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Noninvasive biomarker profiles of acute rejection (AR) could affect the manage-
ment of liver transplant (LT) recipients. Peripheral blood was collected following LT 
for discovery (Northwestern University [NU]) and validation (National Institute of 
Allergy and Infectious Diseases Clinical Trials in Organ Transplantation [CTOT]-14 
study). Blood gene profiling was paired with biopsies showing AR or ADNR (acute 
dysfunction no rejection) as well as stable graft function samples (Transplant eX-
cellent—TX). CTOT-14 subjects had serial collections prior to AR, ADNR, TX, and 
after AR treatment. NU cohort gene expression (46 AR, 45 TX) was analyzed using 
random forest models to generate a classifier training set (36 gene probe) distin-
guishing AR vs TX (area under the curve 0.92). The algorithm and threshold were 
locked and tested on the CTOT-14 validation cohort (14 AR, 50 TX), yielding an 
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1  | INTRODUC TION

The advent of calcineurin inhibitors (CNI) has resulted in more 
acceptable rates of acute rejection (AR) following liver trans-
plantation (LT).1 However, LT recipients are at high risk for im-
munosuppression (IS) complications and other issues related to 
adherence and cost.2,3 Studies have addressed these issues by 
showing that IS minimization or even full IS withdrawal attempts 
may be feasible in select patients.3-6 However, such strategies to 
withdraw CNI therapy early after LT, where the benefit on renal 
and metabolic parameters may be the greatest, have also been 
limited by the development of AR during these interventions.7-9 
In addition, approaches involving complete IS withdrawal require 
serial, invasive liver biopsies to confirm that the graft is free of 
rejection.9-11

Despite a longstanding interest in immune monitoring strat-
egies, there are currently no available assays other than IS drug 
levels, liver function tests (LFTs), or biopsies, which are either sub-
optimal or impractical for assessing individual IS requirements.12-14 
Several genomic biomarkers have been proposed to distinguish 
causes of graft dysfunction,15-29 but these have not been subjected 
to robust validation and not analyzed before these events. Having 
a biomarker that can serially distinguish the onset of rejection 
versus continued stable graft function, before liver injury occurs, 
could more specifically enhance current “trial and error” IS prac-
tices and outcomes.

The Northwestern University (NU) Comprehensive Transplant 
Center biorepository study (NCT01644903) and the Clinical Trials 
in Organ Transplantation 14 (CTOT-14; NCT01672164) study were 
designed to discover and validate molecular biomarkers for a number 
of clinical phenotypes following LT. Our focus was to evaluate the 
performance of a novel blood gene expression biomarker that can 
detect early, preclinical signs of rejection compared to stable graft 
function—ultimately to enhance clinical judgment during IS modifi-
cations following LT.

2  | METHODS

2.1 | Cohorts and subjects

From 2010 to 2015, we collected blood samples for biomarker studies 
in adult deceased or live donor LT recipients at the time of for-cause 
graft biopsies. In addition, as our center does not perform routine 
surveillance biopsies akin to current practices, we randomly collected 
samples from LT recipients with longstanding normal LFTs for nonvi-
ral etiologies (Clinical Phenotypes discussed later). We characterized 
these samples as “Transplant eXcellent” (TX) and labeled them “virtual 
biopsies” as negative controls. Samples from NU biorepository sub-
jects were used as the primary training set for biomarker discovery.

For the validation set, between October 2012 and December 
2014, we enrolled 186 adult deceased or live donor LT recipients 
into the multicenter observational CTOT-14 study. Subjects were 
followed for 12-24  months. Similar to the NU discovery cohort, 
recipients underwent for-cause biopsies for acute dysfunction per 
each participating site's standard of care. We collected blood sam-
ples for biomarker studies at the time of biopsy and also serially at 
week 2, month 1, 2, 3, 6, 9, 12, 15, 18, 21, 24 following LT. We lim-
ited our biomarker analyses to month 12 as only a small percent-
age of subjects were followed to month 24. Samples at the time of 
for-cause or virtual TX biopsy (clinical phenotypes) were used to 
validate the classifiers from the NU discovery cohort. In addition, 
we analyzed the serial samples to detect the classifiers before liver 
test elevations (biopsy-proven AR), following treatment of AR, and 
during the course of stable graft function over time.

Inclusion and exclusion criteria for both cohorts were identical 
and consisted of adult (≥18  years old) recipients of first LT from 
either a deceased or living donor. Prior or multiorgan transplants 
and HIV-infected recipients were excluded. Although not excluded 
from enrollment, we excluded patients with hepatitis C virus (HCV) 
and active viremia from biomarker analysis to avoid HCV as a con-
founder and because of the diminishing clinical relevance in LT.30 

accuracy of 0.77, sensitivity 0.57, specificity 0.82, positive predictive value (PPV) 
0.47, and negative predictive value (NPV) 0.87 for AR vs TX. The probability score 
line slopes were positive preceding AR, and negative preceding TX and non-AR 
(TX + ADNR) (P ≤  .001) and following AR treatment. In conclusion, we have de-
veloped a blood biomarker diagnostic for AR that can be detected prior to AR-
associated graft injury as well a normal graft function (non-AR). Further studies are 
needed to evaluate its utility in precision-guided immunosuppression optimization 
following LT.

K E Y W O R D S

biomarker, clinical research/practice, clinical trial, genomics, immunobiology, 
immunosuppression/immune modulation, liver allograft function/dysfunction, liver 
transplantation/hepatology, rejection, translational research/science
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We did include seropositive nonviremic recipients. Clinical care 
followed standard practice at each site. All NU and CTOT-14 biop-
sies were read locally for clinical care and later sent for indepen-
dent, blinded central review (AJD). Recipients with Banff Rejection 
Activity Index ≥ 3 and no other etiology of graft dysfunction were 
classified as AR.31 All had T cell–mediated rejection and none with 
antibody-mediated rejection based on recent criteria.32 Other 
causes, such as steatohepatitis, cholestasis, ischemia, or other eti-
ology, were grouped together as acute dysfunction no rejection 
(ADNR). Clinical and histological data were also reviewed by a 
transplant hepatologist (JL) for phenotype designation.

