 experiments to obtain average results. To evaluate the

classification performance of our model, we adopted some commonly used evaluation

metrics, including sensitivity (SEN), specificity (SPE), precision (PRE), F1 score (F1),

accuracy (ACC), and Matthews correlation coefficient (MCC) [19–23]:

SEN ¼ TP= TP þ FNð Þ ð4Þ

SPE ¼ TN= TN þ FPð Þ ð5Þ

PRE ¼ TP= TP þ FPð Þ ð6Þ

F1 ¼ 2� SEN � PRE
SEN þ PRE

ð7Þ

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð8Þ

MCC ¼ TP � TN − FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð9Þ

where TP, FP, TN, FN represent the number of true positive (correctly predicted hot

spot residues), false positive (non-hot spot residues incorrectly predicted as hot spots),

true negative (correctly predicted non-hot spot residues) and false negative (hot spot

residues incorrectly predicted as non- hot spots), respectively. We also adopted the

ROC curve as the assessment criteria in this work. From the ROC curve, we calculated

the area under the ROC curve (AUC).
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Results and discussion
Overview of sxPDH

Figure 1 shows the workflow of our method sxPDH. First, a benchmark dataset

consisting of 88 hot spots and 126 non-hot spots from 64 protein-DNA complexes was

constructed. Then, four types of features were generated, namely, solvent-accessible

surface area, sequence features, structural features and network features. S-ISOMAP

algorithm was then used to reduce the dimension of these feature. On this basis,

XGBoost was applied to construct a prediction model of hotspots in protein-DNA

binding interface. Finally, according to the feature set after dimensionality reduction,

the prediction results are output through the XGBoost model.
Evaluation of different manifold learning methods

In this study, we reduce feature dimension based on the S-ISOMAP. In order to

evaluate the practicability of the S-ISOMAP method, it is compared with three

other manifold learning-based methods, including LLE, ISOMAP and supervised lo-

cally linear embedding (SLLE) [24], with the XGboost is used as the classification

model. LLE method is to obtain low-dimensional embedded coordinates by linear

reconstruction of local neighborhood in high-dimensional data, thereby keeping the

neighborhood relationship of high-dimensional data unchanged. The goal of ISO-

MAP method is to maintain the geodesic distance between the points in the ori-

ginal data set to the greatest extent. Both methods are based on unsupervised

dimensionality reduction. SLLE introduces class labels by calculating the maximum

Euclidean distance between classes, which is based on supervised dimensionality

reduction. Table 1 shows the performance of the model using S-ISOMAP com-

pared with the other three manifold learning methods on the test set. From these
Fig. 1 The workflow of sxPDH



Table 1 Performance of different manifold learning methods on the test set

Method SEN SPE PRE F1 ACC MCC AUC

LLE (10) 0.653 0.711 0.607 0.629 0.687 0.361 0.693

ISOMAP (10) 0.687 0.766 0.692 0.695 0.709 0.476 0.738

SLLE (3) 0.671 0.732 0.648 0.656 0.691 0.381 0.703

S-ISOMAP (3) 0.707 0.819 0.721 0.713 0.768 0.508 0.773

The highest value in each column is shown in bold. The numbers in parentheses represent the feature dimensions after
dimensionality reduction
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evaluation criteria, it can be seen that the model prediction effect using S-ISOMAP

is the best (PRE = 0.707, F1 = 0.713, MCC = 0.508 and ACC = 0.768).

Figure 2 shows the runtime comparison of our method with the other three manifold

learning methods. The dimensionality reduction time of S-ISOMAP is slightly higher

than that of SLLE, but lower than those of LLE and ISOMAP.
Compared with the feature selection methods

To further verify the performance of our model, we also compared its performance

with four commonly used feature selection methods with the classification model

XGboost. These methods are RF-based on sequential forward selection (RF-SFS) [25],

mRMR [26], SVM-based recursive feature elimination (SVM-RFE) [27] and variable se-

lection using random forests (VSURF) [28]. RF-SFS uses RF to rank the importance of

features and then performs feature selection using sequential forward selection strategy.

