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Abstract: C@O bond activation of DPEphos occurs upon

mild heating in the presence of [Ru(NHC)2(PPh3)2H2]
(NHC = N-heterocyclic carbene) to form phosphinophenol-

ate products. When NHC = IEt2Me2, C@O activation is ac-
companied by C@N activation of an NHC ligand to yield a

coordinated N-phosphino-functionalised carbene. DFT cal-
culations define a nucleophilic mechanism in which a hy-

dride ligand attacks the aryl carbon of the DPEphos C@O

bond. This is promoted by the strongly donating NHC li-
gands which render a trans dihydride intermediate featur-

ing highly nucleophilic hydride ligands accessible. C@O
bond activation also occurs upon heating cis-[Ru(DPE-

phos)2H2] . DFT calculations suggest this reaction is pro-
moted by the steric encumbrance associated with two

bulky DPEphos ligands. Our observations that facile degra-

dation of the DPEphos ligand via C@O bond activation is
possible under relatively mild reaction conditions has po-

tential ramifications for the use of this ligand in high-tem-
perature catalysis.

Since their introduction ca. 20 years ago,[1] wide-angle phos-

phines such as xantphos and DPEphos (Scheme 1) have

become indispensable ligands for a range of catalytic reac-
tions.[2] Their usage stems from two advantageous properties ;

firstly, the availability of highly flexible bite angles that allow
cis- and trans-, as well as hemilabile P-O-P coordination modes,

to be adopted[3] and, secondly, resistance to the types of P@C
degradation reactions reported in tertiary phosphine metal

complexes.[4] This latter property has promoted the use of
xantphos and DPEphos in reactions that require high tempera-

tures.[2c,g,l, 5]

Any suggestion that such phosphines might be susceptible
to degradative reactions, particularly under relatively mild con-

ditions, could therefore have important ramifications for their
applications in catalysis. While xantphos has been reported to

be susceptible to P@C bond activation at room temperature,[6]

cleavage of DPEphos appears to be restricted to a single exam-

ple of high temperature C@O bond activation reported by

Weller and Willis.[7] In the course of studies on [Rh(h6-ortho-xy-
lene)(DPEphos)]+ catalysed carbothiolation of alkynes, they re-

ported that heating the Rh complex together with ortho-
MeSC6H4C(O)Me at 120 8C in the absence of any alkyne led to

C@O cleavage of DPEphos to afford a catalytically inactive Rh
complex with chelating phosphine aryloxide and bidentate
phosphine arylthioether ligands. Herein, we demonstrate that

C@O activation of DPEphos can take place even at room tem-
perature in the presence of ruthenium dihydride complexes.
DFT calculations reveal that such processes involve attack of
highly nucleophilic hydride ligands on the aryl carbon on the

C@O bond.
In the course of studies to investigate the substitution

chemistry of the all trans-dihydride complex [Ru-

(IMe4)2(PPh3)2H2] (1, Scheme 2),[8] 1 was treated with 1.1–
1.5 equiv DPEphos in benzene. No immediate reaction was ob-

served at room temperature, but upon heating to 90 8C for ca.
12 h, a single ruthenium-containing product 2 (Scheme 2) was

Scheme 1. Structures of xantphos and DPEphos.

Scheme 2. C@O activation of DPEphos by 1 to give 2.
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formed. An X-ray crystal structure (Figure 1) revealed the pres-
ence of a phosphinophenolate ligand generated upon C@O ac-

tivation of DPEphos.[9] The P,O-termini of the ligand were trans
to PPh3 and Ru@H respectively. The coordination sphere was

completed by two mutually trans IMe4 ligands, each of which
displayed an N-Me group with a short C@H···O contact to the

phosphinophenolate ligand (Supporting Information). The
trans H-Ru-O arrangement led to both a long Ru@O distance
(2.2720(16) a)[10] and a low frequency (d=@18.40 ppm) hydride

resonance.[11]

The formation of 2 was achieved under even milder condi-
tions, although at the expense of longer reaction times (e.g.

