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Abstract
Key message Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic corre-
lations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve.
Abstract Vegetation indices (VIs) derived from multi-spectral imaging (MSI) platforms can be used to study properties of 
crop canopy, providing non-destructive phenotypes that could be used to better understand growth curves throughout the 
growing season. To investigate the amount of variation present in several VIs and their relationship with important end-
of-season traits, genetic and residual (co)variances for VIs, grain yield and moisture were estimated using data collected 
from maize hybrid trials. The VIs considered were Normalized Difference Vegetation Index (NDVI), Green NDVI, Red 
Edge NDVI, Soil-Adjusted Vegetation Index, Enhanced Vegetation Index and simple Ratio of Near Infrared to Red (Red) 
reflectance. Genetic correlations of VIs with grain yield and moisture were used to fit multi-trait models for prediction of 
end-of-season traits and evaluated using within site/year cross-validation. To explore alternatives to fitting multiple pheno-
types from MSI, random regression models with linear splines were fit using data collected in 2016 and 2017. Heritability 
estimates ranging from (0.10 to 0.82) were observed, indicating that there exists considerable amount of genetic variation in 
these VIs. Furthermore, strong genetic and residual correlations of the VIs, NDVI and NDRE, with grain yield and moisture 
were found. Considerable increases in prediction accuracy were observed from the multi-trait model when using NDVI and 
NDRE as a secondary trait. Finally, random regression with a linear spline function shows potential to be used as an alterna-
tive to mixed models to fit VIs from multiple time points.

Introduction

In the past few decades, advances in genotyping and compu-
tational technologies have contributed greatly to the genetic 
improvement in crops. In plant breeding, however, the rate 
of genetic gain that can be achieved is hampered by the high 
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cost and time-consuming nature of phenotyping (Reyn-
olds et al. 2019). This is especially true when phenotyping 
needs to be conducted for a large number of phenotypes in 
large-scale field trials over multiple geographical locations. 
Recent advances in multi-spectral imaging (MSI) platforms 
and image processing techniques have emerged, allowing 
for the generation of high-dimensional phenotypic data for 
plant breeders. MSI serves as an efficient, non-destructive 
approach to monitor the properties of crop canopies over 
time and space.

Canopy spectral reflectance has been successfully used to 
measure phenotypes for different crops, such as triticale (Buse-
meyer et al. 2013), wheat (Crain et al. 2016), cotton (Pauli et al. 
2016), soybean (Bai et al. 2016) and maize (Herrmann et al. 
2020). Different spectral readings from MSI platforms can then 
be combined to produce vegetation indices (VIs) that describe 
the crop over the growing season. Among different VIs, Nor-
malized Difference Vegetation Index (NDVI) is calculated 
using the near infrared (NIR) and visible red (R) reflectance. 
Deering (1978) suggested NDVI as a measure of leaf area index 
(LAI). As reported by Babar et al. (2006), larger NDVI values 
are associated with greater biomass accumulation and a faster 
growth rate when measured during the vegetative stage of plant 
growth. However, recent studies suggest that NDVI is a better 
estimator of light interception by canopies due to the fact that 
NDVI values get saturated during the growing season (Hat-
field and Prueger 2010). In addition to NDVI, Green NDVI 
(GNDVI), Red Edge NDVI (NDRE), Soil-Adjusted Vegetation 
Index (SAVI) (Huete 1988) and Enhanced Vegetation Index 
(EVI) are VIs that are used to measure LAI.

Phenotypic analysis of NDVI and their association with 
maize grain yield and biomass has been assessed by Tat-
taris et al. (2016). Even though no genetic analysis was 
performed, Tattaris et al. (2016) found a strong phenotypic 
correlation of UAV-measured NDVI with grain yield and 
biomass. Studies on wheat also reported that NDVI is geneti-
cally correlated with grain yield (Labus et al. 2002; Mason 
and Singh 2014). Moreover, it was reported that Blue NDVI 
can be used to predict maize flowering time, yield and kernel 
dimension (Wu et al. 2019). Hence, if the VIs derived from 
MSI are found to be heritable and genetically correlated with 
economically important traits, they can be used to assist in 
phenotypic or genomic selection.

