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Preterm birth (PTB) is a leading cause of neurodevelop-

mental and neurocognitive impairment in childhood and

is closely associated with psychiatric disease. The biologi-

cal and environmental factors that confer risk and resili-

ence for healthy brain development and long-term

outcome after PTB are uncertain, which presents chal-

lenges for risk stratification and for the discovery and

evaluation of neuroprotective strategies. Neonatal mag-

netic resonance imaging reveals a signature of PTB that

includes dysconnectivity of neural networks and atypical

development of cortical and deep grey matter structures.

Here we provide a brief review of perinatal factors that

are associated with the MRI signature of PTB. We con-

sider maternal and foetal factors including chorioamnioni-

tis, foetal growth restriction, socioeconomic deprivation

and prenatal alcohol, drug and stress exposures; and

neonatal factors including co-morbidities of PTB, nutri-

tion, pain and medication during neonatal intensive care

and variation conferred by the genome/epigenome. Asso-

ciation studies offer the first insights into pathways to

adversity and resilience after PTB. Future challenges are

to analyse quantitative brain MRI data with collateral bio-

logical and environmental data in study designs that sup-

port causal inference, and ultimately to use the output of

such analyses to stratify infants for clinical trials of thera-

pies designed to improve outcome.
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Introduction

Preterm delivery, defined as birth at <37 weeks of ges-

tation, is estimated to affect 10.6% of all live births

around the world, which equates to 14.84 million

births per annum [1]. In resource rich settings,

advances in perinatal care and service delivery have

led to improved survival over the past two decades:

around 25% of infants born at 22 weeks who are

offered stabilization at birth will survive and this

number increases to around 80% for births at

26 weeks [2]. However, early exposure to extrauterine

life can impact brain development and is closely associ-

ated with long-term intellectual disability, cerebral

palsy, autism spectrum disorder, attention deficit hyper-

activity disorder, psychiatric disease and problems with

language, behaviour and socioemotional functions [3].

Computational magnetic resonance
imaging of brain development after
preterm birth

The neuroimaging signature of preterm birth (PTB)

includes alterations in white and grey matter
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microstructure, impaired cortical folding and distur-

bances to regional brain growth (Figure 1), for review

see [4]. Advances in foetal imaging enable direct com-

parisons between healthy foetal and preterm brain

development at equivalent gestations and, although

brain growth is rapid between 25 and 40 weeks of ges-

tation in preterm infants [5], growth trajectories are

slower in preterm infants than in healthy foetuses [6].

At term equivalent age, regional brain volumes are

reduced in preterm infants compared to healthy control

infants and there is a reduction in cortical surface area,

which may contribute to the neural basis of subsequent

adverse neurodevelopmental outcome [5,7,8].

Diffusion-weighted magnetic resonance imaging

(dMRI) studies have provided valuable insights into the

effects of maturation and injury on microstructural

brain development. Biological inference from dMRI is

rooted in the premise that water molecules move with

Brownian motion in an environment without restric-

tions and change direction following collisions with

other particles. In highly structured tissue such as

brain, water movement is restricted by the presence of

axons, neuronal cell bodies, glial cells and macro-

molecules, which supports inference about water con-

tent, axonal density, axonal calibre, myelination,

dendritic arborization and synapse formation (for

review see [9]).

In general, anisotropy increases and mean diffusivity

(MD) decreases with increasing maturation in the

developing white matter of the preterm brain [10,11]

representing a combination of decreasing tissue water

content and increasing complexity of white matter

structures with age. Lower fractional anisotropy (FA)

and increased MD are observed throughout the white

matter in preterm infants compared with term-born

infants [12,13] and increased prematurity is associated

with lower FA and higher MD [14,15]. Diffusion tensor

imaging metrics, such as FA, are nonspecific and reflect

many underlying properties of brain tissue including

neuronal density, fibre orientation dispersion, degree of

myelination, free-water content and axonal diameter.

