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Abstract
In the context of survival analysis, calibration refers to the agreement between
predicted probabilities and observed event rates or frequencies of the outcome
within a given duration of time. We aimed to describe and evaluate methods
for graphically assessing the calibration of survival models. We focus on haz-
ard regression models and restricted cubic splines in conjunction with a Cox
proportional hazards model. We also describe modifications of the Integrated
Calibration Index, of E50 and of E90. In this context, this is the average (respec-
tively, median or 90th percentile) absolute difference between predicted survival
probabilities and smoothed survival frequencies. We conducted a series of Monte
Carlo simulations to evaluate the performance of these calibration measures
when the underlying model has been correctly specified and under different
types of model mis-specification. We illustrate the utility of calibration curves
and the three calibration metrics by using them to compare the calibration of a
Cox proportional hazards regression model with that of a random survival for-
est for predicting mortality in patients hospitalized with heart failure. Under a
correctly specified regression model, differences between the two methods for
constructing calibration curves were minimal, although the performance of the
method based on restricted cubic splines tended to be slightly better. In con-
trast, under a mis-specified model, the smoothed calibration curved constructed
using hazard regression tended to be closer to the true calibration curve. The
use of calibration curves and of these numeric calibration metrics permits for a
comprehensive comparison of the calibration of competing survival models.
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1 INTRODUCTION

Assessing calibration is an important component of deriving and validating clinical prediction models. Calibration refers
to the agreement between predicted and observed risk.1,2 Time-to-event outcomes are common in prognostic research.
Common examples include time to death or time to disease occurrence. While methods for evaluating the calibra-
tion of prediction models for binary outcomes (eg, logistic regression models) have been well-described,1-4 there is less
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information on methods to assess the calibration of models for time-to-event outcomes. When outcomes are time-to-event
in nature, the objective of prognostic models is frequently focused on estimating the probability of the occurrence of
the outcome within a specified duration of time. A classic example is one of the Framingham Risk Scores which uses
a survival model to estimate the probability of developing coronary heart disease within 10 years.5 When discussing the
calibration of models for time-to-event outcomes we are referring to assessing the agreement between the observed and
the estimated probability of the event occurring within a specified duration of time. Thus, calibration in this setting is
assessing observed and predicted probabilities at specific points in time. Thus, in the context of the Framingham Risk
Score, calibration would refer to comparing the observed and predicted probabilities of developing coronary heart disease
within 10 years.

The objective of this article is to describe and evaluate the performance of methods for assessing the calibration of
predicted probabilities derived from models for time-to-event outcomes. The article is structured as follows: In Section 2,
we summarize common methods for assessing calibration for binary outcomes and describe extensions to assessing cal-
ibration of predicted probabilities derived from models for time-to-event outcomes. In Section 3, we describe methods
to compute smoothed calibration curves for time-to-event models. We describe two methods, one based on a flexible
adaptive hazard regression model and the other based on the use of restricted cubic splines with a Cox proportional haz-
ards model. We also describe how to compute numeric metrics for summarizing calibration. In Section 4, we describe
a series of Monte Carlo simulations to evaluate the performance of these methods. In Section 5, we report the results
of these simulations. In Section 6, we present a case study illustrating the application of these methods when compar-
ing the calibration of a Cox proportional hazards model for predicting mortality after hospitalization for heart failure
with that of a random survival forest. Finally, in Section 7, we summarize our findings and place them in the context of
the literature.

2 METHODS FOR ASSESSING CALIBRATION FOR BINARY EVENTS AND
EXTENSIONS TO SURVIVAL ANALYSIS

2.1 Calibration for binary events

When outcomes are binary, calibration refers to the agreement between observed and estimated probabilities of the
occurrence of the event or outcome. A variety of methods have been proposed to assess calibration in this setting. First,
subjects can be divided into strata based on the predicted probability of the outcome (eg, dividing subjects into 10
equally sized groups using the deciles of the predicted probabilities). Then, within each stratum, the mean predicted
probability is computed as is the empirically estimated probability of the outcome (ie, the crude estimated probabil-
ity of the outcome amongst all subjects in the given stratum). The mean predicted probability of the outcome can
then be compared with the empirically estimated probability of the outcome across strata. These can be compared
graphically, with deviations from a diagonal line indicating lack of calibration. While this approach is simple to imple-
ment, a limitation is the potential loss of information resulting from binning subjects into strata based on predicted
risk. Second, rather than dividing subjects into strata based on the predicted probability of the outcome, smooth cal-
ibration curves based on loess regression smoothers or flexible nonlinear models can be produced.1-3 This approach
allows for an assessment of the agreement between observed and predicted risk across the spectrum of predicted risk.
Third, summary numeric measures of calibration, such as the Integrated Calibration Index (ICI), E50, E90, and Emax
can be reported.1,6 The ICI is the weighted difference between smoothed observed proportions and predicted proba-
bilities, in which observations are weighted by the empirical density function of the predicted probabilities. The ICI is
equivalent to the mean difference between predicted probabilities and observed probabilities derived from a smoothed
calibration curve. E50 and E90 denote the median and 90th percentile of the absolute difference between observed and
predicted probabilities. Emax denotes the maximum absolute difference between observed and predicted probabilities of
the outcome.

2.2 Extensions to survival outcomes

When outcomes are time-to-event in nature, calibration refers to the agreement between observed and estimated
probabilities of the occurrence of the event or outcome within specified durations of time. Assessing calibration of pre-
dicted probabilities derived from models for time-to-event outcomes is complicated by two issues. First, calibration is
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typically assessed for time-to-event outcomes by comparing observed vs predicted probabilities of the outcome occur-
ring within a specified time t. Thus, if multiple time points are of interest clinically, one would need to assess calibration
at each of these time points. Second, when assessing calibration at time t, one observes for a given subject, not the
probability of the outcome, but a time-to-event outcome. The most commonly used approach appears to be a modi-
fication of the stratification-based approach described above for use with binary outcomes.1 Subjects are divided into
strata based on the predicted probability of the occurrence of the event by time t. Within each stratum, the mean
predicted probability of the occurrence of the event by time t is computed. Then, within each stratum, the observed
probability of the occurrence of the event by time t is computed by fitting a Kaplan-Meier survival function to the
subjects in that stratum. The mean predicted and observed probabilities can then be compared across strata, possi-
bly using a scatter plot and superimposing a diagonal line on the resultant plot. Harrell suggests that a limitation of
this approach is that, in addition to the risk categories being arbitrary, the categorization of predicted risk can lead
to a loss of precision.1(p506) He suggested that smoothed calibration curves be constructed using the flexible adaptive
hazard regression model described by Kooperberg.7 This approach allows for estimating the relationship between the
observed outcome and predicted survival probabilities, which permit construction of smoothed calibration curves for
time-to-event outcomes without assuming a parametric form or proportional hazards. While Kooperberg's article on
hazard regression has been cited 178 times as of September 18, 2019 (Source: Web of Science), the large majority of
these citations were by articles in the statistical and methodological literature. There is little evidence that hazard
regression-based methods are commonly used to assess the calibration of time-to-event models. This approach, and a
related-approach, will be described in greater detail in the following section. Crowson described a set of methods for
assessing the calibration of Cox proportional hazards regression models based on fitting Poisson regression models.8
Modifications of these methods allow for the production of smoothed calibration curves, similar to those advocated
by Harrell.

The use of the Cox proportional hazards regression model is ubiquitous in modern medical research.9 However,
unlike parametric accelerated failure time models, the Cox regression model does not directly provide an estimate of
the probability of the occurrence of the event within a specified duration of time. Obtaining an estimate of the base-
line cumulative hazard function (eg, using the Breslow or Nelson-Aalen estimator) allows the analyst to estimate these
probabilities.10

3 GRAPHICAL CALIBRATION CURVES AND CALIBRATION METRICS
FOR SURVIVAL OUTCOMES

In this section we describe methods for constructing smoothed calibration plots for survival outcomes and how numerical
calibration metrics can be derived from these smoothed calibration curves.