Another advantage of MSI is that it permits the col-
lection of repeated measurements at multiple time points 
during the growing season. The ability to monitor the crop 
throughout the growing season provides potential insight 
into the interaction of a genotype with the environment, 
which could improve our understanding of genotype-by-
environment (G × E) interactions observed for end-of-sea-
son traits such as grain yield. Rapid changes in (co)variance 
parameters between adjacent time points and end-of-season 
traits would be indicative of significant environmental and/

or plant developmental events. The use of covariance func-
tions for estimation of changes in covariance would enable 
the focused examination of G × E interactions across a wide 
number of trials. Furthermore, heritable parameters of 
growth curves could provide breeders with additional infor-
mation to select for genotypes with optimal growth curves 
for a given set of target environments. The challenge with 
these types of analyses is the ability to fit parsimonious mod-
els that accurately model continuous changes in covariance 
parameters across the entire growing season.

Repeatability and multi-trait mixed models have been 
used to model repeated measurements that are recorded 
through time (Mrode and Thompson 2005; Speidel et al. 
2010). The repeatability model, however, assumes constant 
variance and covariance among and at multiple time points. 
In multi-trait mixed models, assumptions about the pat-
tern of (co)variance can be relaxed, but with a large num-
ber of time points the number of parameters that must be 
estimated will not be scalable. Additionally, the high cor-
relation between consecutive records can create computa-
tional issues. As an alternative to repeatability and multi-
trait mixed models, random regression models have been 
implemented to model such repeated measurements that are 
recorded in a continuous scale, such as time or age (Kirkpat-
rick et al. 1990; Huisman et al. 2002; Boligon et al. 2012; 
Lopes et al. 2012; Brito et al. 2017). Random regression 
models commonly use Legendre polynomials to model the 
variance and covariance of measurements at and among the 
time points (Meyer 2005). However, it has been noted that 
such high-order polynomials are problematic at extreme 
values when data are sparse, resulting in poor estimation of 
variance and covariance (Misztal 2006). As an alternative to 
such high-order polynomials, splines, which are piecewise 
functions consisting of segments that are connected by so-
called knots, have gained popularity for analyzing repeated 
measurements in random regression models when data may 
be sparse or highly clustered (Robbins et al. 2005; Meyer 
2005; Bohmanova et al. 2008).

The objectives of this study were to investigate the 
amount of variation present in several vegetation indices 
(VIs) derived from MSI and the changes in (co)variance 
parameters through time and assess the potential use of these 
indices as an indicator trait for grain yield and moisture 
using a multi-trait model. Finally, we aimed to investigate 
the potential of a random regression model to fit multiple 
phenotypes from MSI as an alternative to the mixed model.

Materials and methods

Agronomic phenotypic data

The phenotypic data were collected from trials at Cor-
nell University’s Musgrave Research Farm as part of the 
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Genomes to Fields (G2F) initiative (http://datac ommon 
s.cyver se.org/brows e/iplan t/home/share d/commo ns_repo/
curat ed/Genom esToF ields _2014_2017_v1).

The trials were planted at two sites in Aurora, New York 
(NYH2 and NYH3), from 2015 to 2017 (Alkhalifah et al. 
2018; McFarland et al. 2020). The field trial was planted 
as a randomized complete block design with two repli-
cates at each location as two-row plots. In 2015, plot-level 
phenotypic data were collected for a number of important 
end-of-season traits for 375 maize hybrids at NYH2 and 
367 hybrids at NYH3, with an overlap of 253 hybrids. In 
2016 and 2017, phenotypic data were available for 195 and 
184 hybrids, respectively, with an overlap of 173 hybrids. 
However, there were less than 10 hybrids that overlapped 
between the 2016/2017 and 2015 data. For 2016 and 2017, 
phenotypic data only from NYH2 sites were used. This is 
because image data were available only for the NYH2 field 
site. Due to poor weather conditions, experiments in 2016 
could not be machine harvested. For that reason, the end-of-
season trait data for this year were not used. However, the 
MSI data were of sufficient quality and thus were used to 
investigate the amount of variation present in different VIs 
and to assess the potential of random regression model as an 
alternative to mixed models.

For this study, all analyses were nested within sites and 
year to avoid issues aligning MSI data collected from experi-
ments with different planting and drone flight dates.