6 days at 70 8C), and a low (5 %) yield could even be formed at

room temperature, albeit only over 3 weeks.[12] No simple sub-
stitution product arising from replacement of the two PPh3 li-

gands by DPEphos was observed under these conditions (vide
infra). Treatment of 1 with the more-electron rich cyclohexyl

diphosphine Cy2P(C6H4)O(C6H4)PCy2 also resulted in C–O activa-
tion, although the reaction failed to reach completion, even
after heating at 120 8C for 2 days. There was no evidence for

C@O activation of xantphos by 1.[13]

Replacing 1 by the N-Et substituted carbene derivative cis,

cis, trans-[Ru(IEt2Me2)2(PPh3)2H2] (3, Scheme 3) led to an even
more unexpected reaction with DPEphos. Heating in toluene

at 90 8C gave the phosphinophenolate complex 4 (Scheme 3),
in which the {Ph2P(C6H4)} moiety generated upon C@O cleav-

age had combined with a C@N activated IEt2Me2 ligand to gen-
erate a Ru-bound N-phosphino-functionalised carbene
ligand.[14] The X-ray structure of 4 (Figure 1) showed the pres-

ence of a distorted octahedral ruthenium centre with a cis-ar-
rangement of the two carbenes and two phosphines and the

same trans H-Ru-OAr arrangement as in 1 (Ru@O = 2.265(2) a).
The phosphino moiety appended to N3 exhibited a consider-

able cone-tilt, with Ru-P-Cipso angles ranging from 1028 to 1328.
In support of the C@N cleavage process, the 1H NMR spectrum

showed just three NCH2CH3 methyl and six NCH2CH3 methyl-
ene resonances. The Ru@H resonance (d =@17.7 ppm) was

coupled to the two inequivalent phosphorus nuclei (d= 59
and 55 ppm) with cis-2J(H,P) coupling constants of 20 and
15 Hz.

C@N activation of a metal-bound NHC ligand has been de-
scribed previously,[15] including in studies on Ru-NHC com-
plexes related to those employed here.[16] However, this pro-
cess has only rarely been observed alongside the activation of

another ligand,[17] and, certainly not as a route to the formation
of a phosphinocarbene.[18]

The C@O activation of DPEphos was not restricted to NHC-

containing ruthenium hydride precursors. The reaction of
[Ru(PPh3)4H2] with DPEphos gave the isolable cis-dihydride

complex [Ru(DPEphos)2H2] (5 ; Supporting Information),[19]

which upon heating to 80 8C overnight underwent C@O activa-

tion of one of the DPEphos ligands to afford [Ru(DPEphos)-
(Ph2PC6H4O)H] (6, Scheme 4).[20] This was characterized by the

presence of a quartet Ru@H resonance at d=@14 ppm with a
2J(H,P) splitting (22 Hz) indicative of hydride cis to all three
phosphorus nuclei and a 31P{1H} NMR spectrum which showed

a triplet at d= 77 ppm (2J(P,P) = 30 Hz), together with a broad,

featureless signal at d = 50 ppm. We attribute the latter to the
intact DPEphos ligand switching rapidly between k2-P,P and k3-

P,O,P coordination. At @15 8C, this signal resolved into two
doublets, the two ends of the DPEphos ligand becoming ineq-
uivalent as a result of the oxygen now staying bound to Ru. Al-
though an X-ray structure of 6 proved elusive, crystals of the

chloride derivative 7 were isolated from CH2Cl2/pentane solu-
tions of 6, affording a structure (Figure 2) which confirmed the
coordination modes at ruthenium.

DFT calculations[21] have been used to explore the mecha-
nism of the C@O bond cleavage reactions in 1 and 5 and the

factors promoting them. For 1, no intermediates are observed
experimentally and so all free energies are quoted relative to

this species plus free DPEphos. PPh3 substitution in 1 by DPE-

phos gives [Ru(IMe4)2(DPEphos)H2] , 8, for which the all-cis
isomer, 8ccc (+ 3.6 kcal mol@1), and the cis, cis, trans-isomer, 8cct

(+ 4.2 kcal mol@1) are most stable.[22]

The accessibility of the trans dihydride isomer 8cct suggested

a hydride nucleophilic attack mechanism may be involved, sim-
ilar to that characterised for the hydrodefluorination ofScheme 3. C@O and C@N activation to yield 4.

