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Abstract

Artificial grammar learning (AGL) has become an important tool used to understand aspects of

human language learning and whether the abilities underlying learning may be unique to humans

or found in other species. Successful learning is typically assumed when human or animal partici-

pants are able to distinguish stimuli generated by the grammar from those that are not at a level

better than chance. However, the question remains as to what subjects actually learn in these

experiments. Previous studies of AGL have frequently introduced multiple potential contributors

to performance in the training and testing stimuli, but meta-analysis techniques now enable us to

consider these multiple information sources for their contribution to learning—enabling intended
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and unintended structures to be assessed simultaneously. We present a blueprint for meta-analysis

approaches to appraise the effect of learning in human and other animal studies for a series of

artificial grammar learning experiments, focusing on studies that examine auditory and visual

modalities. We identify a series of variables that differ across these studies, focusing on both

structural and surface properties of the grammar, and characteristics of training and test regimes,

and provide a first step in assessing the relative contribution of these design features of artificial

grammars as well as species-specific effects for learning.

Keywords: Artificial grammar learning; Meta-analysis; Comparative studies; Visual modality;

Auditory modality; Adjacent dependencies; Non-adjacent dependencies

1. Introduction

Artificial grammar learning (AGL) studies present learners with sequences of stimuli

that inhere particular structural properties (Miller, 1958) of differing complexity (e.g.,

Reber, 1967), and then test learners on their ability to respond to sequences that incorpo-

rate aspects of this structure. Such an approach has been a very powerful method

enabling investigations within a species into the possibilities and constraints on structural

learning, such as distinctions between phrase–structure grammars or finite state grammars

(e.g., Bahlmann, Schubotz, & Friederici, 2008), or the extent to which adjacent or non-

adjacent dependencies in sequences are available to the learner (e.g., Conway et al.,

2010; Gomez & Gerken, 1999; Jamieson & Mewhort, 2005; Lai & Poletiek, 2011;

Vuong, Meier & Christiansen, 2016). The paradigm is also of great potential use across

species, and it has been extensively used to address questions about what structures are

learnable by which species, and under what conditions (e.g., Abe & Watanabe, 2011;

Chen et al., 2015; Fitch & Hauser, 2004; Saffran et al., 2008).

There has already been substantial progress made in addressing these questions, result-

ing in an intensive array of studies of learning in birds (e.g., Abe & Watanabe, 2011;

Chen & ten Cate, 2015; Gentner et al., 2006; Spierings et al., 2015, 2017), non-human

primates (e.g., Endress et al., 2010; Heimbauer et al., 2018; Wilson, Smith, & Petkov,

2015), as well as human children and adults (e.g., Frost & Monaghan, 2017; Gomez &

Gerken, 1999; Saffran et al., 2008), addressing acquisition of multiple grammatical struc-

tures across these species. The other papers in this special issue provide a host of further

examples of the paradigm in use.

However, testing different structures and different species raises substantial methodolog-

ical problems when it comes to direct comparisons between grammars and between spe-

cies. Potential confounds both within and across studies have caused substantial concern in

the past in terms of the validity of conclusions being drawn from studies (e.g., Beckers

et al., 2012, 2017; Perruchet & Pacteau, 1990; Perruchet et al., 2004; de Vries et al., 2008),

such as determining exactly what aspect of the structure is being responded to—whether

that be the actual structures themselves, or some other feature of the stimuli (see, e.g.,

Knowlton & Squires, 1996). However, by using current meta-analysis techniques, the pres-

ence of these potential confounds can actually provide valuable opportunities for teasing
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apart some of the multiple factors that may contribute to learning. Thus, the pattern of such

confounds across studies provides a backdrop against which the contribution of specific

experimental design decisions can be assessed in terms of their effect on participant learn-

ing. Critically, meta-analysis permits researchers to quantify the effects of different kinds

of stimuli within a species, but also differences across species in how they may respond to

different grammatical structures. In this study, we present an analysis of a subset of AGL

studies, providing a framework that more comprehensive analyses can follow.

In cross-species comparisons, a key topic of interest is to determine which grammatical

structures are potentially learnable by distinct species (Fitch & Friederici, 2012; Ghir-

landa et al., 2017). The prospect of such discoveries has broad repercussions for the evo-

lution of communicative systems, and the human specificity of language structure. The

stakes are thus high. As one influential example, Fitch and Hauser (2004) conducted a

study that required human adults and cotton-top tamarins to distinguish between strings

generated by a phrase–structure and a finite-state grammar. Only Humans were able to

make this distinction when trained on strings from the phrase–structure grammar. Subse-

quent research, however, has revealed several confounds in this study, suggesting that the

humans may have relied on other sources of information to make their responses instead

of the intended structural information (e.g. Perruchet & Rey, 2005; de Vries et al., 2008).