3.1 Graphical calibration curves

Let F(t0| X) denote a model for estimating the probability of the occurrence of an event prior to time t0 for a
subject with covariate vector X. F(t0| X) could be a commonly used method such as a Cox proportional haz-
ard regression model or it could be a method from the machine learning literature, such as a random survival
forest.11 For each subject, let P̂t0 = F(t0|X) denote the predicted probability of the occurrence of the outcome prior
to time t0.

Kooperberg et al described a family of flexible adaptive hazard regression models that use linear splines and tensor
products to estimate the logarithm of the conditional hazard function.7 This family of hazard regression models con-
tains the proportional hazards models as a subclass. Hazard regression can be used to estimate a calibration curve for
time-to-event outcomes. Given the observed time-to-event outcome for each subject (T), one can fit a hazard regression
model: log(h(t)) = g(log(− log(1 − P̂t0)), t), in which the log-hazard of the outcome is modeled as a function of the com-
plementary log-log transformation of the predicted probability of the outcome occurring prior to time t0 (this predicted
probability was obtained using the model fit in the previous paragraph, whose calibration one now wants to assess). Note
that we use P̂t0 in the preceding function, to highlight that calibration is being assessed at time t0, with P̂t0 denoting the
predicted probability of an event occurring prior to time t0. Based on the fitted hazard model, an estimated probability of
the occurrence of the outcome prior to time t0 conditional on P̂t0 can be obtained. Note that while the model regressed
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the hazard of the outcome on the complementary log-log transformation of the predicted probability, we report results
on the probability scale for greater interpretability. For each observed value of P̂t0 , the estimated probability of the occur-
rence of the outcome occurring prior to time t0 is obtained. These are displayed graphically to produce a calibration plot
for time t0.

An alternative to the use of a flexible adaptive hazard regression model is to use a conventional Cox proportional
hazards model with restricted cubic splines to model the relationship between log(− log(1 − P̂t0)) and the log-hazard of
the outcome. Based on the fitted model, an estimated probability of the occurrence of the outcome prior to time t0 can
be estimated for each value of P̂t0 . From these estimated probabilities, a calibration curve can be constructed. While
this second approach can be implemented easily using standard statistical software, a disadvantage is having to assume
proportional hazards.

Note that in both approaches we have used the complementary log-log transformation for the predicted proba-
bilities rather than the probabilities themselves. In the experience of one of the authors, there are two advantages
to this approach. First, this transformation likely lessens the number of knots needed when using restricted cubic
splines. Second, it may increase the likelihood of a linear relationship between the probability of the outcome
and the linear predictor. The simplification of the fit is a result of not needing to impose any constraints in the
regression space.

Software for implementing both methods using the R statistical programming language is provided in Appendices A
and B.

3.2 Numerical metrics for calibration

Once a smoothed calibration curve has been constructed, one can compute the following numerical calibration metrics:
ICI, E50, and E90. For each subject we have a predicted probability of the outcome occurring within time t. Then, using
the smoothed calibration curve, one can determine an estimate of the smoothed observed probability of the outcome
occurring within time t. The ICI is computed as the mean absolute difference between observed and predicted proba-
bilities across the sample. This is equivalent to the weighted absolute difference between the calibration curve and the
diagonal line of best fit, where the difference is weighted by the distribution of predicted probabilities.6 E50 is the median
absolute difference between observed and predicted probabilities, while E90 is the 90th percentile of the absolute dif-
ference between observed and predicted probabilities. Let P̂t0 denote the predicted probability of the occurrence of the
outcome prior to time t0 and let P̂c

t0
denote the smoothed or predicted probability based on the smoothed calibration curve

(the latter is an estimate of the observed probability of the outcome that corresponds to the given predicted probability).
The ICI = 1

N

∑
∣ P̂c

t0
− P̂t0 ∣, while E50 is the median of ∣ P̂c

t0
− P̂t0 ∣ across the sample and E90 is the 90th percentile of

∣ P̂c
t0
− P̂t0 ∣ across the sample.

4 MONTE CARLO SIMULATIONS: METHODS

We conducted a series of Monte Carlo simulations to examine the ability of the methods described above to assess the
calibration of survival models. We examined three different scenarios: (i) the fitted model was correctly specified; (ii) the
fitted model omitted a quadratic term; (iii) the fitted model omitted an interaction. Our first set of simulations examined
the choice of number of knots when using restricted cubic splines to construct a calibration curve.

4.1 Choice of number of knots for the restricted cubic spline model

The number of knots used in the restricted cubic splines when modeling the relationship between the hazard of the out-
come and the predicted probability of the outcome within a given duration of time can be thought of as a hyper-parameter.
We conducted a series of simulations to determine the optimal value of this hyper-parameter when the underlying
regression model was correctly specified.

We simulated data for a large super-population consisting of 1 000 000 subjects. For each subject we simulated a con-
tinuous covariate x from a standard normal distribution: x∼N(0, 1). While frequently the focus will be on assessing the
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calibration of a multivariable model, one can think of the single continuous covariate as a linear predictor or risk score
that summarizes the multivariable contribution of a set of predictor variables. We then simulated a time-to-event out-
come for each subject so that outcomes followed a Cox-Weibull model, using methods described by Bender et al.12 We

simulated event times as follows: T =
(

− log(U)
𝜆 exp(𝛽𝑥)

)1∕𝜈
, where U is a random uniform number between 0 and 1, 𝛽 = log(1.5),

𝜆 = 0.0000227, and 𝜈 = 1.75. Thus, a one unit increase in x (equivalent to a one standard deviation (SD) increase) was
associated with a 50% increase in the hazard of the outcome, the median event time was approximately 1 year in the
super-population and the maximum observed event time was approximately 10 years. We determined the 10th, 25th, 50th,
75th, and 90th percentiles of event times in this large super-population. We refer to these times as t10, t25, t50, t75, and t90,
respectively.

From the large super-population, we draw a random sample of size N. In this sample we used a Cox proportional
hazards model to regress the hazard of the outcome on the single covariate X . The calibration of the fitted Cox model
was assessed using restricted cubic splines with k knots, as described in the previous section. We evaluated the calibra-
tion of the fitted model at the five times: t10, t25, t50, t75, and t90. Graphical smoothed calibration curves, ICI, E50, and
E90 were computed. This process was repeated 1000 times and the mean calibration curve was estimated across the
1000 simulation replicates (the values of each of the 1000 calibration curves were evaluated along the same grid; for
each value on that grid, we determined the mean value across the 1000 calibration curves). Similarly, ICI, E50, and E90
were averaged across the 1000 simulation replicates. We allowed one factor to vary in these simulations: the number of
knots. We considered three different values for this factor: 3, 4, and 5. The size of the random samples (N) was fixed
at 1000 subjects.

4.2 Correctly specified model

These simulations were similar to those described above with four exceptions. First, we used both restricted cubic splines
and hazard regression to assess model calibration. Second, we fixed the number of knots for the restricted cubic spline
model at three, based on the results from the previous set of simulations. Third, we allowed one factor to vary in this
set of simulations: the size of the random samples. We considered three different values for this factor: 500, 1000, and
10 000. Fourth, we introduced the presence of censoring and allowed the proportion of subjects who were censored to
vary across scenarios. We allowed the proportion of subjects that were censored to range from 0 to 0.60 in increments
of 0.10.

In order to incorporate censoring, we modified the data-generating process so that for each subject we simulated an
event time (using methods identical to those described above) and a censoring time. Censoring times were simulated
from an exponential distribution. For each subject, the observed survival time was the minimum of the simulated event
time and the simulated censoring time. Subjects were considered as censored observations if the censoring time was less
than the event time. A bisection approach was used to determine the rate parameter for the exponential distribution so
that the proportion of censored subjects in the super-population was equal to the desired value. Due to the presence of
censoring, we evaluated calibration at the specified quantiles of the observed survival time in the large super-population,
rather than at the specified quantiles of event times.

