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Abstract

Natural selectionongeneexpressionwasoriginallypredictedtoresultprimarily incis- rather than trans-regulatoryevolution,duetothe

expectation of reduced pleiotropy. Despite this, numerous studies have ascribed recent evolutionary divergence in gene expression

predominantly to trans-regulation. Performing RNA-seq on single isofemale lines from genetically distinct populations of the cacto-

philic flyDrosophila mojavensis and their F1 hybrids, we recapitulated this pattern inboth larval brains andwholebodies.However,we

demonstrate that improving the measurement of brain expression divergence between populations by using seven additional

genotypes considerably reduces the estimate of trans-regulatory contributions to expression evolution. We argue that the finding

of trans-regulatory predominance can result from biases due to environmental variation in expression or other sources of noise, and

that cis-regulation is likely a greater contributor to transcriptional evolution across D. mojavensis populations. Lastly, we merge these

lines of data to identify several previously hypothesized and intriguing novel candidate genes, and suggest that the integration of

regulatory and population-level transcriptomic data can provide useful filters for the identification of potentially adaptive genes.

Key words: cactophilic, local adaptation, pleiotropy, RNA-seq, transcriptional regulation.

Introduction

Statistical correlations between phenotypes impose funda-

mental constraints on phenotypic evolution (Lande 1979).

As such, selection may disfavor the propagation of especially

pleiotropic mutations whose causal effects alter many traits

(Otto 2004). This idea has led to considerable speculation on

the precise molecular effects of successful mutations.

Vigorous debate regarding the relative importance of coding

sequence and gene regulatory evolution hinged on claims
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regarding the respective pleiotropic consequences of these

types (Hoekstra and Coyne 2007; Carroll 2008). Within the

category of regulatory mutations, however, further distinc-

tions are likely to be relevant in this context. Specifically,

trans-regulatory changes, which are primarily a conse-

quence of changes in expression and/or structure of tran-

scription factors, are expected to affect large networks of

target genes and therefore be highly pleiotropic (Gibson

1996; Wittkopp 2007; but see Lynch and Wagner [2008]).

In contrast, cis-regulatory mutations, occurring in pro-

moters or enhancers of the target genes themselves,

might affect only single genes in specific contexts (Stern

2000; Prud’homme et al. 2007). In an early and thorough

theoretical treatment of the subject, Wray et al. (2003) did

not equivocate in hypothesizing that cis-regulatory evolu-

tion should primarily be responsible for the evolution of

gene expression phenotypes.

In the years since that prediction, the accumulation of

evidence regarding the prevalence of cis- and trans-regu-

latory effects in evolution has led to a far murkier picture.

This may in part reflect the methodological diversity of

studies approaching the question (reviewed in Signor

and Nuzhdin [2018]). Some experiments, such as chromo-

somal substitutions (Hughes et al. 2006; Osada et al.

2006), crosses utilizing the diversity of a reference panel

(Genissel et al. 2007; Fear et al. 2016; Osada et al. 2017),

and eQTL mapping studies (Massouras et al. 2012; King

et al. 2014) have generally, but not always (Lemos et al.

2008; Wang et al. 2008) corroborated the hypothesis,

finding greater contributions of cis-effects to intrapopu-

lation variation. On the other hand, results from another

frequently used experimental design, which we will

henceforth call the F1 hybrid design, have consistently

led to the opposite conclusion. The F1 hybrid design

requires expression data from two parental lines and their

F1 hybrids. Cis-regulatory effects are measured using the

differential expression of allele-specific reads within the

hybrid samples, whereas trans-regulatory effects are cal-

culated by subtracting the cis-regulatory effect from the

overall differential expression between the parental lines

(Wittkopp et al. 2004). Usage of the F1 hybrid design has

repeatedly found that trans-regulation dominates expres-

sion variability within species, whereas cis-regulation plays

a greater role in interspecific differences (Graze et al.

2009; Wittkopp et al. 2004, 2008; McManus et al.

2010; Suvorov et al. 2013; Coolon et al. 2014; Metzger

et al. 2017; Glaser-Schmitt et al. 2018).

Given the power of the F1 hybrid design and its applicability

to a wide range of study systems and biological contexts,

closer attention to the interpretations stemming from this ap-

proach is merited. As such, recent work has begun to ap-

proach the F1 hybrid paradigm with increased nuance.

Glaser-Schmitt et al. (2018) perform a tissue-specific study,

filling an important gap given the focus of previous work on

whole-body samples. Taking this one step further, Combs and

Fraser (2018) estimate fine-scale spatial variation in allele-

specific expression within embryos. From a different angle,

two recent commentaries (Fraser 2019; Zhang and Emerson

2019) make salient points regarding potential biases in the

estimation of trans-regulatory divergence given that it cannot

be estimated independently of cis-regulatory and parental di-

vergence using this approach, and stress the need for replica-

tion to mitigate this. Here, we build from these efforts and

probe the initial findings from an across-population F1 hybrid

study using two simple experiments. First, we conduct a

tissue-specific study in parallel with a whole-body study, to

directly estimate the effects of sample heterogeneity on the

estimation of regulatory type. Second, we supplement our

measures of parental divergence with further sampling of

genotypes from each parental population, to gain more con-

fidence in patterns of within and between-population varia-

tion in transcription.