An ideal, perfectly controlled methodological study would isolate a particular gram-

matical structure and test learning of that particular structure without influence from other

properties of the stimulus. However, the complexity of language structure and the practi-

cal challenges of training and testing different species on language-like structures intro-

duce variation into the actual tasks being conducted. Ensuring that only one particular

aspect of language structure is tested, and tested in the same way across studies involving

different species, remains a substantial, potentially insoluble, challenge.

In a recent small-scale review of cross-species studies of artificial grammar learning,

Beckers et al. (2017) identified several characteristics that could have biased learning

toward accepting the grammatical structure being tested without necessarily indicating

learning of the structure. These included the extent to which the test sequence had previ-

ously occurred in the same form during exposure to the training sequences (either wholly

or in part), whether the test sequence shared the same onset as the training sequences,

and whether the test and training sequences were cross-correlated even if they did not

contain exactly the same sequences or subsequences. Thus, in a study containing one or

more of these specific properties, it would be impossible to conclusively demonstrate that

the grammatical rule was acquired by the learner. Such questions have been raised for

almost as long as artificial grammar learning studies have been conducted—the extent to

which learning is of particular grammatical structures or instead responding to lower-level

fragments in the sequences (cf. Knowlton & Squire, 1996; Perruchet & Pacteau, 1990—
see Frost, Armstrong, Siegelman & Christiansen, 2015, for a review).

Artificial grammars also differ on fundamental structural properties. Some AGL studies

contain dependencies between adjacent stimuli, whereas others contain dependencies

between non-adjacent elements in the stimuli. Furthermore, artificial grammars may differ

in terms of the number of distinct stimulus elements that sequences contain, and the number
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of different categories to which these stimulus elements belong. An artificial grammar with

a larger versus a smaller vocabulary, or a larger versus smaller set of grammatical cate-

gories, may affect learning distinctly. Learning studies can also vary in terms of the modal-

ity of the stimuli—whether they are auditory or visual (Heimbauer et al., 2018). For

example, while cotton-top tamarins are often trained on auditory (e.g. human non-words,

monkey calls; Neiworth et al., 2017) and visual materials (e.g. structured visuospatial

sequences; Locurto, Fox, & Mazzella, 2015), zebra finches only receive auditory materials

consisting of manipulations of species-specific birdsong (e.g. Chen & ten Cate, 2015; van

Heijningen et al., 2009). Modality is known to have distinctive effects on learning sequence

structure (for reviews, see Frost et al., 2015; Milne, Wilson & Christiansen, 2018), and for

these reasons modality is taken as a focus of the literature that we will analyze.

Artificial grammar learning studies also differ in terms of how training and testing is con-

ducted. Studies of complex sequences with non-human primates and birds may require sub-

stantial training time—several thousand trials over several weeks—whereas studies with

human adults are typically constrained to short training sessions with a constrained set of

training trials. Testing also varies in terms of how the effects of learning are measured. For

instance, in testing human adults and children there is frequently a distinction between

explicit, reflection-based tasks for adult responses, such as alternative forced choice, or go/

no–go responses, and implicit, processing-based tasks such as head-turn preferences or

looking times. These tasks may tap into different mechanisms, with processing-based tasks

more effective for assessing processing-based learning, such as acquisition of grammatical

structures (Christiansen, 2019; Frizelle, O’Neill, & Bishop, 2017; Isbilen et al., 2018).

As we have summarized, studies of artificial grammar learning may vary along several

of these dimensions simultaneously. In this paper, we present a blueprint for how a meta-

analysis approach could proceed to quantify how various design features of AGL studies

might influence performance. We analyze a subset of AGL studies that have focused on

presenting stimuli in either auditory or visual modalities, as reflected in the key words

used within these articles. As we focus only on a subset of AGL studies, the conclusions

drawn within the analysis may not generalize to the wider literature. The primary aim of

our study is thus to provide a meta-analytic framework that a more comprehensive study

may adopt. We show how meta-analytical methods enable us to measure the relative con-

tributions of multiple potential confounds—reconsidered here as moderators—in influenc-

ing the size of the observed effects. This means that what was once considered a

confound can actually be reinterpreted as providing a valuable and interesting source of

data toward determining the limits and constraints on learning within and across species.

