Environmental Microbiology (2020) 22(8), 2996—-3004

Minireview

S/am

society f
applied microbiology

doi:10.1111/1462-2920.14975

Quick microbial molecular phenotyping by differential

shotgun proteomics

Duarte Gouveia ‘2, Lucia Grenga *, Olivier Pible and
Jean Armengaud

Laboratoire Innovations technologiques pour la
Détection et le Diagnostic (Li2D), Service de
Pharmacologie et Immunoanalyse (SPI), CEA, INRAE,
F-30207 Bagnols-sur-Céze, France.

Summary

Differential shotgun proteomics identifies proteins
that discriminate between sets of samples based on
differences in abundance. This methodology can be
easily applied to study (i) specific microorganisms
subjected to a variety of growth or stress conditions
or (ii) different microorganisms sampled in the same
condition. In microbiology, this comparison is partic-
ularly successful because differing microorganism
phenotypes are explained by clearly altered abun-
dances of key protein players. The extensive descrip-
tion and quantification of proteins from any given
microorganism can be routinely obtained for several
conditions within a few days by tandem mass spec-
trometry. Such protein-centred microbial molecular
phenotyping is rich in information. However, well-
designed experimental strategies, carefully parame-
terized analytical pipelines, and sound statistical
approaches must be applied if the shotgun proteomic
data are to be correctly interpreted. This minireview
describes these key items for a quick molecular
phenotyping based on label-free quantification shot-
gun proteomics.

Introduction

As part of an investigation into how the organism func-
tions, molecular phenotyping of a microorganism consists
in the extensive description of its biochemical character-
istics, which are shaped by both genetic makeup and
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environmental influences. Approaches to holistic molecu-
lar investigation of microorganisms have changed drasti-
cally in recent years. Gene sequencing and annotation of
new isolates are now routine in many microbiology labo-
ratories. In addition, large-scale molecular phenotyping
tools such as metabolomics and proteomics are gaining
momentum, allowing us to more intimately observe how
microbial cells function (Bochner, 2009; Nichols et al.,
2011). Metabolomic or proteomic results can be exploited
to generate novel hypothesis on the metabolic, cellular
and biological processes affected upon stimulus or condi-
tion change and can be ideally complemented with fur-
ther assays to validate these hypotheses. With the
shotgun proteomic approach, a global cellular metabolic
view can be obtained, thus surpassing traditional bio-
chemical assays or western blot detection focused on
only one specific protein. Today, a deep proteomics anal-
ysis can detect and monitor the abundances of thou-
sands of proteins under different conditions (Armengaud,
2013) and is thus an ideal complement to other
phenomics methodologies. Remarkably, the sample
required for performing such study is usually easy to
obtain (5—-10 mg of pelleted cells that should be immedi-
ately frozen in liquid nitrogen, biological triplicates) and
does not necessitate any additional costly reagent as
proteins are stable if kept at —80°C contrary to other
techniques such as transcriptomics.

However, for many microbiologists, proteomics may
still seem quite difficult to grasp. These difficulties stem in
part from the high level of expertise and specific instru-
mentation required, but also from the wide variety of
strategies developed to meet the experimental objectives
of different experiments. Indeed, several facets of proteo-
mics can be explained by the various characteristics of
proteins. For example, multiple proteoforms may be pro-
duced from a single bacterial gene (Bland et al., 2014).
Their primary structure can be evaluated in terms of
translational initiation, peptide signal processing, and pro-
tease maturation. In addition, proteins may be post-
translationally modified, dramatically increasing the com-
plexity of the proteome (Dai et al., 2017). The nature of
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any post-translational modifications and corresponding
amino acid locations on the polypeptide can be deter-
mined by tandem mass spectrometry. The identity of
transient protein partners (interactome), information relat-
ing to quaternary structure, topology, thermal stability,
production, or even their half-life can all be established
by applying specific proteomic strategies. Localization of
distinct proteoforms at the subcellular level, both in the
periplasm, or the exoproteome for secreted proteins, can
be also assessed. It is thus no wonder that researchers
from other fields may feel overwhelmed.