For the NU cohort, demographic, clinical course data be-
fore and after liver or virtual TX biopsy were collected from the 
Northwestern Medicine Enterprise Data Warehouse, which is a 
comprehensive clinical repository. For CTOT-14, similar electronic 
data were collected serially in MEDIDATA RAVE managed by the 
Data Coordinating Center (DCC - Rho Federal Systems). Oversight 
included development of the study protocol, review of clinical site 
visits, classification of clinical phenotypes at the sample level, vali-
dation of analyses, and manuscript review. Both studies were both 
subject to institutional review board approval and informed consent 
was obtained from all patients.

2.2 | Clinical phenotypes (CPs)

We used clinical, biochemical, and liver/virtual biopsy criteria to de-
fine 4 CPs: AR, ADNR, TX, and non-AR (ADNR + TX). The CPs were 
confirmed by the NU team for discovery and by the CTOT-14 DCC 
for validation. The biomarker team was blinded to the CPs for all 
analyses. Assignment of the diagnostic CPs for both cohorts utilized 
the following criteria:

1.	 AR: for-cause biopsy for abnormal LFTs per site criteria; central 
biopsy read consistent with AR.

2.	 ADNR: for-cause biopsy for abnormal LFTs per site criteria; cen-
tral biopsy read consistent with non-AR etiology.

3.	 TX: normal LFTs at the time of “virtual biopsy.” For both co-
horts, we used the same definition: total bilirubin (TB) ≤1.5 mg/
dL and direct bilirubin (DB) <0.5  mg/dL, alkaline phosphatase 
(AP) ≤200 U/L, and alanine transaminase (ALT) ≤60 U/L (males), 
≤36  U/L (females). For NU subjects, we required normal LFTs 
3  months before and after the “virtual biopsy” time point. As 
CTOT-14 subjects had at least 12 months of follow-up, we chose 
subjects with normal LFTs at the 6 month mid-time point with the 
requirement that > 50% of their LFTs leading up to this time point 
were also normal.

4.	 Non-AR: ADNR and TX combined (as defined above)

For the serial prediagnosis analysis before each CP (CTOT-14 
only), we used pre-TX and pre-ADNR as controls for pre-AR to en-
sure specificity for detecting AR vs the other CPs. The following cri-
teria were used:

1.	 Pre-AR: >1 sample(s) collected prior to liver biopsy demonstrat-
ing AR as defined previously; at least 2 of the 3 liver tests 
(DB, AP, ALT) normal at each presample collection; samples 
collected when ALT  >  100  U/L were excluded, even if AP and 
DB were normal.

2.	 Pre-ADNR: same criteria as pre-AR, except biopsy demonstrating 
ADNR as defined previously.

3.	 Pre-TX: same criteria as pre-AR, except virtual biopsy met TX cri-
teria as defined previously.

4.	 Pre-non-AR: pre-ADNR and pre-TX samples combined.

For postdiagnosis, we focused only on gene expression changes 
following treatment of AR. We requested sample collections every 
2 weeks for 8 weeks in CTOT-14 subjects treated for AR per site 
protocol. As these collections were not strictly adhered to, all sub-
jects with > 1 sample collected after treatment that coincided with 
resolution of AR – defined by normal LFTs – were analyzed.

2.3 | Biomarker development

All blood samples were drawn directly into PAXgene tubes (BD 
BioSciences, San Jose, CA), processed, and subjected to a previous 
workflow33,34 Specifically, globin-reduced RNA (200 ng) was labeled 
using the Affymetrix 3’ IVT PLUS labeling kit Array hybridization. 
Subsequent washing, staining, and array scanning steps were done 
on the Affymetrix HG-U133 Plus PM Array Plate arrays using the 
standard GeneTitan Gene Expression array workflow (Affymetrix, 
Santa Clara, CA). Raw expression data files (.CEL) generated by the 
GeneTitan were processed for QC metrics using the Affymetrix 
Expression Console software.

The genomic discovery and validation phases were performed in 
accordance with Institute of Medicine guidelines.35 We focused our 
discovery model on distinguishing AR vs TX to best separate gene 
expression in rejection from healthy graft function and to be able 
to detect preclinical signs of each in serial monitoring. In addition, 
we included other causes of graft dysfunction (ADNR) to be more 
inclusive of the whole LT population (AR and non-AR).

In the NU discovery cohort, the top 5000 variables probes were 
selected based on coefficient of variance. Features selection was 
performed using a random-forest-based algorithm with 10  000 
trees. The variable selection algorithm uses out-of-bag error as min-
imization criterion and carry out variable elimination from random 
forest, by successively eliminating the least important variables.36 
The most informative genes were identified using random forests 
and Gini importance providing a relative ranking of the classifier 
features from which a final model was selected distinguishing AR vs 
TX. A performance threshold was selected favoring negative pre-
dictive value (NPV) over positive predictive value (PPV; AR), and 
the model and threshold were then locked for validation (CTOT-14 
cohort). The locked model and threshold were also used on pre-AR, 
pre-TX, and pre–non-AR samples as well as post-AR. As each sub-
ject had serial samples collected, a linear mixed effect model with 
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random intercept was used to estimate the prebiopsy (or virtual TX 
biopsy) slope for each phenotype to account for within-patient cor-
relation. Data first stratified by phenotypes and coefficients were 
estimated and compared via linear mixed effect model. We used 
bootstrap method (n = 1000) to generate the 95% confidence inter-
val for estimation of the earliest day prior to diagnosis of detecting 
differences between groups. Another linear mixed effect model 
was fitted to compare the pre- and post-AR slopes. Analysis was 
performed using R version 3.5.1 (RStudio, Boston, MA).

Probes from the final locked models were then fed to Ingenuity 
Core Analysis (Qiagen, Inc, Hilden, Germany) that provides informa-
tion about enriched pathways and allows comparison to literature 
data.37 Enriched pathways were selected based on Fisher's exact 
test (P value < .05 statistically significant).