2. Method

2.1. Literature search

We conducted the literature search and meta-analysis in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
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(Moher, Liberati, Tetzlaff, & Altman, 2009), pre-registering the encoding and analysis to

be conducted (https://aspredicted.org/wf2uk.pdf). The literature search was conducted on

the SCOPUS database (Scopus, 2019) on articles published up to March 2019. In order to

focus our literature review, we searched for studies that considered explicitly the modality

of presentation in artificial grammar learning. We therefore conducted two searches of

keywords appearing in titles, keywords, and abstracts of articles. In the first, we searched

the keywords “artificial grammar learning” and “vision” OR “visual.” In the second, we

used the keywords “artificial grammar learning” and “auditory” or “audio” or “audiovi-

sual.” The results were then merged into a master list and submitted to study selection

criteria.

The search we performed avoided bias in selecting publications for analysis, in accor-

dance with PRISMA guidelines, but it is important to note that the results of the search

were not comprehensive in including all papers that conducted AGL studies with auditory

or visual stimuli. The literature search for instance failed to include several influential

artificial grammar learning studies (e.g., Fitch & Hauser, 2004; Gentner et al.,

2006; Reber, 1967; Saffran, 2001; Saffran et al., 2008). Our approach therefore outlines a

blueprint for conducting meta-analyses of potential design differences in AGL research,

rather than to provide a final, comprehensive answer as to the size of effects of learning

in AGL studies.

2.2. Study selection

The literature search resulted in 91 records. Of these, 11 were duplicates. Of the 80

articles remaining, 8 were review articles, 3 presented computational modeling and no

behavioral data, 1 study reported neuroimaging data of primates with no behavioral data,

and 2 reported a case study on an aphasic population with no control group. These arti-

cles were removed, and the remaining 66 articles contained 78 studies involving 3,559

subjects (this includes subjects tested more than once in the same article—see Results

section for how the analysis took into account multiple studies within articles). Fig. 1

shows the PRISMA literature search flowchart. The list of studies included are reported

in Data S1 and S2.

2.3. Data extraction and effect size calculation

The effect size for each study was initially computed as Cohen’s d, and subsequently

corrected to Hedge’s g, with the variance of g computed in accordance with Borenstein

et al. (2009). Formula (1) provides correction factor J, which is multiplied with Cohen’s

d to provide Hedge’s g (2). The variance of Hedge’s g, Vg, was provided by (3), where

the variance of Cohen’s d is computed, and corrected by J.

J ¼ 1� 3

4df � 1

� �
; ð1Þ
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g ¼ J � d; ð2Þ

Vg ¼ 1

n
þ d2

2� n

� �
� J2: ð3Þ

Cohen’s d was derived for each type of dependent variable; the dependent variable for

each study is shown in Data S1 and S2. For studies reporting the number correct, num-

bers endorsed or responded to, or go/no–go responses as the dependent variable, the

effect size was computed from the difference to chance responding in a one-sample test

(see Eq. 4):

d ¼ Mean� Chance

SDWithin
: ð4Þ

In cases where tests and language structures were similar over different test sessions or

conditions (e.g., Cope et al., 2017; Goranskaya et al., ; Mueller et al., 2010), we com-

bined the means and SDs from each of the multiple test sessions, and computed the one

sample difference from chance. The pooled mean was simply computed as the arithmetic

mean across the sessions, weighted by number of participants in the session. For pooled

SD, we took the average SD using Eq. 5, where n1 is the number of items in test session

1, n2 is the number of items in test session 2, etc., and SD1 is the observed standard

Fig. 1. Flowchart of the PRISMA literature search criteria used in the current meta-analysis.
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deviation of the test session 1 response accuracy, etc. (see van Witteloostuijn, Boersma,

Wijnen, & Rispens, 2017):

SDAverage ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞSD2

1 þ n2 � 1ð ÞSD2
2 þ n3 � 1ð ÞSD2

3 þ n4 � 1ð ÞSD2
4

n1 þ n2 þ n3 þ n4 � 4

s
ð5Þ

Subsequently, we computed d using Eq. 4, with the pooled mean, 50% as chance,

divided by the SDAverage. In serial reaction time studies, the effect was measured as the

standardized mean difference in RT between presentations of a trained versus an

untrained structure, with SDAverage computed as in Eq. 5, which assumes conservatively

that there is a correlation of 1 between the trained and untrained structure responses

across participants (a lower correlation would result in a lower SD, so this formula pro-

vides a conservative upper limit for the effect size). For instance, for Kemeny and

Nemeth’s (2018) data represented in Fig. 3,we present the mean response time (RT) and

SEM per testing block. In this case, we pooled the mean RT for the grammatical blocks 4

and 6 weighted by the number of participants in the session, and computed d as the

difference to the mean RT for the ungrammatical block 5, with SD computed as the

SDAverage across blocks 4, 5, and 6, using Eq. 5.