We apply these experiments to an investigation of gene

expression evolution in larval brains across two populations of

the cactophilic fly Drosophila mojavensis. This combination of

organism and tissue lends itself to a strong hypothesis of pre-

dominant cis-regulatory evolution, for two reasons. First,

D. mojavensis is predicted to have experienced strong differ-

ential selection pressures across populations due to variable

ecological conditions. The two populations studied here, from

Santa Catalina Island, CA, and the Sonoran Desert (Guaymas,

Sonora, Mexico and Organ Pipe National Monument,

Arizona), are genetically distinct (Reed et al. 2006) primarily

utilize highly divergent cactus species, the prickly pear

Opuntia littoralis and the columnar Stenocereus thurberi, re-

spectively (Heed 1978; Ruiz et al. 1990). These host cacti form

unique chemical and nutritional environments (Kircher 1982;

Starmer and Phaff 1983), and detoxification genes in partic-

ular have seen substantial expression and coding sequence

evolution across these populations (Matzkin et al. 2006;

Allan and Matzkin 2019). In addition to selection from the

host, these populations experience vastly different tempera-

ture and humidity regimes, which is expected to generate

selection broadly on phenology and organismal physiology

(Matzkin 2014). We choose to focus on brains here in part

because we previously identified larval behavioral differences

related to locomotion and pupation (Coleman et al. 2018),

indicating the potential for the evolution of expression

changes in the brain, as well as muscle and fat body.

Second, despite this potential for selection, there are also a

priori expectations that transcriptome-wide evolution should

actually be reduced. Brain gene expression is highly conserved

in many animals, including Drosophila (Brawand et al. 2011;

Catal�an et al. 2012; Uebbing et al. 2016). Additionally, gene

expression in larvae is more conserved than in later develop-

mental stages in Drosophila (Artieri and Singh 2010). The

pairing of strong directional and strong stabilizing selection

across genes is precisely the scenario that should result in
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transcriptional fine-tuning due to cis-regulatory evolution.

Thus, our expectation was to uncover a greater role for cis-

regulatory changes than observed in other intraspecific stud-

ies using similar experimental designs.

Materials and Methods

Sample Collection and Sequencing

For initial analysis of population divergence and analyses of

allele-specific expression, we used single genome-

sequenced isofemale lines of D. mojavensis from Santa

Catalina Island, CA (Drosophila 12 Genomes Consortium

2007) and Guaymas, Sonora, Mexico (Allan and Matzkin

2019). These lines have been maintained as isofemale lines

without direct inbreeding in the laboratory on banana-

molasses media (Coleman et al. 2018) since 2002 and

1999, respectively. We generated F1 hybrids between these

two lines by placing 20 virgin genome-line Catalina Island

males and 20 virgin genome-line Sonora females in vials

containing banana-molasses media, and performed the re-

ciprocal cross in an identical manner. For analyses of geno-

typic variation in expression, we selected seven additional

isofemale lines from Santa Catalina Island and seven isofe-

male lines from the Sonoran Desert population from Organ

Pipe National Monument, AZ, which were collected be-

tween 2007 and 2009 (Coleman et al. 2018) and main-

tained as described earlier.

We collected all samples during the third-instar wandering

stage. For whole-body samples, we collected five larvae per

replicate, washing each larva in deionized water before stor-

ing them on ice in tris–EDTA buffer. For brain samples, we

dissected ten brains per replicate in tris–EDTA before storing

them on ice. We then froze samples at �80 �C for storage.

We collected three biological replicates for each genome line

and hybrid (brain and body) and single replicates of each ad-

ditional isofemale line (brain only). We ground samples in

TRIzol (Thermo Fisher, Waltham, MA) and used Qiagen

RNEasy columns (Qiagen, Hilden, Germany) to extract RNA,

prepared libraries using Illumina TruSeq kits (Illumina, San

Diego, CA), and sequenced samples as 150-bp paired-end

reads on an Illumina HiSeq. Information on sample identity

and sequencing can be found in supplementary table S1,

Supplementary Material online.

