Skip to main content
. 2020 Sep 17;21(Suppl 13):381. doi: 10.1186/s12859-020-03683-3

Table 1.

Performance of different manifold learning methods on the test set

Method SEN SPE PRE F1 ACC MCC AUC
LLE (10) 0.653 0.711 0.607 0.629 0.687 0.361 0.693
ISOMAP (10) 0.687 0.766 0.692 0.695 0.709 0.476 0.738
SLLE (3) 0.671 0.732 0.648 0.656 0.691 0.381 0.703
S-ISOMAP (3) 0.707 0.819 0.721 0.713 0.768 0.508 0.773

The highest value in each column is shown in bold. The numbers in parentheses represent the feature dimensions after dimensionality reduction