For sequence reproduction tasks, the effect size was computed as the difference in

mean accuracy for grammatical sequences and ungrammatical sequences, with SD as the

SDAverage computed using Eq. 5.

In head-turn preference paradigms (e.g., Gomez & Gerken, 1999), effect size was the

proportion of trials where the participant turned toward the grammatical violation

sequences over the grammatical sequences, indicating observation of the violation. These

values were compared to chance and d computed in the same way as for response accu-

racy measures.

For looking time paradigms (e.g., Milne et al., 2018), the effect size was computed as

the difference in fixation duration between grammatical and ungrammatical sequences,

computed using the same approach as that for sequence reproduction paradigms. Positive

effects were generally computed as longer looking to ungrammatical than grammatical

sequences (a novelty effect). However, in cases where the interpretation of the authors

suggested that longer looking times to grammatical stimuli (or preferences in head-turn to

grammatical sequences) reflected greater learning (i.e., a familiarity effect), we re-signed

these effects.

In studies where means and variance were reported only in figures, we contacted

authors for data and utilized the Digitizeit digitizer software (available from http://www.d

igitizeit.de/; Bormann, 2012) when such data were not available, to extract the means and

SDs. In cases where graphs displayed the mean and 95% confidence intervals (Hall et al.,

2018), confidence intervals were converted into SDs according to Eq. 6, which assumes

that the authors had computed the confidence intervals using the t-distribution (which is

more conservative than assuming confidence intervals based on the Z-distribution), where
tcrit is the critical value of the t-distribution for n � 1 degrees of freedom at p = .05:
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SD ¼ ffiffiffi
n

p � upperlimit � lowerlimit

2� tcrit n� 1½ � : ð6Þ

Each study was encoded for several features in order to test their influence on learning

performance. We encoded the animal class and species that was tested, and in the case of

human studies, distinguished whether the study was on children (<18 years) or adults.

For properties of the AGL structure, we encoded whether the study contained at least

some repetitions of the stimuli experienced during training in the testing, whether the arti-

ficial grammar contained adjacent dependencies or did not contain adjacent dependencies,

and whether the artificial grammar contained non-adjacent dependencies or did not con-

tain non-adjacent dependencies.

For characteristics of training and testing, we encoded the type of test response that

was being collected—whether this was a Yes versus No judgment, a go or no-go task, a

scale judgment, a forced choice test between two or more alternatives, serial reaction

time, head-turn preference, looking time, sequence production, or frequency estimation

task. We subsequently grouped these variables into whether they required reflection on

the grammatical structure (reflection-based; forced choice tests, yes versus no judgment,

go/no-go, scale judgement), or more directly tapped into the underlying processing of the

grammatical structure (processing-based; looking time, head-turn preference, serial reac-

tion time, sequence production) (Christiansen, 2019). We encoded the amount of expo-

sure to the artificial grammar that participants experienced in terms of the total number

of stimulus tokens from the grammar during exposure (training length).

Importantly, we also encoded a number of surface features of the AGL, including

whether the stimuli were visual, auditory, or a combination of both visual and auditory,

in order to determine whether learning varied according to the modality of the task. Fur-

ther, we also encoded the size of the artificial grammar in terms of the size of the vocab-

ulary in the grammar (or the number of distinct items), as well as the number of different

categories in the grammar (e.g., for a phrase–structure grammar with four nouns, two

verbs, two adjectives, and two determiners, the number of categories is 4 (noun/verb/ad-

jective/determiner) and the size of the vocabulary is 14.

3. Results

3.1. Evidence of acquisition of structure from AGL studies

The overall effect size across the studies, and the extent to which each of the encoded

study variables predicted differences in effect sizes across the studies, was determined by

conducting a random effects meta-analysis of effect sizes, using the R package metafor

(Viechtbauer, 2010). This approach takes into account inconsistencies between the studies

analyzed, provides an estimate of sampling error, and also permits a measurement of the

effects of each of the variables in moderating the size of the overall behavioral effect
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(Borenstein, Higgins, & Rothstein, 2009; Borenstein, Hedges, Higgins, & Rothstein,

2010). We encoded each experiment in an article and each test in an experiment as a sep-

arate study, and as these cannot be assumed to result in effect sizes independent from

one another, we encoded the article as a nested multilevel variable in the analysis (Kon-

stantopoulos, 2011).