Bioinformatic Analysis

We removed Illumina adapters and low-quality sequence us-

ing Trimmomatic (Bolger et al. 2014) and used NextGenMap

(Sedlazeck et al. 2013) with default parameters to separately

map all reads to both the original Catalina Island genome

(Drosophila 12 Genomes Consortium 2007; FlyBase version

r1.04_FB2018_06) and the same genome templated with

Sonora genomic reads (Allan and Matzkin 2019). We calcu-

lated total read counts at the gene level for each sample using

HTSeq-count (Anders et al. 2015), using the reads mapped to

the Catalina Island genome for analysis. We then down-

sampled reads to 11,908,854 reads over 13,410 genes in

brain samples and 14,001,634 reads over 13,628 genes in

whole-body samples, to match the lowest coverage sample

in each tissue. For the additional brain isofemale lines, which

were more highly covered, we downsampled to 18,665,415

reads over 13,565 genes. From these gene sets, we analyzed

only genes with at least ten total reads in each sample. After

comparing the consistency between biological replicates

within each group using Spearman’s correlation coefficients,

we discarded three samples from the genome lines as outliers:

one Sonora brain sample, one Sonora (f)�Catalina Island (m)

hybrid body sample, and one Catalina Island (f)�Sonora (m)

body sample. In the analysis of genotypic variation in the

brain, we discarded an additional Sonora sample as an outlier

based on the same criteria. We included only a single ran-

domly chosen replicate from each genome-sequenced line in

the analysis of genotypic variation to avoid pseudoreplication.

For allele-specific counts, we used SAMtools mpileup (Li

et al. 2009) and VarScan2 (Koboldt et al. 2013) to identify

informative variants for allele-specific expression analysis. We

first removed all SNPs where we found, in any of the parental

genotype samples the allele from the other parental genome

at >5% frequency (Glaser-Schmitt et al. 2018). This step

helps to avoid analyzing heterozygous sites, which will lead

to inaccuracy in the assignment of reads to parental genomes.

We then compared the remaining SNPs from the mapping

results to both reference genomes and removed sites with

substantially differing allele frequencies in the two resulting

data sets, following previous work (Benowitz et al. 2019). In

this way, we removed sites potentially affected by mapping

bias, which, although not a major problem here (supplemen-

tary table S1, Supplementary Material online), would result in

overestimation of allele-specific expression of genes contain-

ing those sites. We then filtered all bam files (mapped to the

Catalina Island reference) for informative reads using

VariantBam (Wala et al. 2016) and output these reads as

text files using sam2tsv (https://lindenb.github.io/jvarkit/

Sam2Tsv.html; last accessed July 2020). We then counted

allele-specific reads overlapping each informative SNP, gener-

ating gene-level counts after accounting for reads overlapping

multiple variants in R 3.4 (R Core Team 2018). We ran this

pipeline independently for brain and body samples. We ran-

domly downsampled allele-specific reads in each brain sample

to 4,541,638 reads, matching the reads in the lowest cover-

age sample. These reads covered SNPs in 7,933 genes. For the

whole-body samples, which covered 8,584 genes, we down-

sampled all read counts to 4,939,804 total reads, to preserve

the ratio of reads per gene between brains and whole bodies.

In both data sets, we analyzed only genes containing at least

ten total reads in each sample. The same three samples iden-

tified as outliers above were also outliers in this data set and
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we accordingly discarded them for allele-specific expression

analysis as well.

Statistical Analysis

We calculated per-gene parental divergence from the total

(not allele-specific) expression counts as log2(PCI/PSON), where

PCI and PSON are either parental genome-sequenced line

means (when comparing single genotypes; in brains and

whole bodies) or parental population means (when compar-

ing all genotypes; brains only). We calculated transcriptome-

wide differentiation across populations as 1�q, where q is the

Spearman’s correlation of expression divergences between

populations. We estimated 95% confidence intervals of

1�q from 10,000 bootstrapped replicates.

We calculated cis-regulatory divergence, following previous

studies, as log2(HCI/HSON), where HCI and HSON are averages of

allele-specific counts across all F1 hybrid replicates. We then

calculated trans-regulatory divergence as the difference be-

tween parental divergence (between the genome-sequenced

lines) and cis-regulatory divergence, log2(PCI/PSON)�log2(HCI/

HSON). We independently assessed the contributions of cis-

and trans-regulatory divergence to both metrics of parental

divergence using Spearman’s correlation coefficient q. As

above, we assessed 95% confidence intervals from 10,000

bootstrap replicates. We visualized correlations using least-

squares regression lines and 95% confidence regions around

those regressions using the R package ggplot2.

We estimated differential expression between parental

populations using FDR-corrected negative binomial tests using

the R package NBPseq (Di et al. 2011). We also used negative

binomial tests comparing allele-specific counts to assess the

significance of cis-regulatory effects. To estimate the signifi-

cance of trans-regulatory effects at the gene level, we used

Fisher’s exact tests comparing the ratio of allele-specific ex-

pression differences to total gene expression differences in the

parental samples.

For evolutionary analysis of regulatory evolution in the

brain, we used previously published dN/dS values across the

four D. mojavensis populations (Allan and Matzkin 2019). To

estimate network connectivity, we identified the closest

Drosophila melanogaster ortholog for each gene and used

the in-degree metric calculated in Marbach et al. (2012) and

used previously in a similar analysis in Yang and Wittkopp

(2017). Briefly, in-degree quantifies the number of transcrip-

tion factors found to have significant regulatory interactions

with each gene. We analyzed dN/dS and in-degree between

genes in different regulatory categories using Mann–Whitney

U test with the R function pairwise.wilcox.test, using Holm’s

method to correct for multiple comparisons. For these analy-

ses, we defined trans-regulated genes via the brain analysis

using multiple parental genotypes. We performed all statisti-

cal analyses in R 3.4 (R Core Team 2018).