UAV data collection and image processing

For 2015 and 2016, aerial survey flights were conducted by 
Flyterra (Quebec, CA) (http://flyte rra.com/?page_id=388). 
A Microdrones MD4-1000 unmanned aerial vehicle (UAV) 
equipped with a Micasense RedEdge 3 multi-spectral cam-
era was used for the aerial surveys. The Micasense Red-
Edge is a multi-spectral sensor that is comprised of 5 indi-
vidual 1.2MP 12 bit sensors, each used to detect specific 
wavelengths (Blue: 460–480  nm, Green: 550–560  nm, 
Red: 660–670  nm, Red Edge: 710–720  nm, and NIR: 
840–860 nm). The UAV flew via GPS-guided autopilot 
using programmed grid survey patterns across the experi-
mental plots at a flight altitude of 75 m (5 cm/pixel GSD). 
There were four and five aerial survey flights conducted in 
2015 and 2016, respectively.

In 2017, six aerial survey flights were conducted by a cer-
tified remote pilot operating under FAA Part 107 guidelines. 
A DJI Matrice 600 equipped with a DRTK-GPS guidance 
system and a Micasense RedEdge 3 were used for the aerial 
surveys. The programmed grid survey patterns were flown 
using an application called Litchi across experimental plots 
at a flight altitude of 25 m (2 cm/pixel GSD). Images of the 
Micasense calibration panel were taken before and after each 

flight in 2015–2017. Orthomosaics from each aerial survey 
flight were constructed in Pix4Dmapper (https ://www.pix4d 
.com), which were then used to calculate summary statistics, 
such as mean, median and variance for individual bands/
reflectance for each plot. For 2017, the second time point 
was removed due to model convergence issues in the uni-
variate analysis.

Using these summary statistics, multiple VIs were calcu-
lated for each plot using the following equations:

where RNIR is the near infrared reflectance and RR is the red 
reflectance. GNDVI and NDRE were calculated using green 
and red edge reflectance instead of the red reflectance in 
Eq. 1, respectively. SAVI and EVI, which correct for the soil 
background, were calculated following Hatfield and Prueger 
(2010);

where L is the soil background correction factor and L = 0.5 
was used in this study (Hatfield and Prueger 2010);

A simple Ratio was calculated as

Among different summary statistics that were available 
for the VIs, the mean values for each plot were used for the 
analysis.

The VIs are calculated as a ratio that falls between 0 and 
1, and tended to be negatively skewed. For that reason, log 
base 10 transformation was done for the VIs at each time 
point to reduce skeweness and results were compared to 
analysis on the untransformed data. Given that the transfor-
mation had no impact on the mixed model results, the analy-
sis was performed on the untransformed phenotypic values.

Table  1 summarizes the dates, growing degree days 
(GDD) and estimated growth stages at which MSI pheno-
types were collected. Based on planting and silking dates 
at each site/year, all MSI in 2015 and 2017 at NYH2 was 
collected at the reproductive stage. In 2015 at NYH3 and in 
2016 at NYH2, the first time point captured the late vegeta-
tive stages, while the rest of the imaging dates captured the 
reproductive stages. Hence, the time points at each site/year 
are classified as late vegetative stage (VT), early (R1–R2), 
mid (R3–R4)- and late (R5–R6) reproductive stages.

(1)NDVI =

(
RNIR − RR

)
(
RNIR + RR

)

(2)SAVI =

(
RNIR − RR

)
(1 + L)(

RNIR + RR + L
) ,

(3)EVI = 2.5
(
RNIR − RR

)
∕
(
RNIR + 6RR − 7.5RB + 1

)

(4)Ratio =
RNIR

RR

http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1
http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1
http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1
http://flyterra.com/%3fpage_id%3d388
https://www.pix4d.com
https://www.pix4d.com
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Genotypic data

Genotyping-by-sequencing (GBS) data scoring 600 K sin-
gle-nucleotide polymorphism (SNP) markers were avail-
able for 1557 parental lines (http://datac ommon s.cyver 
se.org/brows e/iplan t/home/share d/commo ns_repo/curat ed/
Genom esToF ields _2014_2017_v1/G2F_Plant ing_Seaso 
n_2017_v1). Quality control for markers was performed 
as follows: SNP markers with > 15% missing data, minor 
allele frequency < 0.01 and with % heterozygosity > 1 were 
removed. Missing genotypes were imputed using the popula-
tion mode. The remaining 122 K SNP markers were used to 
calculate the additive genomic relationship matrix between 
the hybrids. Additive genomic relationship matrix for the 
hybrids was calculated as follows: First, we calculated the 
genomic relationship for the maternal inbred lines and pater-
nal inbred lines separately (VanRaden 2008). Assuming that 
the maternal and paternal inbred lines are unrelated, hybrid 
relationships were then calculated using the parental inbred 
relationship matrices as follows:

where rij is the genomic relationship between hybrids i and 
j , rmi,mj

 is the genomic relationship between female parents 
of hybrid i and j , rpi,pj is the genomic relationship between 
male parents of hybrid i and j.