Although proteins may be analysed based on their total
molecular masses, most proteomic strategies involve the
analysis of protein fragments by tandem mass spectrom-
etry (Swanson and Washburn, 2005). Shotgun proteo-
mics consists in proteolyzing the proteins extracted from
a biological sample and analysing the resulting peptides
with a high-resolution tandem mass spectrometer
coupled to a reverse-phase chromatography system. For
these types of assays, trypsin is the most commonly
used protease, because it generates peptides with an
average of 10-12 residues, ending with a basic residue
(arginine or lysine). Consequently, these peptides are
easily observable by mass spectrometry. In a first MS
scan, the mass spectrometer records the mass/charge
(m/z) ratios of the peptide ions eluting from the chroma-
tography at a given time point. Then, the mass spectrom-
eter selects the most abundant ion and triggers its
fragmentation. The mass/charge ratios of the secondary
ions are then recorded, generating a specific MS/MS
spectrum representative of the amino acid sequence of
the peptide. Other peptide ions can be selected for frag-
mentation and MS/MS measurement before a new cycle
of MS is launched. The tandem mass spectrometer pro-
vides three elements of information: the molecular mass
of each peptide, the molecular mass of their chemical
fragments—which is dictated by the amino acid sequence
of the corresponding peptide—and the abundance of each
peptide. Large-scale analysis of these peptides can be
used to identify and quantify the original proteins, while
also establishing their sequence coverage.

Differential shotgun proteomics compares the prote-
ome of a biological entity subjected to varying conditions,
or those of multiple closely related microorganisms
(e.g. wild type versus mutant) in the same conditions.
This approach aims to identify proteins that are present
at different levels across these samples. Today, a single
nanoLC-MS/MS run on a high-resolution high-throughput
tandem mass spectrometer can monitor the abundances
of more than a 1000 proteins. Therefore, this methodol-
ogy is increasingly used by microbiologists working with
proteomics platforms to perform tandem mass spectrom-
etry measurements. In this minireview, we propose
guidelines for a winning strategy for differential shotgun
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proteomics analyses, specifically to help microbiologists
when designing their experiments. We also describe
some statistical approaches for use when interpreting
shotgun proteomics data.

Spectral counting, a simple strategy to rapidly assess
protein abundances

In shotgun proteomics, several strategies have been
devised to monitor the abundances of proteins. The most
elaborate strategy involves labelling proteins/peptides
with specific chemical reagents, mixing the samples, and
performing a single nanoLC-MS/MS run in data-
dependent acquisition mode (DDA), where each peptide
is isolated by the mass spectrometer before its fragmen-
tation. The mass spectrometry data from the different
samples are distinguished using the specific fragmenta-
tion signal corresponding to their respective labels.
Although interesting on paper, this approach requires
larger amounts of initial biological material, fractionation
of the samples to allow a comprehensive survey, and
repeated measurements (Choi et al., 2008). In addition,
unfortunately, the reagents required for labelling are also
quite expensive.

Another strategy relies on the comparison of signals
from nanoLC-MS/MS runs performed systematically for
each sample (Neilson et al., 2011). Because of its robust
performances, this ‘label-free’ strategy is currently the
most used and can be applied to any sample. The abun-
dance of each peptide is directly related to the intensity
of the m/z peak measured in MS mode (extracted ion
chromatogram, XIC), but this signal depends on the abil-
ity of ionization of the compound, or can be deduced from
the number of MS/MS spectra assigned to it (spectral
counts). This last feature was established as a robust
proxy for protein abundance, which is particularly appro-
priate for use in complex samples where the MS signal
may be distorted due to the presence of overlapping ion
signals (Liu et al., 2004). While peak intensities for quan-
titation is currently becoming popular, we warn the reader
to compare XIC and spectral count approaches for spe-
cific set of samples as in microbiology drastic proteomic
changes may occur triggering a novel variety of signals
in one condition that may interfere with the XIC
measurements.