Results

Analysis of Single Parental Genotypes in Brains and Whole
Bodies

Examining a single genotype per population, transcriptome-

wide expression differentiation across populations was lower

in brains (1�q ¼ 0.017; 95% CI ¼ [0.016, 0.018]) than in

bodies (1�q ¼ 0.036; 95% CI ¼ [0.034, 0.038]), as

expected. In contrast, we found evidence for considerably

more significantly differentially expressed (DE) genes in brains

than in bodies (table 1 and supplementary table S2,

Supplementary Material online). The lack of statistical support

for many DE genes in bodies despite increased overall expres-

sion differences reflects substantially greater intragenotypic

variation in whole-body data (supplementary fig. S1,

Supplementary Material online).

We then correlated measures of divergence across all

genes with measures of cis- and trans-regulatory divergence

as estimated from F1 hybrids between these two lines (Coolon

et al. 2014; Metzger et al. 2017). This correlation broadly

estimates the contributions of each regulatory type to total

expression divergence without relying on thresholds of statis-

tical significance. We found that trans-effects were more

closely associated with parental divergence than cis-effects

to parental divergence in both brains (trans: q ¼ 0.577;

95% CI ¼ [0.561, 0.591], cis: q ¼ 0.455; 95% CI ¼
[0.438, 0.472], fig. 1A) and whole bodies (trans: q ¼
0.643; 95% CI ¼ [0.629, 0.657], cis: q ¼ 0.338; 95% CI

¼ [0.319, 0.356], fig. 1B). Lastly, we found more individual

genes displaying evidence of regulation in trans than in cis in

both brains and bodies, although this trend was much more

dramatic in whole bodies (table 1 and supplementary tables

S3 and S4, Supplementary Material online).

Analysis of Multiple Parental Genotypes in Brains

The above comparison, using only single parental genotypes,

provides a limited estimate of expression evolution across

populations. To more confidently assess expression evolution

across populations, we analyzed brain RNA-seq data from

seven additional Catalina Island genotypes and six additional

Sonoran genotypes. Specifically, we expected the inclusion of

multiple genotypes to reduce sampling error and result in

lower expression differentiation between populations.

Indeed, parental divergence across populations was lower in

this data set (1�q ¼ 0.005; 95% CI ¼ [0.004, 0.005]) and

the number of significantly DE genes was reduced (table 1

and supplementary table S2, Supplementary Material online).

We then examined correlations between parental divergence

using multiple genotypes with the identical cis- and trans-reg-

ulatory divergence values calculated above. We now found

the opposite result: cis-effects were more related to popula-

tion divergence as measured by multiple genotypes than

trans-effects (cis: q ¼ 0.362; 95% CI¼ [0.343, 0.380], trans:
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q ¼ 0.287; 95% CI ¼ [0.268, 0.306], fig. 2). We also used

the multigenotype data set to recalculate the number of

trans-regulated genes, and found far fewer than in the single

genotype analysis, although still considerably more than the

number of cis-regulated genes (table 1 and supplementary

tables S3 and S4, Supplementary Material online).

Evolutionary and Candidate Gene Analysis

We found that cis-regulated genes had higher evolutionary

rates within D. mojavensis than did trans-regulated genes

(P¼ 0.0010) or genes that were either conserved or lacking

a clear regulatory pattern (P¼ 0.0018). We also found that

the in-degree (number of transcriptional regulators), as in-

ferred from D. melanogaster orthologs, of cis-regulated genes

in our data set was lower than that of either trans-regulated

genes (P¼ 0.0034) or those with no identified regulatory type

(P¼ 1.1e�5). The distributions of dN/dS and in-degree values

for genes in each regulatory classification are shown in fig-

ure 3. To examine potential evolutionary hypotheses on a

more granular level, we also compiled a list of candidate

genes displaying two criteria: differential expression between

the two populations in the multiple genotype brain data set,

and a statistically significant pattern of cis- and/or trans-regu-

latory evolution. About 68 genes met these criteria, of which

27 where cis-regulated, 35 were trans-regulated, and six had

significant cis- and trans effects (table 2). Of these six, five

showed evidence for compensatory (cis�trans) evolution,

whereas only one showed evidence for combined (cisþtrans)

evolution.