4.3 Model with quadratic relationship

The simulations described above evaluated the performance of the graphical calibration methods when the survival
model was correctly specified. This set of simulations was similar to those described in Section 4.2, with the following
modifications. First, event times were simulated as follows:

T =
(

− log(U)
𝜆 exp(𝛽1x + 𝛽2x2)

)1∕𝜈

,

where 𝛽1 = log(1.5) and 𝛽2 = log(1.25). Thus, the log-hazard of the outcome has a quadratic relationship with the con-
tinuous covariate x. In each random sample of size N, a mis-specified Cox proportional hazards model was fit. The
model incorporated only a linear term for x and omitted the x2 term. We did not incorporate censoring in this set of



AUSTIN et al. 2719

simulations for two reasons: (i) censoring was shown to have no effect in the previous set of simulations; (ii) to simplify
the presentation of the results.

4.4 Model with interaction

This set of simulations explored the use of graphical calibration methods when an interaction term was omitted from
the fitted model. This set of simulations was similar to those described in Section 4.2, with the following modifica-
tions. First, two covariates were simulated for each subject. As above, the first covariate was simulated from a standard
normal distribution: x1∼N(0, 1). However, the second covariate was simulated from a Bernoulli distribution with

parameter 0.5: x2∼Be(0.5). Second, event times were simulated as follows: T =
(

− log(U)
𝜆 exp(𝛽1x1+𝛽2x1x2)

)1∕𝜈
, where 𝛽1 = log(1) = 0

and 𝛽2 = log(2)− log(1) = log(2). Thus, among subjects for whom x2 = 0, there was no association between x1 and the
hazard of the outcome (hazard ratio = 1), while in subjects for whom x2 = 1, a one unit increase in x1 (equivalent to a one
SD increase) was associated with a 100% increase in the hazard of the outcome (hazard ratio = 2). In each random sample
of size N, a mis-specified Cox proportional hazards model was fit. The fitted model incorporated two variables: x1 and x2
and omitted the interaction between these two variables. As in the previous section, we did not incorporate censoring in
this set of simulations for two reasons: (i) censoring was shown to have no effect in the simulations in Section 4.2; (ii) to
simplify the presentation of the results.

4.5 Software

The Cox regression models were fit using the coxph function in the survival package (version 2.44-1.1) for R
(version 3.5.1). Calibration curves using hazards regression were estimated using the hare and phare functions
in the polspline package (version 1.1.15) for R. Restricted cubic splines were implemented using the rcs func-
tion from the rms package (version 5.1-2) for R. Note that the calibrate.* functions in the rms package make this
automatic.

5 MONTE CARLO SIMULATIONS: RESULTS

5.1 Number of knots for the restricted cubic spline model

The mean estimated calibration curves across the 1000 simulation replicates are described in Figure 1. The figure consists
of five panels, one for each of the five times points at which calibration was assessed (t10, t25, t50, t75, and t90). Each panel
displays the mean calibration curve for each of the three values of the number of knots (3, 4, and 5 knots). For each value
on the grid of predicted probabilities along which the mean calibration curve was estimated (see above), we also estimated
the 2.5th and 97.5th percentiles of the observed probabilities across the 1000 sampled datasets. Using these estimated
percentiles, we have superimposed lines for each of the three values of the number of knots reflecting the variability
in the estimated calibration curve across the 1000 simulation replicates. On each panel we have also superimposed a
non-parametric estimate of the density function of the predicted probabilities in the large super-population (right vertical
axis). Across the five times at which we assessed calibration, the use of three knots tended to result in calibration curves
that were closer to the diagonal line of perfect calibration. For each of the five times, the use of three knots resulted in
calibration curves that were, on average, indistinguishable from the line of perfect calibration. Furthermore, the estimated
calibration curves displayed increasing variability across simulation replicates as the number of knots increased from
three to five.

The mean estimated values of the ICI, E50, and E90, along with their SD across the 1000 simulated samples are
reported in Figure 2 (the standard errors of the different calibration metrics are reported as error bars). For all combi-
nations of time points (t10, t25, t50, t75, and t90) and metrics (ICI, E50, and E90), mean calibration was better when three
knots were used than when four or five knots were used. ICI was closer to zero when using three knots compared to when
using four knots in at least 77% of the simulated datasets across the five different percentiles of event time. ICI was closer
to zero when using three knots compared to when using five knots in at least 89% of the simulated datasets across the
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F I G U R E 1 Calibration plots when using restricted cubic splines (RCS) and different number of knots. For each of the three different
values of number of knots (3, 4, or 5), or there are three curves. The inner curve represents the mean calibration curve across the 1000
simulation replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation
replicates. The density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population
(right axis) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 ICI/E50/E90
when using RCS and different
number of knots. The squares
represent the mean value of
ICI/E50/E90 across the 1000
simulation replicates. The error
bars represent the SD of
ICI/E50/E90 across the 1000
simulation replicates [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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five different percentiles of event time. E50 was closer to zero when using three knots compared to when using four knots
in at least 66% of the simulated datasets across the five different percentiles of event time. E50 was closer to zero when
using three knots compared to when using five knots in at least 78% of the simulated datasets across the five different
percentiles of event time. E90 was closer to zero when using three knots compared to when using four knots in at least
74% of the simulated datasets across the five different percentiles of event time. E90 was closer to zero when using three
knots compared to when using five knots in at least 86% of the simulated datasets across the five different percentiles of
event time.

Based on the results of these simulations, we concluded that the use of three knots is preferable to the use of four
or five knots when using restricted cubic splines to compute calibration curves. Accordingly, this value was used in all
subsequent simulations.

5.2 Correctly specified regression model

The mean estimated calibration curves across the 1000 simulation replicates are described in Figures 3-8. There is one
figure for combination of sample size (500/1000/10 000) and method of constructing calibration curves (restrictive cubic
splines vs hazard regression). Due to the incorporation of different degrees of censoring, results from the different methods
could not be superimposed on the same figure and retain their readability. Each calibration curve is restricted to a range
of predicted probabilities ranging from the first to the 99th percentiles of risk in the population. Each figure consists of
five panels, one for each of the five time points at which calibration was assessed (t10, t25, t50, t75, and t90). Each panel
depicts the mean calibration curve for the given method of constructing calibration curves, along with lines denoting the
2.5th and 97.5th percentiles of the calibration curves across the 1000 simulation replicates. This pair of curves provides
an assessment of the variability of the calibration curves across simulation replicates. There is one set of curves for each

F I G U R E 3 Effect of degree of censoring on estimated calibration curves for different sample sizes and estimation methods. There are
three curves for each of the seven degrees of censoring. The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The
density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population (right axis) [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 Effect of degree of censoring on estimated calibration curves for different sample sizes and estimation methods. There are
three curves for each of the seven degrees of censoring. The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The
density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population (right axis) [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Effect of degree of censoring on estimated calibration curves for different sample sizes and estimation methods. There are
three curves for each of the seven degrees of censoring. The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The
density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population (right axis) [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 Effect of degree of censoring on estimated calibration curves for different sample sizes and estimation methods. There are
three curves for each of the seven degrees of censoring. The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The
density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population (right axis) [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Effect of degree of censoring on estimated calibration curves for different sample sizes and estimation methods. There are
three curves for each of the seven degrees of censoring. The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The
density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population (right axis) [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 8 Effect of degree of censoring on estimated calibration curves for different sample sizes and estimation methods. There are
three curves for each of the seven degrees of censoring. The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The
density function denotes a non-parametric estimate of the distribution of predicted risk across the large super-population (right axis) [Colour
figure can be viewed at wileyonlinelibrary.com]

of the different degrees of censoring. On each panel we have superimposed a diagonal line denoting perfect calibration.
On each panel we have also superimposed non-parametric estimates of the density of the predicted probabilities in the
large super-population (right vertical axis). Note that there is a separate density function for each of the different degrees
of censoring.