A linear mixed model was used to estimate the genetic 
(co)variances for grain yield, grain moisture and plot mean 
NDVI, GNDVI, NDRE, SAVI, EVI and Ratio values at dif-
ferent time points.

A single-trait genomic best linear unbiased prediction 
(ST-GBLUP) model was fit to estimate the genetic and 
residual variances:

rij = 0.5 ∗
(
rmi,mj

+ rpi,pj

)
,

(5)� = 1� + �� + �� + �

where � is the vector for the raw phenotype, µ is the overall 
mean, b is the vector of fixed effect of replicate, a is the 
vector of random additive genetic effects of the hybrid to 
be estimated, X is the design matrix that allocates the fixed 
effect of replicate and Z is the design matrix that allocates 
additive genetic effects to observations, and e is the vec-
tor of residuals. It is assumed that a ∼ N

(
0, �2

a
�
)
 , where 

�2
a
 is additive genetic variance and G is the genomic rela-

tionship matrix between the hybrids (VanRaden 2008), and 
that e ∼ N

(
0, ��2

e

)
 , where � is the identity matrix and �2

e
 is 

the variance of random residual effects. Narrow sense her-
itability was estimated for grain yield, grain moisture and 
the above-mentioned VIs as a ratio of estimated additive 
genetic variance to the sum of the additive genetic variance 
and residual variance estimated from the linear model.

Multi-trait GBLUP (MT-GBLUP) was fit to estimate the 
genetic and residual correlations between the above-men-
tioned end-of-season traits and mean values of the VIs at 
each time point. The general multi-trait model used was as 
follows:

where y1 and y2 are the vectors of phenotypic values for 
traits 1 and 2; �1 and �2 are the overall means; a1 and a1 are 
the vectors of random additive genetic effects; �1 and �2 are 
the incidence matrices linking �1 to �1 and �2 to �2 ; �1 and 
�2 are the incidence matrices linking �1 to �1 and �2 to �2 ; �1 
and �2 are vectors of random residual effects for trait 1 and 
2 ,  r e spec t ive ly.  I t  was  a l so  assumed  tha t 
[
�1�2

]
∼ N(0,�⊗�) where � =

[
�2
a1

�12

�21 �2
a2

]
 as unstruc-

tured genetic variance and covariance matrix of the traits, 
a n d  G  i s  t h e  s a m e  a s  i n  E q .   4 ,  a n d 

(6)

[
�1
�2

]
=

[
1�1

1�2

]
+

[
�10

0�2

][
�1
�2

]
+

[
�10

0�2

][
�1
�2

]
+

[
�1
�2

]

Table 1  Planting, silking, multi-spectral Imaging (MSI) dates, growing degree days (GDDs) and growth stages across sites/years

VT = late vegetative stage, R1–R2 = early, R3–R4 = mid, and R5–R6 = late reproductive stage

Planting date 2015 NYH2 2015 NYH3 2016 NYH2 2017 NYH2

May 07 May 23 May 10 May 18

Silking date July 17–August 06 July 26–August 22 July 10–August 14 July 17–August 05

MSI date GDD Growth stage MSI date GDD Growth stage MSI date GDD Growth stage MSI Date GDD Growth stage

07/20 686 R1–R2
R1–R2

07/20 554 VT 07/05 524 VT 08/02 814 R1–R2
08/07 882 08/07 759 R1–R2

R1–R2
07/27 816 R1–R2 08/17 974 R3–R4

R3–R4
R3–R4

08/20 1037 R3–R4 08/20 916 08/19 1129 R3–R4 09/01 1102
09/10 1272 R5–R6 09/10 1157 R3–R4 08/23 1173 R3–R4 09/06 1135

09/21 1501 R5–R6 09/12 1167 R5–R6
09/24 1179 R5–R6

http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1/G2F_Planting_Season_2017_v1
http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1/G2F_Planting_Season_2017_v1
http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1/G2F_Planting_Season_2017_v1
http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1/G2F_Planting_Season_2017_v1
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[
�1�2

]
∼ N

(
0,

[
𝜎2
e1

𝜎12

𝜎21 𝜎2
e2

]
⊗ �

)
 where I is the identity 

matrix.
For the bi-variate multi-trait model, one end-of-season 

trait was modeled jointly with a single VI. This model was 
fit for all combination of VI time points and end-of-season 
traits. In addition to the bi-variate model, multi-trait models 
including all time points for the VIs were fit using the 2016 
and 2017 data. The model based on the 2017 data converged 
with all five time points in the multi-trait analysis; however, 
models fitting all time points for 2016 failed to converge.