Yet another strategy, data-independent acquisition
mode (DIA), was recently proposed (Ludwig et al., 2018),
but up to now has mainly been used for human proteo-
mics projects. In DIA, all peptide ions are fragmented
simultaneously for a certain m/z range established a
priori; it thus generates complex data and requires strong
computing skills to perform iterative searches to identify
the less abundant proteins.
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Due to the difficulty and expense of the alternatives,
most current differential proteomic studies are based on
estimating the abundances of proteins by spectral
counts. Although this strategy is simple to perform, it
requires some care to ensure the necessary depth of the
MS/MS analysis: in the setting of the instrument parame-
ters, when selecting the number of replicates, the quality
of the protein sequence database to be used for inter-
preting MS/MS spectra, and the strategy used to infer
proteins from peptide sequences. For spectral-count-
based label-free quantitation of proteins, the exclusion
time for MS/MS acquisition is also an important parame-
ter. Although this time window is frequently increased to
maximize the number of peptides to monitor and thus
identify low-abundance proteins, a high value (more than
60 s) may be detrimental to accurate spectral counting of
the most abundant proteins, leading to under-evaluation
due to signal saturation. Common good practices in shot-
gun proteomics (Matthiesen et al., 2011; Bereman, 2015)
include monitoring LC-MS/MS performance using spe-
cific standards, randomization of samples prior to injec-
tion to avoid batch effects (Cuklina et al., 2020),
prioritizing biological replicates over technical or analyti-
cal replicates, and verifying reproducibility of replicates.
When selecting the database against which the recorded
MS/MS spectra will be matched, a well-annotated
genome of the microorganism present in the sample
would be the best option, but if not available a draft
genome sequence can be a valid alternative (Rubiano-
Labrador et al., 2014). Alternatively, the annotated
genome from the closest phylogenetic relative of the
microorganism, or several such genomes (pan-proteo-
mics) could also be useful when investigating the
proteomes of phylogenetically similar bacterial strains
(Broadbent et al., 2016). In studies comparing several
strains, a common database aggregating individual
genome-derived databases can be fruitfully used to
reduce the impact of the individual databases on differen-
tial results. Computational tools are essential when inter-
preting proteomics data and are thus continuously being
improved to be more efficient, easily accessible, and
user-friendly. Recent benchmarking studies and reviews
should be consulted to select the most appropriate ones.
The readers addressed here may not require these
programmes as the proteomics platform may give the
microbiologist the results in terms of protein identification
and label-free quantification. We have therefore focused
this minireview on the statistical assessment of data from
label-free protein measurements.

Pipeline for robust, rapid molecular phenotyping

Figure 1 shows the seven steps involved in a quick
molecular phenotyping by proteomics. Bacterial cultures

or direct sampling are performed in the multiple condi-
tions to be compared. For sure, these conditions should
be well documented by preliminary physiological tests
(growth curves, biochemistry assays, etc.) to back the
proteomics conclusions. A minimum of three biological
replicates is recommended, but a higher number should
be considered whenever slight differences (typically an
increase or decrease of less than 50% of the abundance
of key proteins) are expected between conditions or
when the biological replicates are found to be highly vari-
able (more than 25% variation for the majority of pro-
teins). Fortunately, in most cases, phenotypic differences
in microbiology stem from strong differences in the abun-
dances of the key protein players (Gallois et al., 2018).
After cell lysis, proteins may be subjected to a short
SDS-PAGE migration to remove any reagent incompati-
ble with mass spectrometry and then proteolyzed in-gel
with trypsin (Hartmann et al., 2014). A faster alternative is
to perform in-solution proteolysis directly on the released
proteins or after SP3-purification (Hughes et al., 2014;
Hayoun et al., 2019). However, when using these proto-
cols, particular attention must be paid to detergents
included in the lysis buffer, or complex matrices from the
initial sample, as they may adversely affect chromatogra-
phy or tandem mass spectrometry.

Whatever the digestion protocol applied, the resulting
peptides are then subjected to LC-MS/MS and identified.
The peptides are then used to establish the list of pro-
teins detected in the whole experiment, i.e. confidently
validated in at least one of the samples. Subsequently,
the abundance of each protein can be estimated for each
replicate and condition based on the intensity of the sig-
nals measured for its specific peptides; peptides shared
between proteins may also be considered. These data
must generally be pre-processed before performing sta-
tistical analysis by means of uni- or multi-variate
approaches.

The final and most important step is the interpretation
of the results. This step should highlight (i) the proteins
for which the abundances vary significantly in a given set
of conditions, and if applicable (ii) the aggregated molec-
ular characteristics of proteins, such as metabolic path-
ways or molecular functional groups, that are modified.