New approaches to analyse dMRI data, including those

based on biophysical models such as neurite orientation

dispersion and density imaging (NODDI) [16], are

Figure 1. (A) (i) T1- and (ii) T2-weighted images of an infant at 26 weeks gestational age (GA) and (iii) T1- and (iv) T2-weighted

images of an infant at 42 weeks GA at the level of the basal ganglia. (B) Diffusion magnetic resonance imaging maps at the level of the

basal ganglia (i) fractional anisotropy, FA (ii) mean diffusivity, MD (iii) orientation dispersion index, ODI and (iv) neurite density index,

NDI. (C) Brain segmentation in an infant born at 27+4 weeks gestational age and imaged at 41+2 weeks postmenstrual age. Key:

Green = cortical grey matter, blue = white matter, grey = deep grey matter, pink = extracerebral cerebrospinal fluid. (D) Correlation

between gestational age at birth and FA measures in white matter assessed using tract-based spatial statistics. Mean FA skeleton (green)

overlaid on mean FA map in the axial plane. Voxels showing a significant correlation (P < 0.05) between GA at birth FA are shown in

red. (E) Diffusion MR tractography (i) arcuate fasciculus and (ii) optic radiations
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adding to our understanding of the preterm neuroimag-

ing phenotype. The NODDI model aims to disentangle

these different factors by separating the influence of

neurite density and orientation dispersion from each

other, to provide indices of orientation dispersion index

(ODI), which captures the degree of dispersion of axo-

nal fibre orientations (e.g. through fanning, bending,

crossing) or dendrite orientations, and neurite density

index (NDI), represented by the intracellular volume

fraction [16]. NDI increases with maturation in devel-

oping white matter and, at term equivalent age, NDI

throughout the white matter is negatively associated

with degree of prematurity at birth [17].

Unlike the changes observed in white matter, aniso-

tropy and diffusivity in the developing cortical grey

matter decrease with maturity and ODI increases

reflecting dendritic growth from cell bodies, in-growth

of thalamocortical afferents, synapse formation and

proliferation of glial cells [18]. In comparison with

term-born infants, preterm infants at term-equivalent

age have increased cortical FA and cortical MD sug-

gesting impaired cortical development [19], whereas

lower gestational age (GA), lower birthweight and

slower weight gain have been associated with higher

FA in the preterm cortex [20].

Perinatal factors associated with altered
brain development in preterm infants

MRI of the brain in early life has opened opportunities

to investigate maternal and infant factors associated

with risk and resilience for healthy brain development

(Figure 2).

Maternal and foetal factors

Histologic chorioamnionitis Chorioamnionitis is infection

of the amniotic fluid, membranes, placenta and/or

decidua, and it affects around 40–80% of very preterm

deliveries. It can initiate a foetal inflammatory response

that is injurious to the developing brain [21], and

epidemiological evidence suggests an association

between chorioamnionitis, cystic periventricular

leukomalacia and cerebral palsy in preterm infants [22].

We have shown histologically confirmed

chorioamnionitis is associated with diffuse white matter

disease at term equivalent age [23], although it does not

appear to contribute to intraventricular haemorrhage or

punctate white matter lesions on conventional imaging

[24]. This suggests that the pathway to atypical brain

development begins in utero for some preterm infants.

Foetal growth restriction Foetal growth restriction (FGR)

refers to the foetus who does not achieve expected in utero

growth potential due to genetic or environmental factors.

FGR is closely associated with childhood sensory and

motor deficits, cognitive impairment and cerebral palsy

[25]. MRI studies report atypical brain development in

preterm infants affected by FGR, including reduced total

and cortical grey matter volumes, reduced cortical

complexity, reduced myelination, altered hippocampal

and cerebellar development, changes in FA within the

white matter skeleton and structural connectivity of

specific brain networks [25]. These data suggest that FGR

preterm infants have a pattern of atypical development

that is distinct from that seen in appropriately grown

preterm infants.