Regardless of the degree of censoring, both methods tended to result in calibration curves that were close to the diag-
onal line of perfect calibration over the range of predicted probabilities in which most subjects lay. When the sample size
was low, both methods resulted in calibration curves that displayed moderate to large variability in the region in which
predicted probabilities had low density. When the sample size was 500, differences between the two approaches were, at
most, minor. However, the method based on restricted cubic splines always resulted in a mean calibration curve that coin-
cided with the diagonal line denoting perfect calibration. When the sample size was 1000 or 10 000, then both methods
produced calibration curves that were, on average, essentially indistinguishable from the diagonal line of perfect calibra-
tion. Furthermore, when the sample size was 10 000, there was very little variation in the estimated calibration curves
across simulation replicates.

The mean estimated values of calibration metrics are reported in Figure 9 (ICI), Figure 10, (E50), and Figure 11
(E90). In each figure there are five panels, one for each of the times at which calibration is assessed. Since the fit-
ted model was correctly specified, we want the values of the calibration metrics to be close to zero. For both methods
(restricted cubic splines and hazard regression), ICI tended to be close to zero for most settings and times at which cal-
ibration was assessed. For each estimation method, ICI tended to decrease towards zero as the sample size increased.
For a given sample size and degree of censoring, the use of restricted cubic splines tended to result in an estimated
ICI that was closer to zero than did the use of hazard regression. For both methods (restricted cubic splines and haz-
ard regression). When assessing calibration at a higher percentile of survival time (75th and 90th percentiles), the
estimated ICI tended to increase as the proportion of subjects that were censored increased when restricted cubic
splines were used. The converse was true for lower percentiles of survival time. Similar results were observed for E50
and E90.
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F I G U R E 9 Relationship between degree of censoring and estimation of ICI. There is one line for each combination of sample size and
estimation method. The points represent the mean ICI across the 1000 simulation replicates [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 10 Relationship between degree of censoring and estimation of E50. There is one line for each combination of sample size
and estimation method. The points represent the mean E50 across the 1000 simulation replicates [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 11 Relationship between degree of censoring and estimation of E90. There is one line for each combination of sample size
and estimation method. The points represent the mean E90 across the 1000 simulation replicates [Colour figure can be viewed at
wileyonlinelibrary.com]

5.3 Incorrectly specified regression model: omission of a quadratic term

The mean estimated calibration curves across the 1000 simulation replicates are described in Figure 12 (sample
size = 500), Figure 13 (sample sizes = 1000), and Figure 14 (sample size = 10 000). The figures have a sim-
ilar structure to those of Figures 3-8, except that there are no calibration curves in the presence of censoring.
In all three figures the mean calibration curves differed from the diagonal line of perfect calibration. The mean
calibration curves tended to have an approximately quadratic shape, providing evidence that a quadratic term
had been omitted from the model. The variation displayed by the calibration curves decreased with increasing
sample size.

On each panel we have superimposed the true calibration curve (green curve) (which is defined differently from the
diagonal line of perfect calibration). This curve was estimated using the large super-population. We applied the true
(correctly specified) model and the mis-specified model to the super-population to estimate the true probability of the
outcome and the mis-specified probability of the outcome for each subject in the super-population. We then plotted
the true probability of the outcome against the mis-specified probability of the outcome using a solid green curve, to
denote the true calibration curve. In general, the smoothed calibration curve estimated using hazard regression tended
to be closer to the true calibration curve, compared with the calibration curve estimated using restricted cubic splines.
When making predictions at the 10th, 25th, and 50th percentiles of event time, differences between the two approaches
were minimal; however, the hazard regression-based approach tended to be slightly closer to the true calibration
curve.

The mean estimated values of the ICI, E50, and E90 are reported in the top section of Table 1. Since a mis-specified
model had been fit, we want the values of the calibration metrics to be different from zero, indicating that the
models are miscalibrated. The values of the calibration metrics reported in Table 1 are larger than those reported
when a correctly specified model was fit (Figures 9-11). For a given setting, the values of ICI, E50, and E90
obtained when using restricted cubic splines tended to be equal to or larger than those obtained when using hazard
regression.

http://wileyonlinelibrary.com
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F I G U R E 12 Calibration plots when the true model included a quadratic term (N = 500). There are three curves for each of the two
estimation methods (RCS and hazard regression). The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The green
curve denotes the true calibration curve derived from the large super-population. The density function denotes a non-parametric estimate of
the distribution of predicted risk across the large super-population (right axis) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 Calibration plots when the true model included a quadratic term (N = 1000). There are three curves for each of the two
estimation methods (RCS and hazard regression). The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The green
curve denotes the true calibration curve derived from the large super-population. The density function denotes a non-parametric estimate of
the distribution of predicted risk across the large super-population (right axis) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 14 Calibration plots when the true model included a quadratic term(N = 10,000). There are three curves for each of the two
estimation methods (RCS and hazard regression). The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The green
curve denotes the true calibration curve derived from the large super-population. The density function denotes a non-parametric estimate of
the distribution of predicted risk across the large super-population (right axis) [Colour figure can be viewed at wileyonlinelibrary.com]

The bottom section of Table 1 reports the ICI, E50, and E90 when comparing differences between predicted proba-
bilities and the true calibration curve described above (note that since the true calibration curve is estimated in the full
super-population, there are not separate values of the calibrations metrics for different sample sizes). Ideally, we want
the estimated values of these metrics to be close to the true values. The values of ICI, E50, and E90 produced using haz-
ard regression tended to be modestly closer to the “true” values of ICI, E50, and E90 than are the values produced using
restricted cubic splines.

5.4 Incorrectly specified regression model: omission of an interaction term

The mean estimated calibration curves across the 1000 simulation replicates are described in Figure 15 (sample
size = 500), Figure 16 (sample sizes = 1000), and Figure 17 (sample size = 10 000). The figures have a similar structure to
the previous sets of figures. These figures suggest that despite the omission of an interaction, the resultant models were,
in general, well-calibrated. When assessing calibration at all five time points, both methods resulted in mean calibration
curves that were close to the diagonal line that denotes perfect calibration in the range of predicted probabilities with the
highest density.

On each panel we have superimposed the true calibration curve (green curve). The true calibration curve is dif-
ferent from the diagonal line denoting perfect calibration. When making predictions at the 90th percentiles of event
time, the smoothed calibration curve estimated using hazard regression tended to be closer to the true calibration
curve compared with the smoothed calibration curve estimated using restricted cubic splines. When making predic-
tions at the 10th, 25th, 50th, and 75th percentiles of event time, neither approach resulted in smoothed calibration
curves that coincided with the true calibration curve over its entire range. Furthermore, neither approach resulted in
a smoothed calibration curve that was noticeably closer to the true calibration curve than that produced by the other
method.

http://wileyonlinelibrary.com


AUSTIN et al. 2729

F I G U R E 15 Calibration plots when the true model included an interaction term (N = 500). There are three curves for each of the two
estimation methods (RCS and hazard regression). The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The green
curve denotes the true calibration curve derived from the large super-population. The density function denotes a non-parametric estimate of
the distribution of predicted risk across the large super-population (right axis) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 16 Calibration plots when the true model included an interaction term (N = 1000). There are three curves for each of the two
estimation methods (RCS and hazard regression). The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The green
curve denotes the true calibration curve derived from the large super-population. The density function denotes a non-parametric estimate of
the distribution of predicted risk across the large super-population (right axis) [Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E 1 ICI, E50, and E90 in simulations with model with a quadratic relationship