3  | RESULTS

3.1 | Northwestern University cohort

Recipients undergoing for-cause liver biopsies (46 AR, 38 ADNR) and 
concomitant sample collections were enrolled. The 38 ADNR biop-
sies consisted of 11 biliary obstruction/cholestasis, 11 nonspecific 
“hepatitis,” 9 steatosis/steatohepatitis, and 7 other. In addition, 45 LT 
recipients with stable graft function had sample collections drawn in 
clinic and labeled as TX. The overall cohort was 50.8 ± 13.0 years old 

at transplant, 54% male, 73% Caucasian, 23% fatty liver/cryptogenic, 
19% alcoholic, 30% immune mediated, 3% HCV nonviremic, and 24% 
other disease. AR subjects were younger, closer to transplant, and had 
LFT differences particularly compared to TX, as expected (Table 1).

3.2 | CTOT-14 cohort

A total of 186 LT recipients were enrolled. However, the final anal-
ysis included 75 patients who had 92 distinct phenotypes (14 AR 
biopsies, 28 ADNR biopsies, and 50 TX biopsy) with accompanying 
samples (Figure  1). The 28 ADNR biopsies consisted of 12 biliary 
obstruction/cholestasis, 6 ischemia/reperfusion injury, 5 nonspe-
cific “hepatitis,” and 5 steatosis/steatohepatitis. The overall cohort 
was 54  ±  11.7  years old at transplant, 60% male, 87% Caucasian, 
36% Fatty liver/cryptogenic, 24% alcoholic, 13% immune mediated, 
8% HCV nonviremic, and 19% other disease. There were statistically 
significant differences in CNI and mycophenolic acid use and LFT 
differences between AR and TX, also as expected (Table 1).

3.3 | Discovery and validation of AR vs TX genomic 
model (at diagnosis)

In the NU discovery set, blood samples at AR biopsy or the TX time 
point were analyzed by microarray. Selected probes generated the 

F I G U R E  1   CTOT-14 consort diagram—enrollment and clinical phenotypes with samples. ADNR, acute dysfunction no rejection; AR, 
acute rejection; BGE, blood gene expression; Bx, biopsy; CTOT, Clinical Trials in Organ Transplantation; HCV, hepatitis C virus; HCV-R, 
hepatitis C virus recurrence; TX, Transplant eXcellent
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final 36-gene probe model differentiating AR vs TX phenotypes. 
Given the NU cohort was not a prevalent population being enrolled 
only at biopsies later after LT, we used the late rejection prevalence 
averaged from the literature (15%) to report an adjusted PPV and 
NPV.38-41 This resulted in a high area under the curve (0.92) for AR 
vs TX at diagnosis (Figure  2). At a threshold of 0.5, the accuracy 
was 0.84, sensitivity 0.85, specificity 0.82, prevalence-adjusted 
PPV 0.46, and prevalence-adjusted NPV 0.97. Using the probability 
threshold from the discovery cohort, the locked NU 36-gene model 
(AR vs TX) was then applied to the CTOT-14 cohort for validation. At 
the 0.5 threshold, the accuracy was 0.77, sensitivity 0.57, specificity 
0.82, PPV 0.47, and NPV 0.87. We also analyzed the performance of 
the 36-gene AR vs TX model and threshold in distinguishing AR from 
ADNR. In the NU and CTOT-14 cohorts, 36 (55%) ADNR subjects 
classified as AR and 30 (45%) as TX.

3.4 | Serial prospective analysis of the AR vs TX 
genomic model (pre- and postdiagnosis)

To test the ability of the classifiers to detect AR vs non-AR prior 
to these diagnoses, we used 33 CTOT-14 serial samples collected 
before 12 AR, 24 prior to 11 ADNR, and 155 samples collected prior 
to 47 TX (virtual) biopsies. Of note, some in the diagnostic cohort 
(3 AR, 17 ADNR, and 3 TX) did not have prediagnosis samples that 
met the inclusion criteria and were excluded from the serial analy-
sis. The timing of sample collections are displayed in Supplementary 

Figure 1. To compare changes in gene expression over time predi-
agnosis, we compared the slopes of each line of scores between 
the phenotypes. This showed a difference between the directions 
of the line slopes prior to AR (positive) vs TX (negative) (Figure 3A). 
When combining TX and ADNR to further distinguish AR trajectory 
from the overall cohort, AR was also different in direction than non-
AR (Figure 3B). The slopes for each analysis were also statistically 
different in the mixed model (AR vs TX, P  <  .001; AR vs non-AR, 
P < .001). The earliest day prior to diagnosis for detecting significant 
gene expression score differences between AR vs TX was day −93 
(95%CI: −130, −17.725), and day −86 (95%CI: −131.975, −12) for AR 
vs non-AR. This divergence is also visually displayed in Figure 3A,B. 
Finally, we compared LFT trends over time to ensure there were no 
differences between AR and the other groups prior to the diagno-
ses, even though our criteria required normalcy over time. Starting 
at day −180 long before this gene expression divergence, there were 
no statistical differences between the AR vs TX and AR vs non-
AR groups in the slopes of bilirubin (P = .076, P = .94), ALT (P = .16, 
P = .205) or Alkphos (0.99, 0.949).

We performed a similar analysis for 53 samples following treat-
ment of 12 AR cases. All responded to treatment defined by normal-
ization of LFTs. This showed that the slope following treatment of 
AR turned negative, although not statistically different than pre-AR 
(Figure 3C; P = .08), suggesting that the slope increase prior to AR 
was similar to the decrease with treatment. Interestingly, the gene 
expression profile reached the TX threshold for months following 
AR diagnosis and treatment. The fitted models displayed in Figure 3 
are further specified in Table S1, including parameter estimates with 
confidence intervals, fixed and random effects, covariance struc-
tures, and covariates.