The model was run using the rma.mv function with the restricted maximum likelihood

(REML) method. We utilized the t method to generate test statistics and confidence inter-

vals. The model was run using the rma.mv function with restricted likelihood (REML)

method, and the t-adjustment to calculate the model estimates of standard errors, p val-

ues, and confidence intervals. Effect sizes for individual studies and the overall average

weighted effect sizes are presented in Fig. 2. A positive effect size indicates greater pref-

erence for stimuli conforming to the AGL structure, while a negative effect size indicates

preference for non-conforming stimuli (except in the case of the looking studies, where a

positive effect indicates longer looking to violating stimuli—as this was the predicted

Fig. 2. Funnel plot showing the relationship between the standard error and the effect size of the individual

studies. Points are color-coded according to animal class. Black points illustrate Human Adult Studies, blue

illustrate Non-human mammals studies, red are Human Child studies, and green are Bird studies.
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effect of such studies in reflecting AGL acquisition, for example, Gomez & Gerken,

1999).

The meta-analysis resulted in the average weighted effect size = 1.069 (SE = 0.130,

95% CI [0.813, 1.326], p < .0001), indicating that overall there was strong evidence of

learning in AGL studies.

3.2. Publication bias

To determine whether there was publication bias in the sample, we conducted a

Peters’ test (Peters et al., 2006) on the random multilevel meta-regression model. The

Peters’ test revealed a significant asymmetrical distribution, t(154) = �2.290, p = .023,

indicating the presence of publication bias in our sample. The funnel plot (Fig. 2) dis-

plays the standard error (a measure of study precision) against the effect sizes of the indi-

vidual studies. In the absence of publication bias, studies should be symmetrically

distributed around the average weighted effect size in a funnel shape, with high precision

studies being closer to the average weighted effect size, and lower precision studies sym-

metrically distributed around the average weighted effect size. The distribution indicates

that there are more large positive effect sizes for smaller sample sizes than would be

expected from a standard distribution of studies, suggesting a potential publication bias.

The size of the effect of AGL acquisition, and the sources of heterogeneity of the effects,

should thus be considered in light of possible bias in the studies published.

3.3. Heterogeneity in effect size variance associated with study variables

Cohran’s Q-test for heterogeneity was significant (Q(155) = 1,185.657, p < .0001),

indicating that variance in the data cannot be explained by random measurement error,

but that different aspects of studies are contributing to the effect size. We thus analyzed

the effects of each of the set of variables we encoded from each of the studies as modera-

tors, shown in Table 1.

For the effect of animal class (but also distinguishing human adults and human chil-

dren from non-human mammals), there were significant differences on the size of effect

of learning between different species. For human adults, the overall effect size was 1.252

(SE = 0.148, 95% CI [0.958, 1.545], p < .0001). For human children, the overall effect

size was 0.615 (SE = 0.231, 95% CI [0.101, 1.129], p = .0237). For non-human mam-

mals, the overall effect size was 0.626 (SE = 0.172, 95% CI [0.221, 1.032], p = .008).

For birds, the overall effect size was 0.428 (SE = 0.533, 95% CI [�0.653, 1.509],

p = .427).

Properties of training and testing of AGL studies were found to produce significant dif-

ferences in effect sizes. Log-transformed number of training trials related negatively to

effect size, �0.188 (SE = 0.054, 95% CI [�0.295, �0.0815], p = .0006). Further, repeti-

tion of trained items at test resulted in larger effects 1.051 (SE = 0.279, 95% CI [0.499,

1.602], p = .0002).
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Surface-level features of the language did not significantly moderate the variance of

effect sizes (see Table 1), and this included also the modality of stimulus delivery. The

number of categories, the vocabulary size, and critically, whether the stimuli were visual

or auditory were not found to affect the overall effect size.

For the structural properties of the language, there were moderating effects. The pres-

ence of repetition of items from training to test positively influenced effect sizes, with an

overall effect of 1.051 (SE = 0.279, 95% CI [0.499, 1.602], p = .0002).

As there were different sized effects of learning for each animal class, and possible

confounds between study design characteristics and animal class tested, we conducted

further analyses of moderator variables for human adult, human child, birds, and non-hu-

man mammals separately.

3.4. Moderator analysis of human adults

There was significant heterogeneity of variance in the effect size in studies testing

human adults (Q(99) = 707.273, p < .001), so we analyzed the effect of each moderator

(see Table 2 for the significance of each moderator). There was a significant effect of the

presence of non-adjacent dependencies (effect = 0.582, SE = 0.259, 95% CI [0.068,

1.096], p = .027), suggesting that adult human participants are overall successful in learn-

ing non-adjacencies in artificial grammars.