Discussion

The measurement of allele-specific expression in F1 hybrid

offspring has been one of the primary approaches for under-

standing genome-wide patterns of cis- and trans-regulatory

Table 1

Numbers of Differentially Expressed, Cis-Regulated, and Trans-Regulated Genes Using Both the Single-Genotype Parental Data Set and the Multigenotype

Parental Data Set (brains only)

Single Parental Genotype Multiple Parental Genotypes

Whole Bodies Brains Brains

DE genes 231 530 308

Cis-regulated genes 20 143 –

Trans-regulated genes 1072 467 265

NOTE.—The calculation of cis-regulated genes relies only on F1 hybrids, thus there is no recalculation of the number of cis-regulated genes in the multiparent genotype
data set.

FIG. 1.—The relationship between cis- and trans-regulatory divergence and divergence between parental genotypes in (A) brains and (B) whole bodies.

Bold points indicate significantly differentially expressed genes in each data set. Trend lines represent least-squares regressions surrounded by 95% con-

fidence intervals.
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evolution both within and between species. Although other

methodologies for quantifying these effects have been used

effectively, the advantage of the F1 hybrid approach, in our

opinion, is its simplicity and potential applicability to a wide

range of study systems and evolutionary contexts. However,

as with any other genome-scale approach to evolution, the

conclusions stemming from F1 hybrid studies come with

biases and limitations. Here, our goal was to investigate

how two straightforward modifications to this common ex-

perimental design affect the evolutionary interpretations re-

garding the prevalence of cis- and trans-regulation in natural

populations. Furthermore, we aimed to leverage the ecolog-

ical and evolutionary information from our model system,

D. mojavensis, to examine how successfully the integration

of complex regulatory data can uncover adaptive gene ex-

pression changes across populations.

The Effects of Tissue Specificity on Estimation of

Regulatory Type

Most of the original genome-wide studies of cis- and trans-

regulatory evolution used gene expression measurements

taken from whole organisms. This experimental design may

blunt the ability to detect cis-regulatory changes, if those

changes are only realized in a subset of tissues. Here, we

performed allele-specific expression experiments in both

whole bodies and brains of larval D. mojavensis in parallel,

to determine if and how much the use of heterogeneous

tissue samples affects quantification of regulatory type. We

found clear evidence that our analysis of whole-body samples

both overestimated trans effects and underestimated cis

effects. This is reflected both in correlations between regula-

tory and parental divergences (fig. 1) as well as in the numbers

of genes statistically categorized as cis- or trans-regulated

(table 1). We cannot say precisely how much of this difference

is due to the problems of using heterogeneous tissue samples

and how much is due to regulatory properties specific to the

larval brain. A systematic data set of allele-specific expression

in multiple tissues and life stages collected would be needed

to robustly address this question.

The Effects of Using Multiple Parental Genotypes on
Estimation of Regulatory Type

It is well known that the F1 hybrid approach can bias estimates

of trans-regulatory evolution, because they cannot be esti-

mated independently of the measurement of parental expres-

sion divergence. Fraser (2019) pointed out how this issue,

when combined with error in the estimation of allele-

specific expression, can lead to overestimation of cis–trans

compensatory evolution. By the same logic, we hypothesized

that simple errors in the measurement of parental expression

evolution might lead to inflation of the degree of trans-regu-

latory effects.

To address this issue, we simply compared the quantifica-

tion of cis- and trans-regulatory effects in brains using two

measures of parental expression divergence across popula-

tions: one measured from only the single genotype utilized

in the allele-specific expression experiment, and one using

seven additional genotypes from each population. Using pop-

ulation expression values has two obvious potential conse-

quences for each gene. First, it should reduce noise in the

estimation of population expression means coming from the

small sample size of using only a few samples of a single

genotype. This should lead to reduced estimates of trans-reg-

ulatory evolution. However, there will also be a subset of

genes whose expression in the focal genotype substantially

differs from the mean of its population. Thus, for some num-

ber of genes, our method should result in the artificial detec-

tion of trans-regulatory effects because the parental

divergence will be mismatched with the allele-specific expres-

sion data.

Despite this, we find that using estimates of parental pop-

ulation divergence using multiple genotypes considerably

reduces the genome-wide estimate of trans-regulatory evolu-

tion. Our data present mixed results, however, on the ques-

tion of whether cis- or trans-regulation is primarily responsible

for expression evolution between our populations. Although

the correlation analysis suggests that cis-regulatory diver-

gence is more closely related to population divergence

(fig. 2), our per-gene hypothesis tests maintain nearly twice

as many genes with evidence of trans-regulatory divergence

FIG. 2.—The relationship between cis- and trans-regulatory diver-

gence and divergence between parental genotypes in brains, where pa-

rental divergence is measured using all genotypes. Cis- and trans-

regulatory divergence data are the same as in figure 1. Bold points indicate

significantly differentially expressed genes. Trend lines display least-squares

regressions surrounded by 95% confidence intervals.
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(table 1). However, we argue that the numbers of genes

displaying evidence for trans-regulation here is an overesti-

mate for three reasons. First, as mentioned above, the inclu-

sion of multiple parental genotypes will induce false positives

in cases where intrapopulation variation in gene expression is

substantial. Second, it is likely that the difference in power

between the methods to detect cis- and trans effects contrib-

utes to the number of genes detected in each category (Graze

et al. 2009; Coolon et al. 2014; but see Glaser-Schmitt et al.