To evaluate for biological relevance, we tested the 36 probes 
using Ingenuity's pathway analysis.37 Table 2A displays the identifi-
cation (when reported) of the 36 genes and the direction and magni-
tude of gene expression. Most genes mapped to hepatic proliferation 
and inflammatory pathways—upregulated in AR and downregulated 
in TX. Tox analysis indicated that the highest percentage of genes 
have been previously reported to be involved in hepatic hyperplasia/
hyper-proliferation (Table 2B). The differential gene expression be-
tween AR and TX is also displayed in a heat map, hierarchical cluster 
plot, and 3-dimensional principal component analysis plot (Figures 
S2A, B and S3, respectively).

4  | DISCUSSION

The development of acute rejection after LT can significantly af-
fect patient and graft survival, although there is still an impetus 
to lower IS therapy as much as possible to reduce its adverse ef-
fects. This “trial and error” IS minimization is typically paused only 
when complications such as rejection occur. However, there are 
no established noninvasive tests for serially detecting preclini-
cal (eg, before LFT abnormalities) signs of rejection. In a recent 
similar publication, we described the validity of a biomarker in 

F I G U R E  2   The receiver operating curves (ROC)—AR vs TX (NU 
discovery cohort). The area under the curve is displayed as well as 
the performance characteristics (15% AR prevalence adjustment) at 
the 0.5 threshold (asterisk). AR, acute rejection; NU, Northwestern 
University; TX, Transplant eXcellent
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kidney transplant recipients in detecting silent rejection on biopsy 
in patients with stable graft function.33 As surveillance biopsies 
are not routinely used in LT recipients, there is a great need for 
noninvasive serial monitoring of patients undergoing more ag-
gressive early minimization, as these protocols are becoming more 
common.3-11

To address this, we have discovered and validated a blood 
biomarker profile diagnostic for AR that can be detected prior—
when LFTs are normal—to AR diagnosis/graft injury. We recently 
reviewed the stringent criteria needed for biomarker development 
and adhered to these in designing the current study.42 This pro-
file became evident approximately 90  days before AR and gene 
expression scores continued to increase up to AR diagnosis, dif-
ferent than the decrease in patients who never developed AR. 
Resolution of the AR gene profile occurred long after biochemical 
normalization, similar to histological resolution seen in other liver 
diseases.43 In addition, the AR genes mapped mainly to hepatic 
pathways, which are not specific to rejection itself but likely rep-
resent liver injury and regenerative responses. The strength in 
having a model that performs well with serial assessments lies in 
its potential to proactively monitor for early immune activation 
during interventions in clinical practice, such as IS minimization. 
This, however, needs to be proven in randomized interventional 
studies comparing biomarker-guided vs standard IS management 
approaches.

Although a number of key developments have been reported in 
kidney transplant and other organs,28,33,34,44-54 there is a paucity of 
literature on similar developments in LT. One of the reasons may be 
that chronic rejection in the setting of medication adherence is rare 
following LT compared to other organ transplants, and therefore 
there is less incentive to detect subclinical rejection. On the other 
hand, as IS minimization strategies continue to be of great interest, 
particularly early CNI avoidance or withdrawal, there is a need to 
know whether or when an immune-quiescent state turns active 
before biochemical graft dysfunction. Another reason is that prior 

work in LT biomarkers historically focused on distinguishing histo-
logical injury due to HCV versus AR.25-27,29 Given the advent of oral 
antiviral therapy, most patients are cured of HCV, essentially erasing 
this issue in clinical practice.

Finally, the lack of progress in this area in LT may be related to 
difficulties inherent to the development of predictive biomarkers. 
Prior studies have demonstrated genetic polymorphisms, gene ex-
pression profiles, blood lymphocyte populations, and complement 
proteins associated with AR in the LT population.15-18,20-24,28,55-58 
The major limitation of these studies has been small sample sizes, 
lack of validation cohorts, and statistical rigor and biomarker anal-
ysis mostly performed only at diagnosis. Recent data have focused 
on rejection biomarkers in select patients enrolled in IS withdrawal 
studies. Results from a multicenter trial9 involving early tapering to 
CNI monotherapy and randomization to withdrawal vs maintenance 
therapy between 1 and 2 years led to 2 discoveries: (1) 2 microRNAs 
increasing prior to AR during early IS minimization 28; and (2) detec-
tion of donor-specific antibodies during the course of IS withdrawal 
predicted rejection.59 Another smaller study demonstrated blood 
CXCL10 gene expression prior to rejection during IS withdrawal.29 
However, LFT increases were already occurring with gene expres-
sion changes, diminishing its clinical utility. Another study showed 
that graft mRNA expression was predictive of tolerance, although it 
was associated with iron homeostasis pathways and not clearly liver 
or immune related.21 Taken together, blood and tissue biomarkers 
may have a role in predicting rejection in specific tolerance studies, 
but they are at this point applicable only to highly select patients and 
not the overall LT population. Blood-based tests validated in rou-
tine serial monitoring, such as our model, may be more useful and 
generalizable.

As part of the CTOT-14 study, we have also recently reported a 
novel clinical/protein model (PRESERVE) that can predict deterio-
ration in renal function early after LT.60 In future trials, we envision 
evaluating both tests to select patients for early CNI minimization/
withdrawal (renal deterioration predicted by PRESERVE) and serially 

F I G U R E  3   Serial changes in gene expression using line slopes prior to AR, TX, and non-AR. A, Pre-AR vs pre-TX (P < .001). B, Pre-AR vs 
pre-non-AR (P < .001). C, Pre-AR vs post-AR, P = .085). The P value result is the phenotype comparison of the entire line slope from the time 
of transplantation, whereas the figures visually display a more focused time period around AR, TX, and non-AR diagnosis (Time 0). AR, acute 
rejection; TX, Transplant eXcellent [Color figure can be viewed at wileyonlinelibrary.com]
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TA B L E  2   AR vs TX 36-gene model

(A) Differential gene expression

Model probe Symbol Entrez gene name Log fold change (AR/TX) Log fold change (AR/ADNR)