Random regression

Random regression models using linear splines were used 
to fit a model for all time points using mean NDVI values. 
The linear spline function is formed by connecting linear 
segments and the point at which the segments are connected 
are called knots of the spline. Since we have only four time 
points in 2015, the data from 2016 and 2017 were used to fit 
the random regression model.

The general random regression model for a single trait 
can be formulated as (Schaeffer 2004):

where yijn∶t is the nth observation on ith hybrid at time t in 
the jth fixed factor; fj is a fixed effect of replicate by time that 
accounts for the mean growth curve; and in 

∑m

k=1
akizijn∶kt, 

m is the number of the spline knot points, and zijn∶kt are 
the covariables related to time t at knot point k, aki are the 
random regression coefficients for the kth knot for the ith 
hybrid, and in 

∑m

k=1
peklzijn∶kt , pekl is a random permanent 

environmental effect for the kth knot for plot l and eijln∶t is a 
random residual effect.

Growing degree days for each time points were calculated 
as:

where Tmax is the maximum temperature, Tmin is the mini-
mum temperature and Tbase = 10 ◦C is the base temperature. 
Any temperature below Tbase is set to Tbase before calculating 
the average. Likewise, the maximum temperature is set at 
30 °C.

For a data point collected at time t and bounded by 
knots points k and (k + 1) , the time covariables ( zijn∶kt and 
zijn∶(k+1)t ) in Eq. 7 were calculated as:

(7)yijn∶t = fj +

m∑
k=1

akizijn∶kt +

m∑
k=1

peklzijn∶kt + eijln∶t,

GDD =
Tmax + Tmin

2
− Tbase ,

zijn∶kt =
GDDk+1 − GDDs

GDDk+1 − GDDk

and zijn∶(k+1)t = 1 − zijn∶kt

where GDDk , GDDs and GDDk+1 are the growing degree 
days at the time points for knot k, time point s. All knot 
points not flanking the data point at time t are set to zero.

The matrix notation of the random regression model is 
(Mrode and Thompson 2005):

where y is the vector of observation, � is the incidence 
matrix corresponding to fixed effect of replicate nested in 
time, � is the vector of fixed effects, �1 is a matrix of regres-
sors which are a function of the time point of the image cap-
ture, � is a vector of random genetic regression coefficients, 
�2 is the matrix of regressors for each time point and pe is 
the vector of random permanent environmental effect which 
is fit for every plot. The (co)variance matrix for the random 
genetic effect (a) is defined as:

where �2
a1

 is the genetic variance at knot point 1 , �2
am

 is 
genetic variance at knot point m , (m = number of knot 
points), �a1,a2 is the genetic covariance at knot point 1 and 2 
and G is the same as in Eq. 4. The (co)variance matrix for 
the random permanent environmental effect ( pe ) is:

where diagonal elements in ��� are the variance components 
for permanent environment at each time point, the off-diag-
onals are the covariance of permanent environment between 
time points and I is the identity matrix. The diagonal (co)
variance functions were defined for the random residual 
effect ( e) as follows:

where �2
e1

 is the residual variance at time point 1 , �2
et

 is the 
residual variance at time point t and I is the identity matrix.

The genetic (co)variance between any combinations of 
time points for a given hybrid can be calculated as:

(8)y = �� + �1� + �2�� + e

�� ⊗� =

⎡
⎢⎢⎢⎣

𝜎2
a1

𝜎a1,a2 … 𝜎am,am
𝜎2
a2

⋱

𝜎2
am

⎤
⎥⎥⎥⎦
⊗�

��� ⊗ � =

⎡
⎢⎢⎢⎢⎣

𝜎2
pe1

𝜎pe1,pe2 … 𝜎pem,pem

𝜎2
pe2

⋱

𝜎2
pem

⎤
⎥⎥⎥⎥⎦
⊗ �

�� ⊗ � =

⎡⎢⎢⎢⎣

𝜎2
e1

…

𝜎2
e2

⋱

𝜎2
et

⎤⎥⎥⎥⎦
⊗ �,

(9)�2
t
=
�
z1,tz2,tz3,t

�
∗ �� ∗

⎡⎢⎢⎣

z1,t
z2,t
z3,t

⎤⎥⎥⎦
;
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and

where �� is the genetic (co)variance function for a linear 
spline with m = 3 knots, �2

T
 is the genetic variance at time 

point T, �t,s is the genetic covariance between time point t 
and s, and zk,t is the regression coefficients for time point t , 
at knot point k , and zk,s is the regression coefficients for time 
point s , at knot point k.