Scheme 4. Formation of the C@O activated DPEphos complex 6 and chloride
derivative 7.

Figure 1. Molecular structures of (left) 2 and (right) 4. Thermal ellipsoids are
shown at 30 % level. All hydrogen atoms, except for Ru@H have been omit-
ted for clarity.

Chem. Eur. J. 2020, 26, 11141 – 11145 www.chemeurj.org T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim11142

Chemistry—A European Journal
Communication
doi.org/10.1002/chem.202001685

http://www.chemeurj.org


(hetero)aromatics at trans-[Ru(NHC)4H2] complexes.[23, 24]

Figure 3 shows the computed reaction profiles for this process
in 8cct and 8ccc. For 8cct the trans hydride arrangement gives a

long Ru@H1 bond (1.70 a) and NBO calculations indicate signifi-
cant hydridic character (@0.21). Nucleophilic attack proceeds

via TS(8-2)cct at + 25.0 kcal mol@1, with a short H1···C1 distance
of 1.56 a and Ru···H1 stretching to 1.84 a. The C1@O bond also

lengthens to 1.48 a and elongated C1@C2 and C1@C6 distances

in the aryl ring suggest a Meisenheimer-type structure consis-
tent with nucleophilic aromatic substitution. Hydride attack is

also accompanied by a conformational change in the 8-mem-
bered Ru@P@C=C@O@C=C@P ring, from a distorted twist-boat

conformation in 8cct to a boat conformation in the transition
state,[25] similar to the DPEphos fac-k3-P,O,P binding mode.[26]

IRC calculations confirm that TS(8-2)cct links directly to 2cct in

which H2 is trans to the phosphinophenolate oxygen. The
lowest energy conformation of 2cct is at @31.5 kcal mol@1.[27]

The equivalent reaction of 8ccc involves an initial conforma-
tional change of the Ru@P@C=C@O@C=C@P ring to form 8ccc’ at

+ 14.5 kcal mol@1. C@O bond cleavage then proceeds via TS(8-
2)ccc at + 34.1 kcal mol@1 with similar geometric changes to
those described above for TS(8-2)cct. The shorter Ru-H1 dis-
tances in 8ccc and 8ccc’ (1.65 a) and lower NBO charges (ca.

@0.12) indicate that H1 is now less nucleophilic than in 8cct,
and this reflects the change in the trans ligand, from a hydride
in 8cct to IMe4 in 8ccc. This also correlates with C@O bond cleav-

age being less kinetically accessible in 8ccc. TS(8-2)ccc leads to
2ccc at @25.2 kcal mol@1, substantially less stable than 2cct as

this structure lacks the favourable trans-H-Ru-O arrange-
ment.[28]

C@O bond cleavage was also modelled for [Ru(DPEphos)2H2]

and the most accessible pathway is shown in Figure 4. The all-
cis isomer, 5ccc, reacts via 5ccc’ and TS(5–9)ccc at + 29.9 kcal

mol@1 to give a phosphinophenolate product, 9ccc, at
@23.0 kcal mol@1. The short Ru@H1 distance in 5ccc (1.60 a) and

low NBO charge on H1 (@0.02) indicate reduced hydride nucle-
ophilicity compared to 8ccc, although the barrier in the bis-DPE-

phos system is actually lower (see below). In stark contrast to

8cct, the trans dihydride isomer of [Ru(DPEphos)2H2] 5cct, has a
large barrier of + 48.5 kcal mol@1. This difference is due in part

to the higher energy of 5cct (+ 13.8 kcal mol@1) and the reduced
charge on H1 (ca. @0.08 cf. @0.21 in 8cct). The latter result high-

lights how the NHC ligands also serve to enhance hydride nu-
cleophilicity. Differential steric effects in the transition states

may also be a factor, as probed by calculations on 5ccc and 5cct

in which the PPh2 groups were replaced by PH2. This model
system gave a similar relative energy for 5cct

(+ 12.6 kcal mol@1), but a reduced barrier for the subsequent
nucleophilic attack (i.e. from 5cct to TS(5–9)cct : 30.2 kcal mol@1

cf. 34.7 kcal mol@1 in the full system). In contrast, the computed
barrier for 5ccc with the small model is 38.6 kcal mol@1, 8.7 kcal

mol@1 higher than the full model.