RCS Hazard regression

Sample size Percentile of event time ICI E50 E90 ICI E50 E90

500 10 0.026 0.021 0.036 0.027 0.020 0.039

500 25 0.053 0.047 0.087 0.051 0.040 0.087

500 50 0.071 0.071 0.129 0.068 0.061 0.122

500 75 0.063 0.056 0.091 0.060 0.048 0.103

500 90 0.042 0.031 0.080 0.039 0.023 0.077

1000 10 0.026 0.021 0.035 0.027 0.020 0.036

1000 25 0.052 0.047 0.087 0.050 0.039 0.085

1000 50 0.071 0.071 0.130 0.067 0.060 0.123

1000 75 0.063 0.055 0.090 0.059 0.048 0.096

1000 90 0.042 0.031 0.079 0.038 0.023 0.072

10 000 10 0.026 0.021 0.035 0.026 0.019 0.031

10 000 25 0.052 0.047 0.086 0.050 0.040 0.076

10 000 50 0.071 0.071 0.130 0.064 0.057 0.117

10 000 75 0.063 0.054 0.088 0.055 0.046 0.076

10 000 90 0.042 0.031 0.080 0.036 0.024 0.060

True value of ICI, E50, and E90

Percentile of event time ICI E50 E90

10 0.026 0.020 0.029

25 0.049 0.042 0.075

50 0.063 0.059 0.116

75 0.054 0.047 0.065

90 0.035 0.025 0.058

The mean estimated values of the ICI, E50, and E90 are reported in the top section of Table 2. The values of
the three calibration metrics when an interaction was omitted were not meaningfully different from when the cor-
rect model had been specified (Figures 9-11). In the majority of the 15 settings, the values of ICI, E50, and E90
were marginally larger when hazard regression was used compared with when restricted cubic splines were used.
However, the small values for these metrics suggest that they cannot be used reliably to identify the omission of an
interaction.

The bottom section of Table 2 reports the ICI, E50, and E90 when comparing differences between predicted
probabilities and the true calibration curve described above (since the true calibration curve is estimated in the full
super-population, there are not separate values of the calibrations metrics for different sample sizes). The estimated val-
ues of ICI, E50, and E90 obtained using hazard regression (top section of table) tended to be closer to “true” values of
ICI, E50, and E90 (bottom section of table) than were the estimated values of ICI, E50, and E90 obtained using restricted
cubic splines (top section of table). In general, the estimated values of ICI, E50, and E90 obtained using hazard regression
were close to the “true” values of these metrics.

6 CASE STUDY

We provide a case study to illustrate the utility of graphical methods for assessing the calibration of sur-
vival models. We compare the calibration of a Cox proportional hazard model with that of a random
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F I G U R E 17 Calibration plots when the true model included an interaction term (N = 10,000). There are three curves for each of the
two estimation methods (RCS and hazard regression). The inner curve represents the mean calibration curve across the 1000 simulation
replicates. The outer two curves represent the 2.5th and 97.5th percentiles of the calibration curves across the simulation replicates. The green
curve denotes the true calibration curve derived from the large super-population. The density function denotes a non-parametric estimate of
the distribution of predicted risk across the large super-population (right axis) [Colour figure can be viewed at wileyonlinelibrary.com]

survival forest for modeling the hazard of mortality within 5 years of hospitalization for heart failure. We
assess the calibration of predictions of the probability of death within 1, 2, 3, 4, and 5 years using each
approach.

6.1 Data sources

The Enhanced Feedback for Effective Cardiac Treatment (EFFECT) Study was an initiative to improve the qual-
ity of care for patients with cardiovascular disease in Ontario.13 During the first phase, detailed clinical data were
collected on patients hospitalized with congestive heart failure (CHF) between April 1, 1999 and March 31, 2001
at 86 hospital corporations in Ontario, Canada. During the second phase, data were abstracted on patients hospi-
talized with this condition between April 1, 2004 and March 31, 2005 at 81 Ontario hospital corporations. Data
on patient demographics, vital signs and physical examination at presentation, medical history, and results of lab-
oratory tests were collected for these two samples. The first phase of the EFFECT sample will be used for model
derivation, while the second phase will be used as an independent validation sample from a different temporal
period.

Data were available on 9945 and 8339 patients hospitalized with a diagnosis of CHF during the first and second phases
of the study, respectively. After excluding subjects with missing data on any of the variables that will be included in our
prediction models, 8240 and 7608 subjects were available from the first and second phases, respectively, for inclusion in
the current study.

The outcome for the current case study was time from hospital admission to death, with subjects censored
after 5 years of follow-up if death had not yet occurred. Data on both in-hospital and out-of-hospital mortality were
available.

http://wileyonlinelibrary.com
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T A B L E 2 ICI, E50, and E90 in simulations with a model with an interaction

RCS Hazard regression

Sample size Percentile of event time ICI E50 E90 ICI E50 E90

500 10 0.005 0.005 0.008 0.009 0.008 0.014

500 25 0.012 0.011 0.019 0.015 0.013 0.025

500 50 0.018 0.017 0.032 0.019 0.017 0.032

500 75 0.017 0.016 0.030 0.019 0.017 0.031

500 90 0.012 0.010 0.020 0.013 0.011 0.023

1000 10 0.004 0.004 0.006 0.007 0.006 0.012

1000 25 0.009 0.009 0.016 0.012 0.011 0.020

1000 50 0.014 0.014 0.026 0.015 0.013 0.025

1000 75 0.014 0.013 0.024 0.016 0.015 0.026

1000 90 0.010 0.008 0.016 0.011 0.010 0.019

10 000 10 0.003 0.003 0.005 0.007 0.005 0.011

10 000 25 0.007 0.007 0.012 0.010 0.008 0.017

10 000 50 0.011 0.010 0.020 0.008 0.007 0.015

10 000 75 0.011 0.010 0.019 0.010 0.009 0.018

10 000 90 0.007 0.006 0.012 0.010 0.010 0.018

True value of ICI, E50, and E90

Percentile of event time ICI E50 E90

10 0.007 0.005 0.009

25 0.011 0.009 0.018

50 0.008 0.007 0.011

75 0.008 0.005 0.013

90 0.010 0.010 0.017

6.2 Methods

The candidate predictor variables considered in this case study were: age, sex, systolic blood pressure, heart rate,
respiratory rate, neck vein distension, S3, S4, rales >50% of lung field, pulmonary edema, cardiomegaly, diabetes, cere-
brovascular disease/transient ischemic attack, previous acute myocardial infarction, atrial fibrillation, peripheral vascular
disease, chronic obstructive pulmonary disease, dementia, cirrhosis, cancer, left bundle branch block, hemoglobin, white
blood count, sodium, potassium, glucose, urea, and creatinine.

We fit a Cox proportional hazard regression model in the derivation sample (EFFECT phase 1) in which the haz-
ard of mortality was regressed on all the variables listed above. The fitted model was then applied to the independent
validation sample (EFFECT phase 2). We also fit a random survival forest in the derivation sample, in which the haz-
ard of mortality was modeled using the covariates listed above.11 For the random survival forest, 1000 survival trees
were grown. Fivefold cross-validation was used in the derivation sample to determine the optimal number of predictor
variables to be selected at each node for consideration for use in splitting that node. The optimal number of predictor
variables to select was 21, when using ICI in the derivation sample as the optimization criterion. The fitted survival forest
was then applied to the independent validation sample. We evaluated the calibration of these two methods in the val-
idation sample at 1, 2, 3, 4, and 5 years post-admission. Graphical calibration curves were computed, as were ICI, E50,
and E90.