Table 1

Contributions of each moderating variable to account for variance in effect sizes across studies

Moderator F Df1, Df2 p

Population

Animal species 2.613 (10, 145) <.0001***
Animal class 5.811 (3, 152) .0009***

Human vs. Non-human 7.555 (2, 153) .0007***

Training and testing

Log training length 12.149 (1, 154) <.0001***
Stimulus modality 0.095 (2, 153) .909

Test response 1.624 (10, 145) .105

Test type 3.698 (1, 154) .056

Surface-level properties

Categories in language 0.0001 (1, 154) .992

Number of unique vocabulary items 3.021 (1, 154) .084

Structural properties

Repetition of items 14.162 (1, 154) .0002**

Adjacent dependencies 0.238 (1, 154) .627

Non-adjacent dependencies 0.118 (1, 154) .608

Notes: F is the statistic for testing whether the moderator accounts for some heterogeneity between stud-

ies; p is the significance for the F-test ***p < .001, **p < .01, *p < .05. Note that Animal Class distin-

guishes birds, non-human mammals, human adult, and human child. Animal species also distinguishes human

adult and human child.
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3.5. Moderator analysis of human children

There was significant heterogeneity (Q(10) = 49.953, p < .0001), so we further ana-

lyzed the effect of each moderator (see Table 3). In this analysis, the only significant

moderator was the test response participants made. This analysis indicated that head-turn

preference paradigms produced an overall effect of 1.301 (SE = 0.1663, 95% CI [0.772,

1.831], p = .004). Sequence production paradigms, by comparison, produced an effect

that failed to statistically differ from 0 (effect size = 0.150, SE = 0.144, 95% CI

[�0.433, 0.721], p = .395). Finally, binary yes–no judgement tasks produced an overall

effect of 0.822 (SE = 0.099, 95% CI [0.506, 1.137], p = .004).

Table 2

Contributions of each moderating variable to account for variance in effect sizes in human adult studies

Moderator F Df1, Df2 p

Training and testing

Log training length 0.415 (1, 98) .521

Stimulus modality 0.306 (2, 97) .737

Test response 0.671 (8, 91) .716

Test type 1.884 (1, 98) .173

Surface level properties

Categories in language 0.319 (1, 98) .574

Number of unique vocabulary items 1.023 (1, 98) .305

Structural properties

Repetition of items 0.036 (1, 98) .851

Adjacent dependencies 1.745 (1, 98) .190

Non-adjacent dependencies 5.050 (1, 98) .027*

Notes: ***p < .001, **p < .01, *p < .05.

Table 3

Contributions of each moderating variable to account for variance in effect sizes in human child studies

Moderator F Df1, Df2 p

Training and testing

Log training length 0.214 (1, 9) .654

Stimulus modality 3.427 (1, 9) .097

Test response 15.978 (2, 8) .002**

Test type 0.271 (1, 9) .615

Surface-level properties

Categories in language 0.059 (1, 9) .813

Number of unique vocabulary items 0.862 (1, 9) .377

Structural properties

Repetition of items 2.503 (1, 9) .148

Adjacent dependencies 0.023 (1, 9) .884

Non-adjacent dependencies 0.012 (1, 9) .917

Notes: ***p < .001, **p < .01, *p < .05.
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3.6. Moderator analysis of non-human mammals

There was significant heterogeneity (Q(7) = 15.928, p < .026); therefore, we analyzed

the effect of each moderator (see Table 4). Non-human mammals only took part in stud-

ies delivered in the auditory modality, and all of which were processing based, included

adjacent dependencies, and did not include repetitions at test, and hence we did not

include a moderator analysis of testing modality, repetition of items, adjacency, and test-

ing type. No moderator accounted for a significant proportion of variance in this dataset.

3.7. Moderator analysis of birds studies

There was again significant heterogeneity (Q(36) = 259.498, p < .0001); therefore, we

analyzed the effect of each moderator (see Table 5). Birds, however, only took part in

classification-based tasks, and thus, we did not analyze the effect of test type. Log train-

ing length accounted for a significant portion of the variance, and increased training

resulted in a lower effect size �0.739 (SE = 0.268, 95% CI [�1.283, �0.195], p = .009).