We will use two experiments taken from two recently
published microbiological studies to illustrate the statisti-
cal tests presented in Figs. 2 and 3. First, Shah et al.
(Shah et al., 2019) described the comparative proteomic
analysis of a marine sulfur-oxidizing isolate, ‘Candidatus
Thioglobus autotrophicus’, grown under oxic versus
anoxic conditions with varying levels of sulfur availability.
The authors analysed biological triplicates and identified
peptides using a Q-Exactive HF tandem mass spectrom-
eter following a 145-min reverse-phase gradient. MS/MS
spectra were acquired with a Top10 strategy, i.e. 10 most
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Fig. 1. Schematic pipeline for quick but robust molecular phenotyping.

abundant precursor ions were sequentially fragmented
before performing another full scan, and with a 20-s
dynamic exclusion. The data were deposited on the
PRIDE repository under data set identifier PXD013243.
They can thus be freely downloaded and exploited. Shah
et al. showed that the isolate exhibits an unsuspected
metabolic flexibility resulting in the production of more
organic carbon in the ocean than would have been esti-
mated based solely on their anaerobic phenotype. The
second example we use here was published by Negretti
et al. (Negretti et al., 2019), who demonstrated that the
Campylobacter jejuni bacterium produces the same viru-
lence factors following contact with two different human
cell lines. In this case, the authors performed the analysis
under five conditions with biological triplicates. The
peptides from each sample were monitored with a
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Q-Exactive HF tandem mass spectrometer after separa-
tion along a 200-min gradient. The data were also depos-
ited onto the PRIDE repository, under data set identifier
PXD009817. The dynamic exclusion was set to 45 s to
promote the identification of more peptides from low-
abundance proteins.

Statistical approaches for spectral count protein
quantitation

In a shotgun proteomics experiment, each sample is
described by the abundance values of an extensive list of
proteins. When specific cellular proteolytic events are
suspected, peptide rather than protein intensities may
be compared. Whatever the case, data must be pre-
processed if statistical comparisons are to be reliable. A
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Fig. 3. Multivariate analysis of PXD009817 shotgun proteomics data set. A. Sample PLS-DA plot with 95% confidence ellipses on components
1 and 2. B. Sample PLS-DA plot with 95% confidence ellipses on components 3 and 4. C. Non-supervised hierarchical clustering of samples
based on the features selected from the sPLS-DA analysis (subset of 424 proteins). D. Loading plot showing 10 most discriminating proteins on
component 1, with colour indicating the condition with a maximal mean abundance value for each protein.
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normalization based on the systematic addition of a
pseudo spectral count per protein and per sample is rec-
ommended (Carvalho et al., 2008), avoiding values at
zero. When the total numbers of spectral counts are very
different between samples, an additional normalization
step may be applied (Carvalho et al., 2008). In this case,
abundances are scaled relative to the sample with the
highest spectral count, and the total number of spectral
counts detected for each sample is used as a normalizing
factor. Alternatively, zero values can be considered as
missing values. Several algorithms have been developed
to statistically impute missing values in a specific sample
based on the existing experimental values of replicates
or by comparison to the relative abundance levels of
related proteins. The imputation method should be care-
fully selected (Lazar et al., 2016). Following pre-
processing, the spectral count data must be analysed by
applying suitable statistical methods dictated by the bio-
logical question to be answered. When comparing two
conditions (e.g. test condition versus control, mutant ver-
sus wild-type, strain A versus strain B), the comparative
analysis consists in calculating a ratio of abundance
between the two conditions for each protein. This ratio
may be presented as a fold-change which corresponds to
the abundance under condition 1 divided by that mea-
sured under condition 2 or as a more sophisticated ratio
(Carvalho et al., 2008). The statistical significance of this
comparison is typically assessed by applying univariate
tests to identify the proteins for which differential abun-
dances are detected between the two conditions. Univari-
ate tests examine proteins individually by applying
parametric or non-parametric tests (Student's t test,
ANOVA, Wilcoxon-Mann—Whitney test). These tests are
hypothesis-driven and based on rejecting or accepting
the null hypothesis within a certain confidence level (a P-
value threshold). The confidence level is often set to 0.01
or 0.05, but should be adjusted, and most importantly
interpreted, in conjunction with the design and context of
the study (Betensky, 2019). T test and ANOVAs are com-
monly used to reveal differences between samples. To
be reliable, these tests require that protein abundance for
each sample follow a normal distribution, and that sample
variances are homogeneous. These aspects can easily
be evaluated by measuring the distribution symmetry
(skewness) and whether the data are peaked or flat rela-
tive to a normal distribution (kurtosis). In proteomic data
sets based on spectral counts or XIC area, logarithmic
transformations are often required to produce a reason-
able normality compatible with statistical rigour. The para-
metric Student’s t test is the approach most frequently
used to identify proteins presenting statistically significant
differences in levels between two samples. It can be
based on a minimum of three replicates. The more robust
Wilcoxon-Mann—-Whitney non-parametric test is more
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recommended but normally requires a higher number of
replicates. In large proteomics data sets, because many
proteins are quantitated, it is also important to pay atten-
tion to the multiplicity of tests performed. Indeed, the rep-
etition of individual tests on thousands of proteins
increases the occurrence of type | errors, i.e. false posi-
tive results (chance rejection of the null hypothesis when
it was true). The false discovery rate (FDR) associated
with the repetition of such tests can be evaluated. Multi-
ple testing corrections include the ultra-conservative
Bonferroni procedure or the less conservative Benjamini—
Hochberg calculation. The latter is the most popular
approach since it limits type | errors without being too
conservative, thus also limiting type Il errors (false nega-
tives). This calculation aims to control the FDR, i.e. the
expected proportion of errors among the rejected hypoth-
eses. By adjusting the list of raw P-values to correspond
to an FDR of 0.01, a maximum of 1% of the resulting dis-
coveries are expected to correspond to false positive
results. As an example, Fig. 2 shows a volcano plot
resulting from a univariate analysis on the PXD013243
data set. We wished to discover the proteins displaying
the greatest differential abundance between the two con-
ditions and selected a threshold of at least 50% change
(fold of 1.5). The plot shows the distribution of the pro-
teins identified according to log,(fold-change) on the
abscissa (x) and statistical confidence on the ordinate
(y)- The data set contains three biological replicates from
two conditions (anaerobic versus aerobic). The mean
normalized protein abundance values for each condition
were compared by applying multiple t tests. The resulting
raw P-values were adjusted to an FDR of 0.05 using the
Benjamini-Hochberg method.