The random survival forests were fit using the rfsrc function from the randomForestSRC package (version 2.7.0)
for R. Software for conducting these analyses is provided in Appendices A and B.
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F I G U R E 18 Calibration curves for the Cox proportional hazard model and the random survival forest when RCS was used to construct
the calibration curves. There is one curve for each of the two models. The diagonal line denotes the line of perfect calibration. The density
function denotes a non-parametric estimate of the distribution of predicted risk across the sample (right axis) [Colour figure can be viewed at
wileyonlinelibrary.com]

6.3 Results

The calibration plots for the two methods are described in Figures 18 (restricted cubic splines approach) and
Figure 19 (hazard regression approach). Each figure consists of five panels, one each for assessing calibration at
1, 2, 3, 4, and 5 years post-admission. As in the previous figures, we have assessed calibration over an inter-
val ranging from the first percentile of predicted probabilities to the 99th percentile of predicted probabilities.
On each panel we superimposed the density function for the predicted probabilities of death within the given
interval as derived from the Cox proportional hazards model. The estimated ICI, E50, and E90 are reported
in Table 3.

In examining Figure 18, one observes that the Cox regression model and the random survival forests tended to have
comparable calibration. The one exception was when predicting the probability of death within 5 years of hospital admis-
sion, where the random forest displayed better calibration in subjects with high predicted probabilities of mortality. With
one exception, for each of the three calibration metrics (ICI, E50, and E90) and at each of the five time points (1, 2, 3, 4,
and 5 years), calibration was better for the Cox proportional hazards regression model than for the random survival for-
est (the exception was predicting survival at 1 year and assessing calibration using the ICI). Qualitatively similar results
were observed when using hazard regression to assess calibration of the two methods.

7 CONCLUSION

We described two methods for constructing smoothed calibration curves for assessing the calibration of models for
time-to-event outcomes. From these smoothed calibration curves, three different numerical calibration metrics can be
derived that quantify differences between predicted and observed probabilities. The use of graphical calibration curves
allows for an assessment of the calibration of survival models. Furthermore, the numeric calibration metrics will facilitate

http://wileyonlinelibrary.com
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F I G U R E 19 Calibration curves for the Cox proportional hazard model and the random survival forest when hazard regression was
used to construct the calibration curves. There is one curve for each of the two models. The diagonal line denotes the line of perfect
calibration. The density function denotes a non-parametric estimate of the distribution of predicted risk across the sample (right axis)
[Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 ICI, E50, and E90 in the validation sample of the case study

ICI E50 E90

Time from admission (years) Cox model Random forest Cox model Random forest Cox model Random forest

Restricted cubic splines for assessing calibration

1 0.030 0.029 0.029 0.033 0.036 0.042

2 0.043 0.045 0.044 0.050 0.045 0.066

3 0.048 0.056 0.051 0.062 0.057 0.087

4 0.048 0.061 0.051 0.066 0.065 0.099

5 0.065 0.077 0.071 0.085 0.089 0.131

Hazard regression for assessing calibration

1 0.039 0.043 0.045 0.047 0.053 0.061

2 0.045 0.049 0.051 0.057 0.058 0.067

3 0.047 0.053 0.052 0.061 0.062 0.080

4 0.050 0.052 0.054 0.055 0.068 0.092

5 0.067 0.071 0.073 0.076 0.091 0.126
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the comparison of the calibration of different models for survival data. We compared the use of flexible adaptive hazard
regression with that of a Cox model using restricted cubic splines and found that they had comparable performance for
constructing calibration curves. In most instances, differences between the two approaches tended to be negligible.

There is an extensive literature on assessing calibration of models for binary outcomes.1-4,14 In clinical and epi-
demiological research, time-to-event outcomes are also common. Methods for assessing the calibration of models for
time-to-event outcomes have received less attention. The purpose of the current study was 3-fold. First, to describe meth-
ods for graphically assessing the calibration of predicted probabilities of the occurrence of an event within a given duration
of time. Second, to describe numerical calibration metrics for summarizing the calibration of models for time-to-event
outcomes. Third, to conduct a series of Monte Carlo simulations to evaluate the performance of these methods in a wide
range of settings. The current study is, to the best of our knowledge, the most comprehensive study on methods for
assessing the calibration of models for time-to-event outcomes.

We have described three different numeric metrics for assessing the calibration of survival models. We suggest that
the greatest utility of these metrics will be for comparing the relative calibration of different prediction models. This
was illustrated in the case study, in which, when relying on graphical calibration curves, it was difficult to assess which
method had superior calibration. However, the calibration metrics were able to quantify that the Cox proportional hazards
model had superior calibration compared to the random survival forest. Given that there is no reference value for what
constitutes an acceptable value of ICI, E50, or E90, these metrics will have limited utility when attention is restricted to
a single model. However, these metrics can serve an important function when developing a prediction model. When the
prediction method includes tuning parameters (as do random survival forests), the value of these metrics can be evaluated
at different values of the tuning parameter and the value that optimizes calibration can be selected. This was done in our
case study.

As noted in the above, Crowson et al suggested that a set of three Poisson regression models could be used to assess
the calibration of a Cox proportional hazards model.8 The first model allows for assessing calibration-in-the large, which
quantifies the ratio of the number of observed events in the validation sample to the number of events predicted by the
regression model. The second model allows for estimation of the calibration slope, while the third permits a comparison of
observed and expected frequencies within risk strata. While the primary focus of that article was on assessing calibration
using strata defined by grouping subjects with a similar predicted risk of the outcome, they note that the latter approach
can be modified using regression smoothers to produce smoothed calibration plots. The current article provides several
novel contributions. First, we used simulations to examine the relative performance of two different approaches to con-
struct smoothed calibration curves. While Crowson and colleagues suggest that smoothing splines can be employed, we
considered the relative performance of two different methods of producing smoothed calibration curves (RCS vs hazard
regression). Second, we examined the performance of these methods in the face of model mis-specification. Third, we
described numerical calibration metrics (ICI, E50, and E90) that can be derived from smoothed calibration plots. These
metrics, which were originally proposed for assessing the calibration of models for binary outcomes, have not previously
been extended for use with time-to-event outcomes. Fourth, our simulations allowed for an assessment of the sampling
variability of both smoothed calibration curves and of the numerical calibration metrics.

In the current study, we have focused on graphical and numerical assessments of calibration. We have not focused
on formal goodness-of-fit tests. The Hosmer-Lemeshow test is a commonly used statistical test for formally assessing
the fit of a model for predicting the probability of binary outcomes.15,16 This test is based on comparing observed vs
predicted probabilities of the outcome across strata of predicted risk. Gronnesby and Borgan developed an extension of the
Hosmer-Lemeshow test for use with survival data under the assumption of proportional hazards.17 D'Agostino and Nam
developed a formal test for assessing the goodness-of-fit of survival models that was motivated by the Hosmer-Lemeshow
test, while Demler et al modified this test to improve its type I error rate when the proportion of subjects who were
censored was high.18,19 Similarly, May and Hosmer described goodness-of-fit tests for the Cox proportional hazards model
that are motivated by the Hosmer-Lemeshow test.20 While these tests provide a formal testing of the hypothesis of model
goodness-of-fit, they do not provide information on the magnitude of mis-calibration or whether lack of calibration is
only evident within a specific range of predicted risk. The methods described in the current article provide for both a
qualitative (graphical) and numeric (ICI, E50, and E90) assessment of calibration.

In our final set of simulations, we observed that, despite the omission of an interaction term, the resultant mis-specified
fitted model displayed good calibration. We note that under omnibus statistical tests such as general goodness-of-fit assess-
ments (eg, calibration curve departure from line of identity, Hosmer-Lemeshow test, assessment of residuals, and Q-Q
plots), specific model inadequacies (eg, omitted predictors, failure to account for nonlinearity, and omission of interac-
tions) may not be readily apparent. Furthermore, the analyst may have difficulty tracing the lack of fit back to the root
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cause. Omnibus tests in general will have less power than directed tests. So, while we greatly value the importance of cal-
ibration plots, we note that their primary purpose is to assess overall model accuracy (calibration-in-the-small) and not
principally to detect specific model structural problems. It is important to note that the omission of a variable can result
in a mis-specified model that still displays good calibration.