The mRMR method analyzes and evaluates features by producing a feature list based

on the maximum relevance and minimum redundancy criteria. SVM-RFE is an applica-

tion of RFE using the weight magnitude as the ranking standard. VSURF adopts a two-

stage strategy. It first uses the importance score based on the random forest to sort

features, and then uses a stepwise forward strategy to return a smaller subset that tries

to avoid redundancy.
Fig. 2 Running time of different manifold learning methods



Table 2 Performance of S-ISOMAP compared with other feature selection methods on the test set

Method SEN SPE PRE F1 ACC MCC AUC

SVM-RFE (19) 0.423 0.763 0.555 0.478 0.625 0.197 0.635

mRMR (30) 0.538 0.711 0.569 0.549 0.642 0.251 0.696

RF-SFS (17) 0.654 0.737 0.629 0.642 0.703 0.388 0.709

VSURF (10) 0.678 0.776 0.672 0.669 0.736 0.431 0.704

S-ISOMAP (3) 0.707 0.819 0.721 0.713 0.768 0.508 0.773

The highest value in each column is shown in bold. The numbers in parentheses represent the feature dimensions after
dimensionality reduction
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The prediction performance of the five algorithms on the test set is shown in Table 2.

Our model produced the best performance with an AUC score of 0.773 on test set. In

addition, the number of features after dimensionality reduction is the smallest. In

contrast, the other four feature selection methods produced a relatively lower AUC

score and more selected features.

Figure 3 shows the runtime comparison of S-ISOMAP with the other four feature

selection methods. The dimensionality reduction time of mRMR is less than 0.01

(0.000001). The dimensionality reduction time of our method is only higher than that

of mRMR, but lower than those of RF-SFS, SVM-RFE and VSURF.
Compared with other methods

SAMPDI [29] and PremPDI [30] are two molecular mechanics-based approaches

which can predict protein-DNA binding free energy changes, while mCSM-NA [31]

uses the concept of graph-based signatures to quantitatively predict the influences

of single mutation on protein-DNA or protein-RNA binding affinities. Recently, we

proposed a computational methods called PrPDH [11] to predict DNA-binding hot

spots, which uses VSURF method for feature selection and SVM as the classifier

model. The comparison of our method sxPDH with these four methods is shown

in Table 3. Our method sxPDH shows similar success rate in comparison with

PrPDH. On the test set, the F1 score, MCC, ACC and AUC of our model sxPDH

were 0.713, 0.508, 0.768 and 0.773 respectively, while PrPDH could correctly iden-

tify DNA-binding hot spots with F1 score = 0.706, MCC = 0.511, ACC = 0.766 and
Fig. 3 Running time of S-ISOMAP compared with other feature selection



Table 3 Performance of different methods on the test set

Method SEN SPE PRE F1 ACC MCC AUC

SAMPDI 0.654 0.658 0.567 0.607 0.656 0.307 0.690

PremPDI 0.577 0.737 0.600 0.588 0.672 0.316 0.708

mCSM-NA 0.538 0.737 0.583 0.560 0.656 0.279 0.661

PrPDH 0.692 0.816 0.720 0.706 0.766 0.511 0.764

sxPDH 0.707 0.819 0.721 0.713 0.768 0.508 0.773

The highest value in each column is shown in bold
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AUC = 0.764. Since the experiments of SAMPDI, PremPDI and mCSM-NA were

performed on their webserver, we only compared the time performance of sxPDH

and PrPDH. Our method sxPDH is far less than PrPDH in terms of optimal

feature number (Table 3) and running time (Fig. 4). Overall, our method sxPDH

exerts impressive predictive and time efficiency in detecting hot spots in protein–

DNA interaction interfaces.
Conclusion
In this work, we proposed a method called sxPDH based on S-ISOMAP and XGBoost

to distinguish hot spots and non-hot spots at protein-DNA interfaces. Based on our

previous work [11], 64 complexes were selected as the benchmark dataset, and 114

features were calculated from four types of feature groups. Then the feature dimension

was reduced to three by S-ISOMAP method. The XGBoost was used to build the final

prediction model. The prediction results show that the proposed method sxPDH has

better prediction performance and lower time complexity. However, there is still room

to improve our method. Because most used features in this study are related to proteins

and amino acids, we will explore more DNA-related features to make our model more

robust in the future work.
Fig. 4 Running time of sxPDH compared with PrPDH
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Abbreviations
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