227671_PM_at XIST X inactive specific transcript 2.556868022 1.325410826

205654_PM_at C4BPA complement component 4 binding protein alpha 1.101224469 0.897920852

209773_PM_s_at RRM2 ribonucleotide reductase regulatory subunit M2 0.967267674 0.516531643

213060_PM_s_at CHI3L2 chitinase 3 like 2 0.653342435 0.364803907

218350_PM_s_at GMNN geminin DNA replication inhibitor 0.600891795 0.192253388

217714_PM_x_at STMN1 stathmin 1 0.598102762 0.262734907

200878_PM_at EPAS1 endothelial PAS domain protein 1 0.588503631 0.48338859

1554696_PM_s_at TYMS thymidylate synthase 0.558038596 0.372408001

202016_PM_at MEST mesoderm specific transcript 0.543696437 0.259936021

227530_PM_at AKAP12 A-kinase anchoring protein 12 0.511682439 0.405332578

210358_PM_x_at GATA2 GATA binding protein 2 0.511546109 0.477037794

219859_PM_at CLEC4E C-type lectin domain family 4 member E 0.398082121 0.207993257

218782_PM_s_at ATAD2 ATPase family AAA domain containing 2 0.389173008 0.191528324

206486_PM_at LAG3 lymphocyte activating 3 0.312979113 0.149092455

238281_PM_at unidentified n/a −0.323326791 −0.253762725

212478_PM_at RMND5A required for meiotic nuclear division 5 homolog A −0.333262502 −0.35407151

234431_PM_at GSN gelsolin −0.36530257 −0.112941939

240765_PM_at unidentified n/a −0.447735132 −0.29436907

236409_PM_at unidentified n/a −0.44992291 −0.249331692

233263_PM_at unidentified n/a −0.509725068 −0.312740615

237376_PM_at unidentified n/a −0.525639819 −0.250703138

231034_PM_s_at NHSL1 NHS like 1 −0.534151178 −0.227014882

1557685_PM_at ASAP1-IT2 ASAP1 intronic transcript 2 −0.563114239 −0.004750863

232229_PM_at SETX senataxin −0.593424521 −0.172365985

241391_PM_at unidentified n/a −0.611242782 −0.242805807

236216_PM_at unidentified n/a −0.635686036 0.013480067

244578_PM_at LCP2 lymphocyte cytosolic protein 2 −0.651164906 −0.257749646

242854_PM_x_at DLEU2 deleted in lymphocytic leukemia 2 −0.654282894 −0.274431034

242800_PM_at NHS NHS actin remodeling regulator −0.668760971 −0.055646547

243874_PM_at unidentified n/a −0.720702961 −0.167061836

233957_PM_at unidentified n/a −0.725537325 −0.240100487

238446_PM_at NAIP NLR family apoptosis inhibitory protein −0.756993933 −0.460497962

1560552_PM_a_at unidentified n/a −0.819147799 −0.391574931

243954_PM_at LINC00877 long intergenic nonprotein coding RNA 877 −0.880361117 −0.095247824

233700_PM_at PPP1R12B protein phosphatase 1 regulatory subunit 12B −0.905378045 −0.25976984

221874_PM_at KIAA1324 KIAA1324 −1.001702606 −0.692655875

(B) Ingenuity Pathway (Tox) analysis

Pathway category P value Gene symbols

Liver Hyperplasia/Hyperproliferation 8.75E-05-3.8E-01 SETX,NHSL1,RRM2,XIST,LCP2,TYMS,C4BPA,ATAD2,LAG3,KIAA1324

Hepatocellular carcinoma 8.6E-04-4.46E-02 RRM2,XIST,TYMS,ATAD2

Cardiac inflammation 1.09E-03-1.09E-03 TYMS

Glomerular injury 4.34E-03-4.34E-03 STMN1

Polycythemia 4.34E-03-4.34E-03 EPAS1

(Continues)
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monitor with this biomarker to confirm that AR gene expression is 
not present before each IS reduction. This is why we selected the 
model and threshold optimizing for NPV because it is our intent to 
use the test in the future for reassurance of an immune-quiescent 
state during IS minimization. This personalized approach may allow 
for more optimal decision-making at each time point—for example, 
continue minimization if the blood test is below the threshold (eg, 
“TX”) vs stopping minimization if above the threshold (eg, “AR”). 
Other promising assays, such as microRNA and DSA, could also be 
evaluated to determine their utility.29,59

This study has limitations that need to be addressed. The sched-
ule of sample collections in our discovery and validation cohorts was 
different—single time points in the former and serial collections in 
the latter. However, we obtained samples at biopsies in both cohorts 
as part of routine clinical care. The serial CTOT-14 analysis was also 
based on serial samples preceding only 12 AR and 58 non-AR cases. 
Another limitation is that we did not have surveillance biopsies of 
normal histology that could be paired with blood samples to most 
accurately define TX. As a result, we used “virtual biopsy” samples 
in both cohorts. Recent studies have demonstrated subclinical graft 
injury, often despite relatively normal liver tests, in adult and pedi-
atric LT recipients.61,62 However, the reality is that few LT centers 
perform surveillance biopsies in patients with normal function as de-
tecting subclinical graft injury has not been demonstrated to modify 
long-term outcomes, which is different than other organ transplants. 
Thus we had to use a clinical definition that would parallel a healthy 
“normal” recipient in real clinical practice. The 36-gene AR vs TX 
model also did not perform well in discriminating ADNR from AR at 

the time of biopsy. This is not surprising as ADNR is a mixture of graft 
injury causes which may represent an overlap of inflammatory (AR) 
and noninflammatory (TX) gene expressions. This issue has uncer-
tain relevance as clinicians typically perform liver biopsies, not blood 
tests, to determine causes of graft dysfunction, further emphasizing 
that the utility of the biomarker lies in its serial monitoring prior to 
these events. Finally, non-US patients and other variables like age, 
gender, race, ethnicity, time from transplant, and IS regimens were 
not included in our model given the difficulty in such bioinformatics 
adjustments, although having a biomarker independent of clinical 
variables is appealing in clinical practice.