There are certain limitations to the current study. Our evaluation of graphical calibration curves and calibration met-
rics was based on Monte Carlo simulations. Due to computational limitations and constraints on manuscript length, we
were only able to examine a limited number of scenarios. These simulations were not intended to be comprehensive.
Instead, we illustrated that the calibration curves performed as intended when the model was correctly specified. Further-
more, we showed that these metrics identified some forms of model mis-specification (eg, omission of a quadratic term)
but not other forms of model mis-specification (eg, omission of an interaction). This latter set of simulations demonstrated
that a model can display adequate calibration despite being mis-specified.

In summary, we have described and evaluated methods for constructing calibration curves of models for time-to-event
outcomes and numerical calibration metrics. The use of graphical calibration curves allows for an assessment of the
calibration of survival models. The numeric calibration metrics will facilitate the comparison of the calibration of different
models for survival data.
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APPENDIX A. R CODE FOR CONSTRUCTING CALIBRATION CURVES AND NUMERICAL
METRICS OF CALIBRATION USING RESTRICTED CUBIC SPLINES

library(survival)
library(rms)
library(randomForestSRC)
library(pec)

################################################################################
# Read in EFFECT1-HF and EFFECT2-HF databases.
# Note: The authors are not permitted to distribute the data used in the
# case study. Please do not contact the authors requesting the data.
# This code is provided for illustrative purposes only and comes with
# absolutely NO WARRANTY.
################################################################################

effect1.df <- read.table("effect1.txt",header=T)

effect2.df <- read.table("effect2.txt",header=T)

################################################################################
# Fit Cox PH model to model hazard of death. Use all baseline covariates.
################################################################################

cox1 <- coxph(Surv(survtime,mort5yr) ∼ age + female + vs.sysbp + vs.hrtrate +
vs.resp + neckvdis + s3 + s4 + rales + pedm + cmg + diabetes + cvatia +
prevmi + afib + perartdis + copd + dementia + cirrhos + cancer + lbbb +
lb.hgb + lb.wbc + lb.sod + lb.pot + lb.glucose + lb.urea + lb.cr,
x=TRUE,data=effect1.df)

predict.cox <- 1 - predictSurvProb(cox1,newdata=effect2.df,times=365*(1:5))
# Predicted probability of death within 1,2,3,4,5years.

effect2.df$cox.1yr <- predict.cox[,1]
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effect2.df$cox.2yr <- predict.cox[,2]
effect2.df$cox.3yr <- predict.cox[,3]
effect2.df$cox.4yr <- predict.cox[,4]
effect2.df$cox.5yr <- predict.cox[,5]

effect2.df$cox.1yr.cll <- log(-log(1-effect2.df$cox.1yr))
effect2.df$cox.2yr.cll <- log(-log(1-effect2.df$cox.2yr))
effect2.df$cox.3yr.cll <- log(-log(1-effect2.df$cox.3yr))
effect2.df$cox.4yr.cll <- log(-log(1-effect2.df$cox.4yr))
effect2.df$cox.5yr.cll <- log(-log(1-effect2.df$cox.5yr))

################################################################################
# Survival forest
################################################################################

forest1 <- rfsrc(Surv(survtime,mort5yr) ∼ age + female + vs.sysbp + vs.hrtrate +
vs.resp + neckvdis + s3 + s4 + rales + pedm + cmg + diabetes + cvatia +
prevmi + afib + perartdis + copd + dementia + cirrhos + cancer + lbbb +
lb.hgb + lb.wbc + lb.sod + lb.pot + lb.glucose + lb.urea + lb.cr,
ntree = 1000,
nodesize = 21,
forest = T,
ntime = 365*(1:5),
seed = -17072019,
data=effect1.df)

predict.forest <- 1 - predict(forest1,newdata=effect2.df)$survival

effect2.df$forest.1yr <- predict.forest[,1]
effect2.df$forest.2yr <- predict.forest[,2]
effect2.df$forest.3yr <- predict.forest[,3]
effect2.df$forest.4yr <- predict.forest[,4]
effect2.df$forest.5yr <- predict.forest[,5]

effect2.df$forest.1yr.cll <- log(-log(1-effect2.df$forest.1yr))
effect2.df$forest.2yr.cll <- log(-log(1-effect2.df$forest.2yr))
effect2.df$forest.3yr.cll <- log(-log(1-effect2.df$forest.3yr))
effect2.df$forest.4yr.cll <- log(-log(1-effect2.df$forest.4yr))
effect2.df$forest.5yr.cll <- log(-log(1-effect2.df$forest.5yr))

################################################################################
# Calibration for predictions of 1-year survival probabilities
################################################################################

calibrate.cox <- coxph(Surv(survtime,mort5yr) ∼ rcs(cox.1yr.cll,3),x=T,
data=effect2.df)

calibrate.forest <- coxph(Surv(survtime,mort5yr) ∼ rcs(forest.1yr.cll,3),x=T,
data=effect2.df)

predict.grid.cox <- seq(quantile(effect2.df$cox.1yr,probs=0.01),
quantile(effect2.df$cox.1yr,probs=0.99),length=100)

predict.grid.cox.cll <- log(-log(1-predict.grid.cox))
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predict.grid.forest <- seq(quantile(effect2.df$forest.1yr,probs=0.01),
quantile(effect2.df$forest.1yr,probs=0.99),
length=100)

predict.grid.forest.cll <- log(-log(1-predict.grid.forest))

predict.grid.cox.df <- data.frame(predict.grid.cox)
predict.grid.cox.cll.df <- data.frame(predict.grid.cox.cll)
predict.grid.forest.df <- data.frame(predict.grid.forest)
predict.grid.forest.cll.df <- data.frame(predict.grid.forest.cll)

names(predict.grid.cox.df) <- "cox.1yr"
names(predict.grid.cox.cll.df) <- "cox.1yr.cll"
names(predict.grid.forest.df) <- "forest.1yr"
names(predict.grid.forest.cll.df) <- "forest.1yr.cll"

predict.calibrate.cox <- 1 - predictSurvProb(calibrate.cox,
newdata=predict.grid.cox.cll.df,times=1*365)

predict.calibrate.forest <- 1 - predictSurvProb(calibrate.forest,
newdata=predict.grid.forest.cll.df,times=1*365)

# Predicted probability of death within 1 year.

plot(predict.grid.cox,predict.calibrate.cox,type="l",lty=1,col="red",
xlim=c(0,1),ylim=c(0,1),
xlab = "Predicted probability of 1-year mortality",
ylab = "Observed probability of 1-year mortality")

lines(predict.grid.forest,predict.calibrate.forest,type="l",lty=2,col="blue")
abline(0,1)

title("1-year mortality")

par(new=T)
plot(density(effect2.df$cox.1yr),axes=F,xlab=NA,ylab=NA,main="")
axis(side=4)

################################################################################
# ICI for 1-year probabilities.
################################################################################

predict.calibrate.cox <- 1 - predictSurvProb(calibrate.cox,
newdata=effect2.df,times=1*365)

predict.calibrate.forest <- 1 - predictSurvProb(calibrate.forest,
newdata=effect2.df,times=1*365)

# Predicted probability of death within 1 year for all subjects in
# validation sample.

ICI.1yr.cox <- mean(abs(effect2.df$cox.1yr – predict.calibrate.cox))
ICI.1yr.forest <- mean(abs(effect2.df$forest.1yr – predict.calibrate.forest))

E50.1yr.cox <- median(abs(effect2.df$cox.1yr – predict.calibrate.cox))
E50.1yr.forest <- median(abs(effect2.df$forest.1yr – predict.calibrate.forest))