Increased vocabulary sizes tended to increase effect sizes (effect size = 0.099,

SE = 0.038, 95% CI [0.022, 0.177], p = .014). Stimulus modality explained a significant

portion of variance, with visual stimuli producing larger effects (effect size = 1.993,

SE = 0.788, 95% CI [0.395, 3.592], p = .016) than auditory stimuli. The response task

used also accounted for a significant portion of variance of effect sizes; however, the

meta-analytic estimate for both 2AFC tasks (effect size = 2.288, SE = 0.135, 95% CI

[�0.488, 5.065], p = .090) and go/no-go tasks (effect size = �0.042, SE = 0.294, 95%

CI [�0.642, 0.559], p = .889) failed to significantly differ from 0. This reflects the fact

that variance of effect sizes in birds was large; to properly account for the moderating

effect of task type on the variance in effect size for bird studies, a larger set of studies

for inclusion would be helpful. Finally, the repetition of items accounted for a significant

portion of the variance of effect sizes, whereby repeating items at test resulted in an

effect size of 5.013 (SE = 0.740, 95% CI [3.511, 6.515], p < .0001). This effect is

explained by the only study including repetitions of whole strings at test (Spierings & ten

Cate, 2016) produced large effect sizes.

Table 4

Contributions of each moderating variable to account for variance in effect sizes in non-human mammal stud-

ies

Moderator F Df1, Df2 p

Training and testing

Log training length 1.121 (1, 6) .331

Test response 1.262 (1, 6) .304

Surface-level properties

Categories in language 0.760 (1, 6) .418

Number of unique vocabulary items 0.365 (1, 6) .567

Structural properties

Non-adjacent dependencies 0.111 (1, 6) .750
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4. Discussion

We presented a focused literature search analyzing AGL studies that address the

modality of stimulus presentation, taking into account the varieties of designs, as well as

species, that are tested across these studies. This approach provides a blueprint for how

meta-analysis in AGL studies can assess the influence of multiple moderators on learning,

providing insight into the conditions under which learning of regularities in artificial

grammars can be observed. Confounds and differences between studies—both intended

and unintended (and previously viewed as adding opacity to the field of research)—can

be considered sources of information for disentangling multiple contributors to learning

of artificial grammar stimuli, rather than serve only as an impediment to comparison

between studies. Heterogeneity of design can actually be analyzed through an estimate of

heterogeneity of variance which can then be associated with the presence or absence of

differences across studies.

This analysis was conducted to provide a framework as to how future, more compre-

hensive meta-analyses might robustly identify patterns in the artificial grammar learning

literature. However, our literature search was constrained by a restricted set of keywords

that selected only papers where AGL and modality of presentation were explicitly tagged

as features of the study. We know that influential studies in the literature were omitted

by our approach. Whereas our focus here was to avoid bias in selecting the papers for

inclusion in our analysis by conducting an objective keyword search, this absence of key

studies highlights that there are relevant papers that are not included in the current analy-

sis, and so the comprehensiveness of our search cannot be assumed. Consequently, the

precise results of the meta-analysis and the moderator analysis should not be taken as the

final word on this topic. Instead, we have shown how a future analysis, on an even more

comprehensive set of studies, may help move the field forward. Such a study will be a

considerable undertaking; a Scopus search with the keywords “artificial grammar

Table 5

Contributions of each moderating variable to account for variance in effect sizes in bird studies

Moderator F Df1, Df2 p

Training and testing

Log training length 7.609 (1, 35) .009**

Stimulus modality 6.407 (1, 35) .016*

Test response 6.407 (1, 35) .016*

Surface-level properties

Categories in language 0.053 (1, 35) .819

Number of unique vocabulary items 6.712 (1, 35) .014*

Structural properties

Repetition of items 45.926 (1, 35) <.0001***
Adjacent dependencies 2.462 (1, 35) .126

Non-adjacent dependencies 1.661 (1, 35) .206

Notes: ***p < .001, **p < .01, *p < .05.
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learning” or “statistical learning,” for instance, resulted in 6,511 records and still failed to

include the landmark studies by Fitch and Hauser (2004), Gentner et al. (2006), and

Reber (1967), mentioned in the Introduction, though the search did succeed in including

the key studies by Saffran (2001) and Saffran et al. (2008). Finding principled ways to

limit the literature search, without omitting key articles, presents an additional interesting

challenge in this field of research.

This shortcoming raises concerns about terminological specificity in the field of artifi-

cial grammar learning. If we take Fitch and Hauser’s (2004) study, this paper explicitly

implements an AGL method; however, it instead describes it as a “familiarization/dis-

crimination paradigm” in its abstract. Gentner et al. (2006) do not describe their method

in the abstract, and in text describe their method as a go/no-go operant conditioning pro-

cedure of ABn and AnBn grammars. Similarly, Saffran’s (2001) and Saffran et al.’s

(2008) methods are variously described as statistical learning, grammatical pattern learn-

ing, or familiarization–discrimination.