[2018]).

Third, the estimation of parental expression differences,

and therefore trans-regulatory effects, are more error-prone

due simply to the biology of our samples. We compared

larval samples across two populations that develop at differ-

ent rates (egg-pupation time [h]: CI ¼ 275.206 5.48; SON

¼ 315.216 5.96; Benowitz KM, Unpublished data), making

it impossible to guarantee that sampling occurred at pre-

cisely the same exact developmental stage. Thus, some on-

togenetic or environmental variation in gene expression is

inevitable here. The usage of multiple genotypes should mit-

igate this problem but is unlikely to resolve it completely,

and thus we may be generating false positives for this rea-

son. For example, we find significant and consistent popu-

lation differences in expression of two fat body proteins

(Fbp1; Fbp2) and three larval serum proteins (Lsp1beta;

Lsp1gamma; Lsp2) that are all clearly attributed to trans-

regulatory evolution (table 2). Fat body proteins and larval

serum proteins interact in a key pathway for nutritional stor-

age prior to pupation (Burmester et al. 1999), and therefore

could lead us to a hypothesis of adaptation via trans-regu-

lation to variable nutritive environments. However, it is also

well established that all four of these genes undergo rapid

increases in expression during the third-instar wandering

stage (Burmester et al. 1999). Our results are therefore

equally consistent with the possibility that the expression

differences were due to slight variations in the developmen-

tal stages sampled, and that expression patterns of these

genes have not meaningfully evolved at all. In contrast,

the estimation of cis-regulatory effects is completely con-

trolled for any such environmental variability because it is

measured within individuals (Pastinen 2010), and is there-

fore inherently less prone to similar errors.

FIG. 3.—Relationships between regulatory classification and gene-level metrics. (A) Comparison of evolutionary rate (dN/dS) among Drosophila

mojavensis populations (from Allan and Matzkin [2019]). (B) Comparison of the number of transcriptional regulators (in degree) as inferred from

D. melanogaster orthologs (Marbach et al. 2012). P values for significant pairwise comparisons are indicated, all other comparisons are nonsignificant.
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Table 2

The Genes Displaying Both Differential Expression across Populations in the Brain Multigenotype Data Set and Statistical Evidence for Cis- and/or Trans-
Regulatory Evolution in the Brain

Drosophila mojavensis

FlyBase ID

Drosophila mela-

nogaster Gene Name

P Value

(Parental DE)

P Value

(Regulatory Type)