E90.1yr.cox <- quantile(abs(effect2.df$cox.1yr – predict.calibrate.cox),probs=0.9)
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E90.1yr.forest <- quantile(abs(effect2.df$forest.1yr – predict.calibrate.forest),probs=0.9)

cat(1,ICI.1yr.cox,ICI.1yr.forest,E50.1yr.cox,E50.1yr.forest,
E90.1yr.cox,E90.1yr.forest,file="ICI.out",fill=T,append=T)

APPENDIX B. R CODE FOR CONSTRUCTING CALIBRATION CURVES AND NUMERICAL
METRICS OF CALIBRATION USING HAZARD REGRESSION

library(survival)
library(rms)
library(randomForestSRC)
library(pec)
library(polspline)

################################################################################
# Read in EFFECT1-HF and EFFECT2-HF databases.
# Note: The authors are not permitted to distribute the data used in the
# case study. Please do not contact the authors requesting the data.
# This code is provided for illustrative purposes only and comes with
# absolutely NO WARRANTY.
################################################################################

effect1.df <- read.table("effect1.txt",header=T)

effect2.df <- read.table("effect2.txt",header=T)

################################################################################
# Fit Cox PH model to model hazard of death. Use all baseline covariates.
################################################################################

cox1 <- coxph(Surv(survtime,mort5yr) ∼ age + female + vs.sysbp + vs.hrtrate +
vs.resp + neckvdis + s3 + s4 + rales + pedm + cmg + diabetes + cvatia +
prevmi + afib + perartdis + copd + dementia + cirrhos + cancer + lbbb +
lb.hgb + lb.wbc + lb.sod + lb.pot + lb.glucose + lb.urea + lb.cr,
x=TRUE,data=effect1.df)

predict.cox <- 1 – predictSurvProb(cox1,newdata=effect2.df,times=365*(1:5))
# Predicted probability of death within 1,2,3,4,5years.

effect2.df$cox.1yr <- predict.cox[,1]
effect2.df$cox.2yr <- predict.cox[,2]
effect2.df$cox.3yr <- predict.cox[,3]
effect2.df$cox.4yr <- predict.cox[,4]
effect2.df$cox.5yr <- predict.cox[,5]

effect2.df$cox.1yr <- ifelse(effect2.df$cox.1yr==1,0.9999,effect2.df$cox.1yr)
effect2.df$cox.2yr <- ifelse(effect2.df$cox.2yr==1,0.9999,effect2.df$cox.2yr)
effect2.df$cox.3yr <- ifelse(effect2.df$cox.3yr==1,0.9999,effect2.df$cox.3yr)
effect2.df$cox.4yr <- ifelse(effect2.df$cox.4yr==1,0.9999,effect2.df$cox.4yr)
effect2.df$cox.5yr <- ifelse(effect2.df$cox.5yr==1,0.9999,effect2.df$cox.5yr)

effect2.df$cox.1yr.cll <- log(-log(1-effect2.df$cox.1yr))
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effect2.df$cox.2yr.cll <- log(-log(1-effect2.df$cox.2yr))
effect2.df$cox.3yr.cll <- log(-log(1-effect2.df$cox.3yr))
effect2.df$cox.4yr.cll <- log(-log(1-effect2.df$cox.4yr))
effect2.df$cox.5yr.cll <- log(-log(1-effect2.df$cox.5yr))

################################################################################
# Survival forest
################################################################################

forest1 <- rfsrc(Surv(survtime,mort5yr) ∼ age + female + vs.sysbp + vs.hrtrate +
vs.resp + neckvdis + s3 + s4 + rales + pedm + cmg + diabetes + cvatia +
prevmi + afib + perartdis + copd + dementia + cirrhos + cancer + lbbb +
lb.hgb + lb.wbc + lb.sod + lb.pot + lb.glucose + lb.urea + lb.cr,
ntree = 1000,
nodesize = 21,
forest = T,
ntime = 365*(1:5),
seed = -17072019,
data=effect1.df)

predict.forest <- 1 - predict(forest1,newdata=effect2.df)$survival

effect2.df$forest.1yr <- predict.forest[,1]
effect2.df$forest.2yr <- predict.forest[,2]
effect2.df$forest.3yr <- predict.forest[,3]
effect2.df$forest.4yr <- predict.forest[,4]
effect2.df$forest.5yr <- predict.forest[,5]

effect2.df$forest.1yr.cll <- log(-log(1-effect2.df$forest.1yr))
effect2.df$forest.2yr.cll <- log(-log(1-effect2.df$forest.2yr))
effect2.df$forest.3yr.cll <- log(-log(1-effect2.df$forest.3yr))
effect2.df$forest.4yr.cll <- log(-log(1-effect2.df$forest.4yr))
effect2.df$forest.5yr.cll <- log(-log(1-effect2.df$forest.5yr))

################################################################################
# Calibration for predictions of 1-year survival probabilities
################################################################################

calibrate.cox <- hare(data=effect2.df$survtime,delta=effect2.df$mort5yr,
cov=as.matrix(effect2.df$cox.1yr.cll))

calibrate.forest <- hare(data=effect2.df$survtime,delta=effect2.df$mort5yr,
cov=as.matrix(effect2.df$forest.1yr.cll))

predict.grid.cox <- seq(quantile(effect2.df$cox.1yr,probs=0.01),
quantile(effect2.df$cox.1yr,probs=0.99),length=100)

predict.grid.forest <- seq(quantile(effect2.df$forest.1yr,probs=0.01),
quantile(effect2.df$forest.1yr,probs=0.99),length=100)

predict.grid.cox.cll <- log(-log(1-predict.grid.cox))
predict.grid.forest.cll <- log(-log(1-predict.grid.forest))

predict.calibrate.cox <- phare(1*365,predict.grid.cox.cll,calibrate.cox)
predict.calibrate.forest <- phare(1*365,predict.grid.forest.cll,calibrate.forest)
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# Predicted probability of death within 1 year.

plot(predict.grid.cox,predict.calibrate.cox,type="l",lty=1,col="red",
xlim=c(0,1),ylim=c(0,1),
xlab = "Predicted probability of 1-year mortality",
ylab = "Observed probability of 1-year mortality")

lines(predict.grid.forest,predict.calibrate.forest,type="l",lty=2,col="blue")
abline(0,1)

title("1-year mortality")

par(new=T)
plot(density(effect2.df$cox.1yr),axes=F,xlab=NA,ylab=NA,main="")
axis(side=4)

################################################################################
# ICI for 1-year probabilities.
################################################################################

predict.calibrate.cox <- phare(1*365,effect2.df$cox.1yr.cll,calibrate.cox)
predict.calibrate.forest <- phare(1*365,effect2.df$forest.1yr.cll,calibrate.forest)
# Predicted probability of death within 1 year for all subjects in
# validation sample.

ICI.1yr.cox <- mean(abs(effect2.df$cox.1yr - predict.calibrate.cox))
ICI.1yr.forest <- mean(abs(effect2.df$forest.1yr - predict.calibrate.forest))

E50.1yr.cox <- median(abs(effect2.df$cox.1yr - predict.calibrate.cox))
E50.1yr.forest <- median(abs(effect2.df$forest.1yr - predict.calibrate.forest))

E90.1yr.cox <- quantile(abs(effect2.df$cox.1yr - predict.calibrate.cox),probs=0.9)
E90.1yr.forest <- quantile(abs(effect2.df$forest.1yr - predict.calibrate.forest),probs=0.9)

cat(1,ICI.1yr.cox,ICI.1yr.forest,E50.1yr.cox,E50.1yr.forest,
E90.1yr.cox,E90.1yr.forest,file="ICI.out",fill=T,append=T)

################################################################################
# Note that in the rms package for R, the functions calibrate.cph and
# calibrate.psm allow one to plot calibration curves using the polspline package
# to flexibly estimate the calibration curves.
################################################################################