Cumming (2014) provided a compelling argument for favoring magnitude estimation

over null hypothesis significance testing in assessing experimental effects. A tenet of this

approach is to employ meta-analytic thinking throughout the research process, including

writing, reporting, and publication. The diversity of terms utilized to describe related

methods makes it difficult to devise a singular, constrained set of search terms that would

gather them together in a given search. Moving forward, we would suggest that using

informative, umbrella keywords will ameliorate this issue, facilitating meta-analyses, and

in Cumming’s (2014) view, support research integrity.

In terms of the results of our focused meta-analysis in terms of what can be learned

across animal classes, the analyses showed that the size of learning effects varies accord-

ing to the species tested, though the evidence of publication bias and the potential lack of

comprehensiveness in the search mean that interpretations based on size of effects must

be treated with caution. The overall largest effect was observed for studies involving

adult humans, but there were also overall significant effects of learning associated with

child humans, non-human mammals, though not for birds. However, there are many dif-

ferences between studies designed to appraise learning in different species, and hetero-

geneity of the variance within studies addressing each species points to ways in which

these design differences may have profound effects on learning. The analyses of modera-

tor effects within each animal class demonstrated that multiple variables were affecting

learning, highlighting potential distinctions across species.

The size of the observed effects for human children was affected by the test response

required, with similar effect sizes for head-turn preference and Yes/No judgement tasks.

While sequence production tasks did not significantly differ from 0, this likely reflects

the small number of child studies included in the present analysis. For birds, the presence

of training items at test produced large effects, perhaps unsurprising given the large

amount of training they receive. Intriguingly, a greater number of training trials related

negatively to effect size. This is likely correlated with the specific species of bird tested,

and thus represents an important variable to focus on in a comprehensive meta-analysis.

For adult humans, larger effects were produced by grammars containing non-adjacent
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dependencies than sequences without those dependencies, which have traditionally been

difficult to observe in individual studies (e.g., Frost & Monaghan, 2016; Lai & Poletiek,

2011; Perruchet et al., 2004); see Wilson et al. 2019 in this issue for further discussion.

The absence of a significant effect of adjacent dependencies was unexpected, but it high-

lights the variation that can occur in the effect sizes across studies testing these struc-

tures.

Further meta-analytical techniques can help determine the additional sources of infor-

mation that might support such learning, such as use of reflection- versus processing-

based test measures (Vuong et al., 2016). In order to measure the effect of learning on

processing, rather than explicit decision-making based on the structures experienced by

the learner, a task that probes processing is proposed to be more effective (Christiansen,

2019; Frizelle et al., 2017; Isbilen et al., 2018); however, in the present analysis there

was no statistically reliable difference between the two. This may be a consequence of

the comparatively large number of reflection-based effects (135) relative to processing-

based effects (21) included in this analysis, or of the range of grammars that tend to be

tested in AGL studies, a large number of studies use Reber-style (1967) grammars, where

explicit testing may produce a similar magnitude of effects. Moreover, the effect of

reflection-based measures may also have been inflated by including the non-human ani-

mal data as they are unlikely to engage in the kind of conscious reflections often

observed in human studies. Finally, the presence of a potential publication bias combined

with the much longer use of reflection-based assessments in AGL studies going more than

half a century may further explain this pattern.

A key issue that emerged during our analysis was that individual stimuli within a test

may contain alternative structures or vary in the presence of surface features. The analy-

ses in this paper report effect sizes and features of the stimuli across sets of stimuli,

which can obscure the individual influence of these features. Making raw data sets pub-

licly available would enable this by-items analysis to reveal the precise contribution of

multiple variables to learning behavior (e.g., Beckers et al., 2017).

The studies included here were selected from an objective literature search on SCO-

PUS, intending to avoid bias in our selection of tests, focusing on studies of AGL that

describe the modality of the stimuli. Interestingly, except in the case of birds, modality

was not found to affect the results, but this may also have been affected by observed pub-

lication bias. Expanding further to a literature search of an even broader literature would

help to determine more clearly which moderators are affecting performance, and which

are orthogonal to artificial grammatical learning. There are, for instance, other structures

that are of key interest to both language acquisition research, and cross-species investiga-

tions of the limits of grammar learning—such as distinctions between phrase structure

and finite-state grammars (Fitch & Friederici, 2012; Fitch & Hauser, 2004), or focused on

hierarchical center-embedded structures (Lai & Poletiek, 2011). Debates on the learnabil-

ity of these structures (e.g., de Vries et al., 2008) will be facilitated by a wider survey of

the published literature. In our blueprint for a meta-analysis approach in this field, we

have made an illustrative first step toward providing a perspective on what is learned and

what is learnable within and across species.
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