Population with

Higher Expression

Regulatory

Classification

FBgn0140302 Cyp28a5 6.75E-30 4.3E-10 SON cis

FBgn0147102 GstD1 1.67E-28 8.25E-09 CI cis

FBgn0139804 Ugt36Bc 2.81E-22 5.14E-08 SON cis

FBgn0280601 NA 2.62E-19 0.00000471 CI cis

FBgn0143628 NA 1.22E-16 0.00159 SON cis

FBgn0147447 Cyp9f2 7.89E-13 0.000000667 CI cis

FBgn0136497 CG14567 2.41E-11 5.24E-10 CI cis

FBgn0133237 RdhB 1.82E-08 2.58E-08 CI cis

FBgn0133140 CG5379 6.73E-08 0.000332 SON cis

FBgn0136870 CG33521 0.000000535 0.00000103 SON cis

FBgn0136131 CG2211 0.0000014 0.000000357 CI cis

FBgn0146788 CG18547 0.0000025 0.0195 SON cis

FBgn0140494 CG31777 0.0000444 0.0000392 SON cis

FBgn0139666 CG5316 0.0000474 1.67E-09 SON cis

FBgn0136235 CG33969 0.0000835 0.000765 CI cis

FBgn0142519 Phr 0.000162 0.00133 SON cis

FBgn0145297 CG10550 0.000917 0.00377 SON cis

FBgn0140061 NA 0.00149 2.15E-11 SON cis

FBgn0147596 CG34409 0.00373 0.0169 CI cis

FBgn0146770 Cyp12e1 0.00447 0.000129 CI cis

FBgn0085888 ST6Gal 0.00738 0.009 SON cis

FBgn0142451 CG9344 0.00885 0.0111 CI cis

FBgn0280848 NA 0.0199 0.0486 SON cis

FBgn0136999 CG8086 0.0208 0.00551 SON cis

FBgn0132957 CG10165 0.021 0.00602 CI cis

FBgn0141924 CG3511 0.0244 0.0322 CI cis

FBgn0132961 Acyp2 0.0434 0.0195 CI cis

FBgn0134299 Fbp1 3.37E-26 1.72E-46 CI trans

FBgn0145801 Lsp1beta 4.18E-24 6.82E-35 CI trans

FBgn0143382 Lsp2 7.92E-18 2.74E-22 CI trans

FBgn0142713 Sans 1.53E-16 0.00527 SON trans

FBgn0140799 Lsp1gamma 1.71E-16 2.23E-08 CI trans

FBgn0140406 Fbp2 1.35E-12 2.53E-15 CI trans

FBgn0135991 NA 2.29E-12 0.0000427 CI trans

FBgn0135183 CAH2 4.69E-12 0.000012 CI trans

FBgn0134843 CG32037 2.93E-10 0.0223 CI trans

FBgn0139371 GstE2 1.4E-09 0.00239 CI trans

FBgn0146682 TyrRII 2.96E-09 0.00385 SON trans

FBgn0139800 Mhc 3.12E-09 0.0346 SON trans

FBgn0139723 Cg25C 8.58E-09 0.00847 CI trans

FBgn0138516 Sirup 2.74E-08 0.0179 SON trans

FBgn0147600 MtnA 0.000000896 4.35E-39 CI trans

FBgn0142365 CG7997 0.00000124 0.000746 CI trans

FBgn0141762 CG3520 0.0000019 0.000176 CI trans

FBgn0142390 Bru 0.0000187 0.000000015 SON trans

FBgn0147345 CG14291 0.0000735 0.0226 SON trans

FBgn0141634 CG30460 0.000217 0.00153 SON trans

FBgn0146346 NA 0.000343 0.00903 CI trans

FBgn0142161 CG13742 0.000549 0.000399 CI trans

FBgn0146625 CG31278 0.00111 0.0197 CI trans

FBgn0138139 Nocte 0.00196 2.85E-33 CI trans

FBgn0132831 CG6364 0.00233 0.00353 CI trans

(continued)
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Integrating Regulatory Data to Address Evolutionary
Hypotheses

Recent work has sought to identify the evolutionary and struc-

tural properties associated with genes evolving via cis- and

trans-regulation. Here, we demonstrate that in

D. mojavensis larval brain cis-regulated genes tend to display

faster rates of coding evolution. Furthermore, we show that

cis-regulated genes also tend to occupy less central positions

within transcriptional networks, confirming the results of

Yang and Wittkopp (2017) and supporting their generality.

Notably, we reached this conclusion using D. melanogaster

network data, given that similar data are unavailable for

D. mojavensis. Thus, our results suggest that gross network

properties may be conserved across significant lengths of evo-

lutionary time. Considered together, our findings linking reg-

ulatory type to evolutionary rate and network connectivity

indicate that the genes experiencing cis-regulatory evolution

are relatively unconstrained compared with trans-regulated

genes. This perhaps contrasts with our predictions, which

were that cis-regulation should be predominant due precisely

to the presence of such constraints. However, it is not clear

whether errors regarding the determination of trans-regula-

tion discussed above may be obscuring any potential statistical

relationships.

Ideally, the determination of regulatory evolution will also

help identify adaptively regulated genes (Fraser 2011; Delbare

and Clark 2018). RNA-seq experiments in ecology and evolu-

tion nearly always result in hundreds if not thousands of DE

genes, many of which are likely false positives (Todd et al.

2016; Bengston et al. 2018). Truly DE genes must have expe-

rienced cis- or trans-regulatory evolution; therefore, the cor-

roboration provided by a statistically significant regulatory

effect estimated from an independent sample may help

weed out noisy or environmentally variable genes. Thus,

allele-specific expression data have been used to supplement

studies of gene expression adaptation at the genome-wide

(Juneja et al. 2016; Verta and Jones 2019) and candidate

gene (Bendesky et al. 2017) levels. We thus turned our atten-

tion to the identities of the genes displaying clear patterns of

both divergence and regulation, and compared between

those displaying cis- and trans-regulation.

Previous transcriptomic (Matzkin et al. 2006; Matzkin

2012; Matzkin and Markow 2013; Smith et al. 2013) and

genomic (Allan and Matzkin 2019) investigations of

D. mojavensis have identified detoxification and chemosen-

sory genes as important classes of genes likely related to ad-

aptation to the alternative chemical environments provided by

their hosts. Taking this as an a priori hypothesis, we examined

the identities of genes identified here to search for candidates

fitting these categories. We are most interested in the cis-

regulated genes, which have the cleanest interpretations in

this data set. Among the 33 cis-regulated candidate genes are

28 with D. melanogaster orthologs, of which 12 have de-

scribed functions. Noteworthy among these is GstD1, a de-

toxification gene with considerable evidence for a functional

role in adaptation across D. mojavensis populations (Matzkin

Table 2 Continued

Drosophila mojavensis

FlyBase ID

Drosophila mela-

nogaster Gene Name

P Value

(Parental DE)

P Value

(Regulatory Type)