Socioeconomic deprivation Among the general

population, brain tissue development and

neurodevelopmental outcome are both patterned by

socioeconomic gradients that operate in early life [26],

and there is growing evidence that social disadvantage

may exert additive risk to low GA for brain injury and

impaired cognitive outcome in children born preterm

[27,28]. Further work is required to understand the

biological mechanisms that may link socioeconomic

deprivation in the perinatal period with atypical brain

development; plausible mechanisms include gestational

immune dysregulation [29], alterations to the maternal

hypothalamic-pituitary adrenal axis [30,31] and

epigenomic variation associated with adversity in

pregnancy [32,33].

Maternal alcohol and drugs Many studies report that

prenatal alcohol exposure (PAE) is associated with

atypical white matter in childhood, adolescence and

adulthood [34], but studying the brain in later life

introduces possible confounding by postnatal events

and circumstances. MRI studies of neonates with PAE

have reported altered dMRI parameters in white matter

tracts, which suggests that atypical development is

already established by the time of birth [35,36].

Maternal tobacco smoking is associated with lower

global and regional foetal brain growth, after

adjustment for somatic growth restriction [37].
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Prenatal exposure to prescribed medications, specifi-

cally selective serotonin reuptake inhibitors, may influ-

ence neonatal brain structure and function [38,39],

including among preterm infants [40]; and prenatal

exposure to methadone for treatment of heroin addic-

tion is associated with atypical white matter develop-

ment [41]. These observations from patients with

depression and opioid use disorder raise urgent ques-

tions about the safety of maternal prescribed and non-

prescribed drugs on the developing foetal brain.

Neonatal MRI biomarkers may be useful for studies

designed to disambiguate disease from treatment effects,

and for investigating maternal pharmacotherapies that

are safest for mother and foetus.

Maternal stress An increasing body of evidence

suggests that maternal prenatal stress exposure (PNSE)

and anxiety/depression is associated with increased risk

for a range of adverse behavioural outcomes in offspring

including anxiety disorders [42], externalizing behaviour

[43] and attention deficit hyperactivity disorder [44].

Recent studies provide evidence that the developing

white matter is vulnerable to maternal prenatal adver-

sity. Maternal anxiety is associated with reduced FA in

key regions that are associated with anxiety, cognition

and emotion regulation in later childhood including

amygdala, cingulum, inferior temporal and frontal

regions, angular gyrus, uncinate fasciculus, dorsolat-

eral prefrontal cortex, cerebellum and inferior fronto-

occipital fasciculus, in term-born infants [45]. Dean

and colleagues reported higher diffusivity and lower

NDI in frontal white matter of term-born infants of

mothers experiencing prenatal symptoms of depression

and anxiety [46], and we have observed higher diffu-

sivity in the uncinate fasciculus in preterm infants at

term equivalent age who experienced PNSE, even when

controlling for GA at birth, socioeconomic status and

the number of days on parenteral nutrition [47]. Defin-

ing neonatal brain image markers of maternal stress

offers new opportunities for investigating the biological

pathways that link maternal well-being with foetal

brain development.

Figure 2. Maternal, foetal and neonatal factors associated with brain development in preterm infants
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Neonatal factors

Co-morbidities of PTB Bronchopulmonary dysplasia

(BPD), defined as the need for supplemental oxygen

and/or respiratory support after 36 weeks GA,

complicates the postnatal course of around 30% of

infants born with very low birth weight, and it is an

independent predictor of poor neurodevelopmental

outcome [48]. Neonatal brain MRI studies of patients

with severe respiratory morbidity, for example those

with BPD or a requirement for prolonged mechanical

ventilation, have reduced global and local brain

volume [8], and reduced FA in white matter tracts [14]

compared with age matched preterm infants without

this complication.

Necrotizing enterocolitis (NEC; ischaemic necrosis of

the intestinal mucosa) and blood stream infection in

preterm infants often lead to a protracted systemic

inflammatory response, and both are associated with

neurodevelopmental impairment in early childhood.