Using these parameters, a total of 152 proteins are sig-
nificantly detected in this data set when comparing the
two conditions. The proteins of interest are indicated by
the blue dots in the volcano plot (Fig. 2). Among these,
40 are more abundant in the anaerobic condition and
112 are more abundant in the aerobic condition. As indi-
cated in the plot, the most extensive significant changes
are for the alanine-glyoxylate aminotransferase (more
abundant in the aerobic condition) and the nitrate reduc-
tase (more abundant in the anaerobic condition). We also
highlighted the presence of two isoforms of the large sub-
unit of ribulose 1,5-bisphophoate carboxylase (Rubisco),
each being specific of a condition.

For more complex experimental designs, e.g. including
a larger number of conditions, classic univariate tests will
be more difficult to interpret. The high dimensionality of
the data imposes a need for simplification to maximize
the relevant features and minimize redundancy. In these
cases, multivariate tests that consider whole groups of
features together and present a view of the overall struc-
ture of the data, are essential to reduce data
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dimensionality through the selection or extraction of rele-
vant subsets of features — here, proteins (Meng et al.,
2016). In proteomics, the most commonly used multivari-
ate methods are principal component analysis (PCA), lin-
ear discriminant analysis (LDA), partial least squares
discriminant analysis (PLS-DA), and hierarchical cluster-
ing (HC).

PCA and HC are both non-supervised exploratory
methods. These methods are non-supervised as they
only take as input the abundance values of proteins per
sample, with no need to provide information about the
nature of the samples. PCA and HC can be used to clas-
sify samples into groups and thus verify the overall
homogeneity level between replicates. PCA reduces the
dimensionality of the data set by projecting features onto
a lower dimensional space, clearly revealing the variabil-
ity in the data set. HC aims to cluster similar entities
together into the same class, through the iterative con-
struction of a hierarchical tree known as a dendrogram.

In contrast, LDA and PLS-DA are supervised multivari-
ate methodsthe input data are labelled with information
about the samples. The two methods are conceptually
similar, but PLS-DA can readily handle multiple depen-
dent categorical variables and is compatible with very
noisy data sets, whereas multicollinearity issues may
weaken LDA application (Noes & Mevik, 2001). In PLS-
DA, new components maximize the covariance between
features (proteins). By using the information provided
about the nature of the samples, the new components
can specifically be used to discriminate between the
sample groups.