Population with

Higher Expression

Regulatory

Classification

FBgn0134066 CG18081 0.00795 0.000801 CI trans

FBgn0146517 Snap25 0.0111 0.0000444 CI trans

FBgn0140557 CG17124 0.0118 0.00327 CI trans

FBgn0138450 CG14785 0.0178 0.00243 SON trans

FBgn0132826 CG6723 0.0179 0.0000984 SON trans

FBgn0143281 RpL23 0.0267 0.00682 CI trans

Fbgn0145013 CG34377 0.027 0.000183 CI trans

FBgn0144093 NA 0.0313 0.00176 SON trans

FBgn0145765 Npc2b 0.0363 0.000000643 SON trans

FBgn0145063 Obp99b 0.0397 0.0289 CI trans

FBgn0146132 Obp99a 1.67E-28 cis: 4.74E-04 CI cis þ trans

trans: 4.30E-06

FBgn0141410 CG18067 2.95E-11 cis: 7.01E-13 SON cis x trans

trans: 1.12E-04

FBgn0146495 Spartin 0.0000296 cis: 7.89E-03 CI cis x trans

trans: 6.74E-11

FBgn0084818 NA 0.00145 cis: 1.02E-05 CI cis x trans

trans: 7.85E-04

FBgn0147549 NANS 0.0039 cis: 2.13E-03 SON cis x trans

trans: 1.03E-05

FBgn0141293 CG15651 0.0235 cis: 4.28E-16 SON cis x trans

trans: 1.11E-06
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et al. 2006; Matzkin 2008). Here, we find that expression

differences in GstD1 are clearly attributable to cis-regulatory

evolution between these populations, leading to increased

expression in the Catalina Island population. Four other genes,

including three cytochrome p450s and one UDP-

glycosyltransferase, have well-characterized roles in detoxifi-

cation of plant chemicals as well (Heckel 2014). We also find a

single chemosensory gene, Obp99a. Among the 19 charac-

terized genes displaying trans-regulation, we find the detox-

ification gene GstE1 as well as the chemosensory genes

Obp99a (regulated in cis and trans) and Obp99b. Thus, al-

though we are less confident in the trans-regulated gene set

as a whole, this confirmation suggests that the regulatory

evolution of at least a subset of these genes is accurately

represented in this data set.

Although it is unsurprising that chemosensory genes are

expressed and have evolved specifically in the brain, it is not as

immediately clear why the expression of detoxification genes

should be important in brain tissue. Detoxification is usually

associated with tissues such as the midgut, Malpighian tubule,

and fat body (Chung et al. 2009) and the blood–brain barrier

tends to shield the brain from harmful chemicals (Stork et al.

2008; Hindle and Bainton 2014). However, the Drosophila

blood–brain barrier is not completely impermeable to xeno-

biotics (Zhang et al. 2018), and important detoxification pro-

cesses have been demonstrated in the brain in other insects

(Zhu et al. 2010). Thus, it is at least plausible, given the chem-

ical cocktail that D. mojavensis is exposed to within organ pipe

and prickly pear necroses (Kircher 1982; Starmer and Phaff

1983), that some compounds may enter the brain.

Alternatively, it is possible that we are witnessing the conse-

quences of indirect selection. For example, strong selection on

GstD1 expression in the midgut might have resulted in a cis-

regulatory change to a binding site for a transcription factor

that is also highly expressed in brains. If the resulting change

in brain expression is neutral or nearly neutral it may then

persist without having any adaptive function.

Given the ability of our approach to recapitulate a priori

hypotheses about expression evolution, we also asked

whether this approach might lead to novel predictions about

phenotypic and genetic adaptation. Among the remaining

cis-regulated genes are photorepair (phr) and CG5316 (ortho-

log of human aprataxin), which function to repair UV-

damaged DNA (Boyd and Harris 1987; Hirano et al. 2007).

In D. melanogaster, selection has generated adaptive differ-

ences in DNA repair mechanisms between tropical and tem-

perate populations, and has resulted in both coding and

noncoding genetic changes (Svetec et al. 2016). Here, both

phr and CG5316 are upregulated in the Sonoran Desert pop-

ulation, where presumably intense UV exposure is a more

pressing environmental challenge than in the cooler and wet-

ter clime of Santa Catalina Island. Interestingly, phr was not

among the D. melanogaster candidate genes differentiated in

sequence or expression among populations, whereas

CG5316 showed evidence of protein-coding but not expres-

sion evolution (Svetec et al. 2016). Thus, even when the pre-

dictability of DNA repair evolution pathways to similar

environmental variables may extend to the gene, the type

of genetic change itself may still be unpredictable.

Broadly, our usage of a replicated, tissue-specific data set

and requirement of gene to display a clear regulatory pattern,

especially one of cis-regulation, has led us to a manageable

set of a few dozen highly intuitive genes that may be adap-

tively regulated across D. mojavensis populations associated

with local ecological conditions. We propose that deeper un-

derstanding of patterns of regulatory evolution in ecological

model systems, where there are strong predictions regarding

selection, will be essential for a robust understanding of the

differing roles of cis- and trans-regulation in local adaptation

and evolution.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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