Skip to main content
. 2020 Jul 7;252(1):e5491. doi: 10.1002/path.5491

Table 1.

Previous work on location of glomeruli and the performance obtained.

Source Data/slide Approach Performance
Temerinac‐Ott et al [14]

Train: 16

Test: 4

Mutual information + CNN 68.94% F1
Kato et al [15]

Train: *

Test: 20

S‐HOG + SVM 86.6% F1
Marée et al [16] Total: 200 Ellipsoidal shape + decision tree 87% F1
Gadermayr et al [17] Total: 24 U‐Net 90% Dice
Gallego et al [18] Total: 40 AlexNet 93.7% F1 (pixel‐wise)
Sheehan et al [19] Total: 90 AlexNet + SVM 92% recall, 90% specificity
Bukowy et al [20]

Train: 72

Test: 13

Faster RCNN 96.9% precision, 96.8% recall
Bueno et al [21]

Train: 38

Test: 9

SegNet‐VGG19

99.8% precision, 99.2% F1

(pixel‐wise)

Sarder et al [22]

Train: *

Test: 15

Gabor filters 87.8% accuracy
Ginley et al [23]

Train: 41

Test: 13

DeepLab v2 93% accuracy
Simon et al [24]

Train: 25

Test: 9

Multi‐radial LBP + SVM 90.4% precision, 76.7% recall
Hermsen et al [25]

Train: 37

Test: 3

5 U‐Nets ensemble 79% Dice
Comparison I

Train: 360

Test: 40

U‐Net 89.2% precision, 90.6% recall
Comparison II U‐Net‐SSIM 91.4% precision, 92.1% recall
Comparison III Mask R‐CNN [26] 88.1% precision, 92.3% recall
Comparison IV FCOS [27] 91.7% precision, 92.8% recall
APRS U‐Net‐SSIM + marked watershed

93.1% precision, 94.0% F1

94.9% recall, 90.1% Dice

*

Not mentioned. Dice, dice coefficient; F1, F1 score.