MRI studies suggest that severe NEC is associated with

white matter injury, which might mediate the relation-

ship between NEC and adverse neurodevelopmental

outcome [49–51].

Retinopathy of prematurity is associated with

reduced brain volume and altered white matter

microstructure [52,53], and the preterm infant, like the

term infant, is susceptible to brain injury from bilirubin

toxicity, hypocapnia and severe hypoglycaemia, so clin-

ical policies designed to prevent these complications

during neonatal intensive care are important.

Postnatal nutrition Nutritional factors play an

important role in preterm brain development and

neuroimaging is a useful tool for investigating tissue

effects of nutritional exposures. Optimal protein and

energy intake in the first weeks after PTB are

associated with increased brain growth, improved

white matter microstructure and neurodevelopmental

performance [54–56], and breast milk, as opposed to

formula feed, during the weeks to discharge from

Neonatal intensive care unit leads to improved

structural connectivity of developing networks and

greater FA in major white matter fasciculi [57].

Pain and medication Very preterm infants are exposed

to repeated painful stimuli as part of intensive care.

The burden of painful exposures is associated with

volume reduction in thalamic nuclei, altered thalamic

metabolic function (decreased N-acetylaspartate/

Choline), reduced FA in thalamocortical networks and

reduced functional connectivity, which implies that

pain during this critical period of human development

influences development of the somatosensory system

[58,59]. Neonates who require intensive care

sometimes require analgesic and/or sedative

medications. Midazolam appears to have a dose-

dependent association with reduced hippocampal

volume and microstructure, independent of

procedural pain exposure burden [60]. These studies

raise important hypotheses about the possible roles of

pain and medication in modifying preterm brain

development, and they signal the MRI techniques that

are likely to be most useful in future studies designed

to evaluate the safety of medicines during neonatal

intensive care.

Genomics and epigenomics Imaging-genomics methods

are beginning to be used to investigate the contribution

of genomic variation and epigenetic modifications to

preterm brain development. For example single-

nucleotide polymorphisms at fatty acid desaturase 2,

the 22q.11 locus, discs large MAGUK scaffold protein

4, and in the peroxisome proliferator-activated receptor

pathway are associated with altered FA in white

matter, and polygenic risk for psychiatric disease is

associated with abnormal deep grey matter

development in preterm infants [61–64]. These early

observations suggest that genetic variants may

contribute to neuroanatomic variation after PTB, and

that PTB might expose susceptibility to psychiatric

disease.

DNA methylation (DNAm) provides a molecular link

between early life stress and neuropsychiatric disease in

adulthood. PTB is a profound physiological stressor

that is associated with alterations in the methylome at

sites that influence neural development and function,

and exploratory analyses suggest that differential

DNAm is associated with white matter development in

preterm infants [32].

Integrated analysis of genomic data, differential

DNAm and quantitative MRI offers new opportunity

for understanding genetic and epigenetic bases of

preterm brain injury, and the biological pathways

that contribute to susceptibility and repair after

PTB.
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Conclusions and future directions

MRI can be used to characterize brain development in

terms of macro-, and microstructure, function and

metabolism. Combining features from neuroimaging

with biological and/or clinical information has identi-

fied several maternal and neonatal factors that are

associated with susceptibility to atypical brain develop-

ment. Furthermore, analysis of data across different

scales provides a framework for investigating whether

and how determinants of brain development that oper-

ate in the general population such as maternal well-be-

ing, drug exposures and socioeconomic gradients may

interact with PTB to modify risk.

The observation that multiple types of exposure and

genomic/epigenomic variants contribute to atypical

brain development after PTB presents challenges for

understanding causal pathways to injury and repair,

and therefore for designing neuroprotective strategies

targeted to the right infants at the right time. These

challenges could be addressed by replication studies to

assess generalizability, and by pooling image data from

different centres to enhance study population sizes

because scale-up is needed to address issues of power

and sensitivity, and to enable study designs that sup-

port causal inference.
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