Figure 3. Computed free energy profiles (kcal mol@1, BP86(benzene, D3BJ)) for hydride attack in 8cct and 8ccc, with selected distances in a. Energies are relative
to 1 plus free DPEphos and NBO charges at Ru and H1 are indicated in italics for dihydride precursors. For clarity, IMe4 ligands are truncated at the C2 position
(i.e. C7 and C8 in the Figure) and phenyl substituents at the ipso carbons. DPEphos hydrogens are also omitted. 8ccc’ is a conformer of 8ccc that lies directly on
the pathway for C@O cleavage (see text for details).

Figure 2. Molecular structure of 7. Thermal ellipsoids are shown at 30 %
probability. Cl1 is disordered with a hydride ligand in a 75:25 ratio. Hydro-
gen atoms and all minor disordered components have been for clarity.
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Computed geometries show significant distortions in the full
model : in 5ccc the trans-P-Ru-P angle is 1428 with the bulky

PAr3 moieties tilting over the hydride ligands. As this angle is
only 1608 in the small model, we speculate that the greater
distortion of the full model enables nucleophilic attack.

Comparing [Ru(IMe4)2(DPEphos)H2] and [Ru(DPEphos)2H2]
shows C@O bond cleavage via 8cct (DG* = 25.0 kcal mol@1) is

more accessible than in 5ccc (DG* = 29.9 kcal mol@1) and this is
consistent with the lower reactivity of the bis-DPEphos system

observed experimentally. Lower barriers are computed with
higher trans influence ligands (H> IMe4) trans to the hydride

nucleophile. The mixed NHC/DPEphos systems appear particu-
larly vulnerable to C@O bond cleavage as the strongly donat-
ing NHC ligands both enhance hydride nucleophilicity and

render 8cct, the key trans dihydride precursor, accessible. The
hydride attack mechanism described here has similarities to

the “asynchronous oxidative addition” pathway described by
Crimmin and co-workers where a RuII metal centre acts as a

nucleophile prior to C@O bond cleavage.[12] A similar asynchro-

nicity is seen here, with C@H bond formation in the transition
state being far advanced of either C@O bond cleavage or Ru@
O bond formation.

In summary, we have characterised the surprisingly facile C@
O bond activation of DPEphos ligands in the presence of nu-
cleophilic hydrides. Ligand exchange of all-trans-[Ru-

(IMe4)2(PPh3)2H2] with DPEphos results in the formation of
phosphinophenolate complex, 2, while with cis, cis, trans-

[Ru(IEt2Me2)2(PPh3)2H2] , C@O bond cleavage is accompanied by
C@N activation of the NHC to form the N-phosphino-function-

alised carbene complex 4. DFT calculations indicate that C@O
activation involves a nucleophilic pathway in which a hydride

ligand attacks the aryl carbon of the DPEphos C@O bond. This
process is promoted by the accessibility of a trans dihydride in-

termediate that features highly nucleophilic hydride ligands.

C@O bond activation also occurs upon heating cis-[Ru(DPE-
phos)2H2] , a process that DFT calculations indicate is promoted
by the steric encumbrance of the mutually cis DPEphos li-
gands. This undesirable ligand degradation of DPEphos is of

particular note given the wide use of this ligand in high tem-
perature homogeneous catalysis. Indeed, degradation of the

Rh-DPEphos system described by Weller and Willis is also

thought to involve nucleophilic attack, in this case by a thio-
late ligand.[7] On a more constructive note, the hydride nucleo-

philic attack mechanism proposed here has already been
shown to operate in catalytic C@F functionalization,[23c,d] and so

may also be an effective means of promoting C@O bond acti-
vation of the type required for the valorization of lignin and of

its highly oxygenated monomers.[29]
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