In summary, the development of l biomarkers in LT could trans-
form the field, particularly with the focus on avoiding adverse events 
from both under- and over-immunosuppression. Our data represent 
an advance toward the development of clinically serviceable, blood-
based serial immune monitoring tests for use in liver transplanta-
tion, similar to other organs.33,34,44 In combination with early kidney 
injury markers,60,63 we are rapidly moving toward conducting bio-
marker-based interventional studies to proactively detect and re-
duce deleterious complications.
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(B) Ingenuity Pathway (Tox) analysis

Pathway category P value Gene symbols

Renal fibrosis 4.34E-03-4.34E-03 STMN1

Kidney failure 7.58E-03-7.58E-03 STMN1

Renal proliferation 7.58E-03-7.58E-03 STMN1

Liver steatosis 8.66E-03-8.66E-03 EPAS1

Anemia 1.08E-02-1.08E-02 EPAS1

Renal inflammation 1.19E-02-9.53E-02 TYMS,EPAS1

Renal nephritis 1.19E-02-9.53E-02 TYMS,EPAS1

Hyperbilirubinemia 1.83E-02-1.83E-02 EPAS1

Cardiac enlargement 3E-02-1.85E-01 AKAP12,GSN,EPAS1

Pulmonary hypertension 3.21E-02-3.21E-02 EPAS1

Renal necrosis/cell death 4.36E-02-2.84E-01 GSN,STMN1

Cardiac arrhythmia 8.44E-02-8.44E-02 LCP2

Tachycardia 8.44E-02-8.44E-02 LCP2

Liver inflammation/hepatitis 8.8E-02-8.8E-02 LCP2,AKAP12

Renal damage 9.14E-02-9.14E-02 LCP2

Liver necrosis/cell death 1.63E-01-1.63E-01 GSN

Cardiac necrosis/cell death 2.25E-01-2.25E-01 GSN

Abbreviations: ADNR, acute dysfunction no rejection; AR, acute rejection

TA B L E  2   (Continued)



2182  |     LEVITSKY et al.

DISCLOSURE S
The authors of this manuscript have conflicts of interest to dis-
close as described by the American Journal of Transplantation. 
Transplant Genomics Incorporated (Eurofins/Viracor): Josh Levitsky 
(Consultant, Stockholder), Sunil Kurian (Consultant, Stockholder), 
Michael Abecassis (Co-Founder, Stockholder).

DATA AVAIL ABILIT Y S TATEMENT
The data and metadata used for development will be uploaded to an 
independently managed database dbGAP or GEO and will be made 
available to research community after publication.

ORCID
Josh Levitsky   https://orcid.org/0000-0001-7527-6093 
Sumeet K. Asrani   https://orcid.org/0000-0001-9174-5670 
Anthony J. Demetris   https://orcid.org/0000-0002-9582-3733 

R E FE R E N C E S
	 1.	 Wiesner RH, Batts KP, Krom RA. Evolving concepts in the diagno-

sis, pathogenesis, and treatment of chronic hepatic allograft rejec-
tion. Liver Transpl Surg. 1999;5(5):388-400.

	 2.	 Watt KD, Pedersen RA, Kremers WK, Heimbach JK, Charlton 
MR. Evolution of causes and risk factors for mortality post-liver 
transplant: results of the NIDDK long-term follow-up study. Am J 
Transplant. 2010;10(6):1420-1427.

	 3.	 Levitsky J, O'Leary JG, Asrani S, et al. Protecting the kidney 
in liver transplant recipients: practice-based recommenda-
tions from the American society of transplantation liver and 
intestine community of practice. Am J Transplant. 2016;16(9): 
2532-2544.

	 4.	 Levitsky J, Feng S. Tolerance in clinical liver transplantation. Hum 
Immunol. 2018;79(5):283-287.

	 5.	 Benítez C, Londoño M-C, Miquel R, et al. Prospective multi-
center clinical trial of immunosuppressive drug withdrawal in 
stable adult liver transplant recipients. Hepatology. 2013;58(5): 
1824-1835.

	 6.	 Feng S, Ekong UD, Lobritto SJ, et al. Complete immunosuppres-
sion withdrawal and subsequent allograft function among pedi-
atric recipients of parental living donor liver transplants. JAMA. 
2012;307(3):283-293.

	 7.	 De Simone P, Nevens F, De Carlis L, et al. Everolimus with re-
duced tacrolimus improves renal function in de novo liver trans-
plant recipients: a randomized controlled trial. Am J Transplant. 
2012;12(11):3008-3020.

	 8.	 Teperman L, Moonka D, Sebastian A, et al. Calcineurin inhibi-
tor-free mycophenolate mofetil/sirolimus maintenance in liver 
transplantation: the randomized spare-the-nephron trial. Liver 
Transpl. 2013;19(7):675-689.

	 9.	 Shaked A, DesMarais MR, Kopetskie H, et al. Outcomes of immu-
nosuppression minimization and withdrawal early after liver trans-
plantation. Am J Transplant. 2019;19(5):1397-1409.

	10.	 Banff Working Group on Liver Allograft P. Importance of liver bi-
opsy findings in immunosuppression management: biopsy moni-
toring and working criteria for patients with operational tolerance. 
Liver Transplantation. 2012;18(10):1154-1170.

	11.	 Demetris AJ, Isse K. Tissue biopsy monitoring of operational tol-
erance in liver allograft recipients. Curr Opin Organ Transplant. 
2013;18(3):345-353.

	12.	 Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of 
infection and rejection: a meta-analysis using an immune function 
assay. Transplantation. 2006;82(5):663-668.

	13.	 Xue F, Zhang J, Han L, et al. Immune cell functional assay in mon-
itoring of adult liver transplantation recipients with infection. 
Transplantation. 2010;89(5):620-626.

	14.	 Cabrera R, Ararat M, Soldevila-Pico C, et al. Using an immune 
functional assay to differentiate acute cellular rejection from 
recurrent hepatitis C in liver transplant patients. Liver Transpl. 
2009;15(2):216-222.