PCA, LDA and PLS-DA can all be used to extract the
features (proteins) that contribute to distinguishing sam-
ple groups, such as, for example, strains with different
molecular profiles and consequently different pheno-
types, or conditions producing the most contrasted
effects. Figure 3 shows an example of multivariate analy-
sis applied to the data from the PX009817 data set,
which correspond to the results of three biological repli-
cates from five different conditions. When merging the
results of these 15 samples, a total of 1333 proteins (fea-
tures) were validated and quantified, resulting in a table
with 19 995 measured values. Because of this high
dimensionality, a PLS-DA was performed to reveal the
protein subsets discriminating between the different con-
ditions (Fig. 3). The two first main components explain
32% and 9% of the variability. Components 1 and
2 clearly discriminate conditions MH_20h and MH_4h
from the other three conditions (Fig. 3A). Components
3 and 4 are more discrete (5% each) but allow the three
other conditions to be distinguished (MEM_4h on compo-
nent 3, Caco2_4h on component 4, INT407 in both com-
ponents), as visible in Fig. 3B. The subset of proteins
that best discriminates the different conditions was then

extracted from the four components using a sparse ver-
sion of PLS-DA analysis, sPLS-DA (Le Cao et al., 2008),
available in the mixOmics R package (Rohart et al.,
2017). To validate that this subset discriminates the five
groups of samples, these 424 proteins were used to build
a dendrogram based on correlation-base distances.
Briefly, the distance between samples was determined
by the Spearman correlations of their overall protein
abundance (i.e. the rankings of the proteins listed as a
function of their abundances for all samples were com-
pared). If the features of two samples were highly
correlated-if the proteins had almost similar abundance
ratios and were ranked similarly — samples would cluster
together. As shown in Fig. 3C, five clusters corres-
ponding to the five study conditions were obtained. This
subset of proteins can be further explored to verify which
proteins correlated with which group of samples, provid-
ing invaluable information on the specific bacterial func-
tionalities in each condition. Figure 3D, for example,
shows 10 proteins that contribute the most to group dis-
crimination when examining component one, and in
which condition they are more abundant. Six of these
proteins are more abundant in the MH_20h condition,
providing information about the functionalities that dis-
criminate this condition from the others.

This statistical exploration of label-free quantification
data can be performed with a myriad of different tools
that cover different levels of expertise of the end-user
(Tsiamis et al., 2019). Packages such as RforProteomics
(Gatto and Christoforou, 2014) or mixOmics (Rohart
et al., 2017) are available in R for deep data exploration,
statistics and visualization. Non-expert users can rely on
more user-friendly platforms such as OmicsPlayground
(Akhmedov et al., 2019), PatternLab (Carvalho et al.,
2016), Perseus (Tyanova et al., 2016), or LFQ-Analyst
(Shah et al., 2020) for evaluating differential protein
abundances and generating publication-quality data
plots. Functional enrichment of related proteins may be
evaluated by clustering based on KEGG features — using
GhostKOALA (Kanehisa et al., 2016) — or Gene Ontology
features. These features can be statistically assessed,
compared with the observed phenotypes, and further vali-
dated during a new round of directed experiments (see
Clair et al., 2012 as an example). Thus, the great amount
of data generated by shotgun proteomics approaches
can be straightforwardly mined using modern statistical
tools to extract key information and therefore focus on
the notable differences between conditions.

Concluding remarks

The label-free shotgun proteomics approach briefly pres-
ented here is a robust and rapid procedure compatible
with molecular phenotyping of microorganisms in a range
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of conditions. Although not as accurate as the most
exquisite targeted quantitation strategies, spectral cou-
nting allows a simple and robust estimation of protein
abundance changes when comparing conditions for
microbiological samples. In terms of time-frame, the anal-
ysis of the whole proteome from a microorganism grown
under three different conditions with four biological repli-
cates per condition can be performed in routine mode
with the above-described methodology within a week: a
single working day would be necessary for protein extrac-
tion from the 12 samples and trypsin proteolysis, a whole
day for the 12 LC-MS/MS runs, interpretation of the raw
MS/MS results would also take 1 day, and 2 additional
days would be needed for data verification and statistical
analysis. The methodology described here is thus easily
applicable to tens of conditions and to numerous biologi-
cal replicates if subtle changes are sought. With results
for more than a 1000 proteins in hand, the most important
challenge becomes the bibliographic work to be done on
the proteins, to determine the enriched functions and
pathways revealed by the differential proteomics
approach. This information must then be integrated within
the specific biological context of the experimental set-up,
and the most interesting discoveries validated by appro-
priate experiments.
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