	15.	 Fan H, Li LX, Han DD, Kou JT, Li P, He Q. Increase of peripheral 
Th17 lymphocytes during acute cellular rejection in liver transplant 
recipients. Hepatobiliary Pancreat Dis Int. 2012;11(6):606-611.

	16.	 Farid WRR, Pan Q, van der Meer AJP, et al. Hepatocyte-derived mi-
croRNAs as serum biomarkers of hepatic injury and rejection after 
liver transplantation. Liver Transpl. 2012;18(3):290-297.

	17.	 Gomez-Mateo J, Marin L, Lopez-Alvarez MR, et al. TGF-beta1 
gene polymorphism in liver graft recipients. Transpl Immunol. 
2006;17(1):55-57.

	18.	 Joshi D, Salehi S, Brereton H, et al. Distinct microRNA profiles are 
associated with the severity of hepatitis C virus recurrence and 
acute cellular rejection after liver transplantation. Liver Transpl. 
2013;19(4):383-394.

	19.	 Kamei H, Masuda S, Nakamura T, Oike F, Takada Y, Hamajima N. 
Association of transporter associated with antigen processing 
(TAP) gene polymorphisms in donors with acute cellular rejec-
tion in living donor liver transplantation. J Gastrointestin Liver Dis. 
2013;22(2):167-171.

	20.	 Karimi MH, Daneshmandi S, Pourfathollah AA, et al. Association of 
IL-6 promoter and IFN-gamma gene polymorphisms with acute re-
jection of liver transplantation. Mol Biol Rep. 2011;38(7):4437-4443.

	21.	 Bohne F, Martínez-Llordella M, Lozano J-J, et al. Intra-graft expres-
sion of genes involved in iron homeostasis predicts the develop-
ment of operational tolerance in human liver transplantation. J Clin 
Invest. 2012;122(1):368-382.

	22.	 Massoud O, Heimbach J, Viker K, et al. Noninvasive diagnosis of 
acute cellular rejection in liver transplant recipients: a proteomic 
signature validated by enzyme-linked immunosorbent assay. Liver 
Transpl. 2011;17(6):723-732.

	23.	 Moya-Quiles MR, Alvarez R, Miras M, et al. Impact of recipient 
HLA-C in liver transplant: a protective effect of HLA-Cw*07 on 
acute rejection. Hum Immunol. 2007;68(1):51-58.

	24.	 Sindhi R, Higgs BW, Weeks DE, et al. Genetic variants in major his-
tocompatibility complex-linked genes associate with pediatric liver 
transplant rejection. Gastroenterology. 2008;135(3):830-839.e10.

	25.	 Asaoka T, Kato T, Marubashi S, et al. Differential transcriptome pat-
terns for acute cellular rejection in recipients with recurrent hepatitis 
C after liver transplantation. Liver Transpl. 2009;15(12):1738-1749.

	26.	 Gehrau R, Maluf D, Archer K, et al. Molecular pathways differenti-
ate hepatitis C virus (HCV) recurrence from acute cellular rejection 
in HCV liver recipients. Mol Med. 2011;17(7–8):824-833.

	27.	 Sreekumar R, Rasmussen DL, Wiesner RH, Charlton MR. 
Differential allograft gene expression in acute cellular rejection and 
recurrence of hepatitis C after liver transplantation. Liver Transpl. 
2002;8(9):814-821.

	28.	 Shaked A, Chang B-L, Barnes MR, et al. An ectopically expressed 
serum miRNA signature is prognostic, diagnostic, and biologically 
related to liver allograft rejection. Hepatology. 2017;65(1):269-280.

	29.	 Bonaccorsi-Riani E, Pennycuick A, Londoño M-C, et al. Molecular 
characterization of acute cellular rejection occurring during inten-
tional immunosuppression withdrawal in liver transplantation. Am J 
Transplant. 2016;16(2):484-496.

	30.	 Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging 
of chronic hepatitis. J Hepatol. 1995;22(6):696-699.

	31.	 Banff schema for grading liver allograft rejection: an international 
consensus document. Hepatology. 1997;25(3):658-663.

	32.	 Demetris AJ, Bellamy C, Hübscher SG, et al. 2016 comprehensive 
update of the Banff Working Group on Liver Allograft Pathology: 

https://orcid.org/0000-0001-7527-6093
https://orcid.org/0000-0001-7527-6093
https://orcid.org/0000-0001-9174-5670
https://orcid.org/0000-0001-9174-5670
https://orcid.org/0000-0002-9582-3733
https://orcid.org/0000-0002-9582-3733


     |  2183LEVITSKY et al.

Introduction Of Antibody-Mediated Rejection. Am J Transplant. 
2016;16(10):2816-2835.

	33.	 Friedewald JJ, Kurian SM, Heilman RL, et al. Development and clin-
ical validity of a novel blood-based molecular biomarker for sub-
clinical acute rejection following kidney transplant. Am J Transplant. 
2019;19(1):98-109.

	34.	 Kurian SM, Williams AN, Gelbart T, et al. Molecular classifi-
ers for acute kidney transplant rejection in peripheral blood 
by whole genome gene expression profiling. Am J Transplant. 
2014;14(5):1164-1172.

	35.	 Michell CM, Nass SJ, Ommen GS. Evolution of Translational Omics: 
Lessons Learned and the Path Forward. Washington, DC: Institute of 
Medicine, The National Academies Press;2012:0-354. https://doi.
org/10.17226​/13297

	36.	 Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classifica-
tion of microarray data using random forest. BMC Bioinformatics. 
2006;7:3.

	37.	 Chatzipetrou MA, Mathew JM, Kenyon NS, et al. Analysis of 
post-transplant immune status in recipients of liver/bone marrow 
allografts. Hum Immunol. 1999;60(12):1281-1288.

	38.	 Ramji A, Yoshida EM, Bain VG, et al. Late acute rejection after liver 
transplantation: the Western Canada experience. Liver Transpl. 
2002;8(10):945-951.

	39.	 Uemura T, Ikegami T, Sanchez EQ, et al. Late acute rejection after 
liver transplantation impacts patient survival. Clin Transplant. 
2008;22(3):316-323.

	40.	 Thurairajah PH, Carbone M, Bridgestock H, et al. Late acute liver 
allograft rejection; a study of its natural history and graft survival in 
the current era. Transplantation. 2013;95(7):955-959.

	41.	 Levitsky J, Goldberg D, Smith AR, et al. Acute rejection increases 
risk of graft failure and death in recent liver transplant recipients. 
Clin Gastroenterol Hepatol. 2017;15(4):584-593e582.

	42.	 Kurian SM, Whisenant T, Mas V, et al. Biomarker guidelines for 
high-dimensional genomic studies in transplantation: adding 
method to the madness. Transplantation. 2017;101(3):457-463.

	43.	 Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management 
of autoimmune hepatitis. Hepatology. 2010;51(6):2193-2213.

	44.	 Modena BD, Kurian SM, Gaber LW, et al. Gene expression in bi-
opsies of acute rejection and interstitial fibrosis/tubular atrophy 
reveals highly shared mechanisms that correlate with worse long-
term outcomes. Am J Transplant. 2016;16(7):1982-1998.

	45.	 Mengel M, Sis B, Kim D, et al. The molecular phenotype of heart 
transplant biopsies: relationship to histopathological and clinical 
variables. Am J Transplant. 2010;10(9):2105-2115.

	46.	 Sellarés J, Reeve J, Loupy A, et al. Molecular diagnosis of an-
tibody-mediated rejection in human kidney transplants. Am J 
Transplant. 2013;13(4):971-983.

	47.	 Li L, Khatri P, Sigdel TK, et al. A peripheral blood diagnostic test 
for acute rejection in renal transplantation. Am J Transplant. 
2012;12(10):2710-2718.

	48.	 Suthanthiran M, Schwartz JE, Ding R, et al. Urinary-cell mRNA pro-
file and acute cellular rejection in kidney allografts. N Engl J Med. 
2013;369(1):20-31.

	49.	 Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for 
FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 
2005;353(22):2342-2351.

	50.	 Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal-al-
lograft rejection by measurement of messenger RNA for perforin 
and granzyme B in urine. N Engl J Med. 2001;344(13):947-954.

	51.	 Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene-expression profiling 
for rejection surveillance after cardiac transplantation. N Engl J Med. 
2010;362(20):1890-1900.

	52.	 Rush DN, Gibson IW. Subclinical inflammation in renal transplanta-
tion. Transplantation. 2019;103(6):e139-e145.

	53.	 Soma O, Hatakeyama S, Yoneyama T, et al. Serum N-glycan profiling 
can predict biopsy-proven graft rejection after living kidney trans-
plantation. Clin Exp Nephrol. 2020;24(2):174-184.

	54.	 Zhang W, Yi Z, Keung KL, et al. A peripheral blood gene expression 
signature to diagnose subclinical acute rejection. J Am Soc Nephrol. 
2019;30(8):1481-1494.

	55.	 Kamei H, Masuda S, Nakamura T, et al. Impact of glutathione 
S-transferase T1 gene polymorphisms on acute cellular rejection 
in living donor liver transplantation. Transpl Immunol. 2013;28(1): 
14-17.

	56.	 Evans PC, Smith S, Hirschfield G, et al. Recipient HLA-DR3, tumour 
necrosis factor-alpha promoter allele-2 (tumour necrosis factor-2) 
and cytomegalovirus infection are interrelated risk factors for 
chronic rejection of liver grafts. J Hepatol. 2001;34(5):711-715.

	57.	 Hanvesakul R, Spencer N, Cook M, et al. Donor HLA-C genotype 
has a profound impact on the clinical outcome following liver trans-
plantation. Am J Transplant. 2008;8(9):1931-1941.

	58.	 Toby TK, Abecassis M, Kim K, et al. Proteoforms in peripheral blood 
mononuclear cells as novel rejection biomarkers in liver transplant 
recipients. Am J Transplant. 2017;17(9):2458-2467.

	59.	 Jucaud V, Shaked A, DesMarais M, et al. Prevalence and impact 
of de novo donor-specific antibodies during a multicenter immu-
nosuppression withdrawal trial in adult liver transplant recipients. 
Hepatology. 2019;69(3):1273-1286.

	60.	 Levitsky J, Asrani SK, Klintmalm G, et al. Discovery and validation of 
a biomarker model (PRESERVE) predictive of renal outcomes after 
liver transplantation. Hepatology. 2019;https://doi.org/10.1002/
hep.30939.

	61.	 Londoño M-C, Souza LN, Lozano J-J, et al. Molecular profiling of 
subclinical inflammatory lesions in long-term surviving adult liver 
transplant recipients. J Hepatol. 2018;69(3):626-634.

	62.	 Feng S, Bucuvalas JC, Demetris AJ, et al. Evidence of chronic al-
lograft injury in liver biopsies from long-term pediatric recipients of 
liver transplants. Gastroenterology. 2018;155(6):1838-1851e1837.

	63.	 Levitsky J, Asrani SK, Abecassis M, Ruiz R, Jennings LW, Klintmalm 
G. External validation of a pretransplant biomarker model 
(REVERSE) predictive of renal recovery after liver transplantation. 
Hepatology. 2019;70(4):1349-1359.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Levitsky J, Asrani SK, Schiano T, et al; 
for the Clinical Trials in Organ Transplantation – 14 
Consortium. Discovery and validation of a novel blood-based 
molecular biomarker of rejection following liver 
transplantation. Am J Transplant. 2020;20:2173–2183. https://
doi.org/10.1111/ajt.15953

https://doi.org/10.17226/13297
https://doi.org/10.17226/13297
https://doi.org/10.1002/hep.30939
https://doi.org/10.1002/hep.30939
https://doi.org/10.1111/ajt.15953
https://doi.org/10.1111/ajt.15953