Among the five time points in 2016, the first two and the 
last two time points were used as knot points in the random 
regression model, whereas in 2017, the first, third and fifth 
(last) time points were used as knot points.

Genomic prediction and cross‑validation

ST- and MT-GBLUP was performed using fivefold cross-
validation for grain yield and moisture. For ST-GBLUP, 
phenotypic data for grain yield and moisture were masked 
for 20% of the hybrids and thus used as a prediction set. 
In MT-GBLUP, the same fivefold cross-validation dataset 
that was used for ST-GBLUP was used. In this case, how-
ever, the phenotypic values of all the hybrids for one of the 
VIs at a given time point were used as a secondary trait. 
The prediction accuracy was calculated as the correlation 
between plot-level raw phenotypic value and the predicted 
genetic values. The cross-validation was nested within site/
year because of differing experimental designs, planting and 
flight dates across site/years.

Software

All data preparation, imputation of missing genotypes 
and construction of the genomic relationship matrix were 
performed in the R environment (R Development Core 
Team 2019), and the genetic analysis was performed using 
ASReml statistical software (Gilmour et al. 2015). Random 
regression analysis was performed using REMLF90 soft-
ware (Misztal et al. 2002).

(10)�t,s =
�
z1,tz2,tz3,t

�
∗ �� ∗

⎡
⎢⎢⎣

z1,s
z2,s
z3,s

⎤
⎥⎥⎦

Results

Genetic variances and correlations

In order to investigate the amount of variation present in 
the VIs and understand their relationship with grain yield 
and moisture, genetic variance and correlation were evalu-
ated using ST- and MT- models, respectively. Table 2 shows 
genetic and residual variances, together with the heritability 
estimates for grain yield and moisture for NYH2 and NYH3 
sites in 2015 and at NYH2 in 2017. It should be noted that 
variance estimates obtained using GBLUP are not equiva-
lent to those obtained using pedigree information, where 
genetic variance from the GBLUP model in particular has 
been shown to have unpredictable bias (de los Campos et al. 
2015; Kumar et al. 2016); however, heritability estimates 
obtained from GBLUP were similar to those obtained when 
replacing G with and identity matrix (results not shown), 
indicating these estimates are a reasonable indicator of herit-
able variation.

Table 3 shows the heritability estimates for mean NDVI, 
GNDVI, NDRE, SAVI, EVI and Ratio at different growth 
stages in 2015 at NYH2 and NYH3, and in 2016 and 2017 
at NYH2. Results indicate that there is considerable amount 
of heritable variation in different VIs.

In 2015 at location NYH2, lower heritability estimates 
were observed at the late reproductive stage for all the VIs 
except for NDVI, where lower heritability was observed at 
the early reproductive stage (R1–R2). For all the VIs, the 
maximum heritability estimate was obtained at the mid-
reproductive stage (R3–R4) and the highest heritability was 
observed for Ratio. At NYH3, the heritability estimates for 
NDVI were found to have an increasing pattern through the 
growth stages. The same is true for NDRE and Ratio. For 
GNDVI, SAVI and EVI, no clear pattern was observed.

For 2016 and 2017, the heritability estimates for all VIs 
show an increasing pattern through growth stages, with the 
highest estimate observed at the late reproductive stage 
(R3–R4).

In order to investigate the relationship between different 
VIs and important end-of-season traits, genetic and residual 
correlations were estimated for the two end-of-season traits 

Table 2  Within site/year 
additive ( �2

a
 ) and residual 

variance ( �2

e
 ) and heritability 

( h2 ) for grain yield and grain 
moisture

a Grain yield is the amount of grain harvested per plot and it is measured as bushel per acreage. Grain 
moisture is measured as the amount of moisture content in grains harvested per plot and it is measured as 
percent moisture

Trait 2015 NYH2 2015 NYH3 2017 NYH2

�2

a
�2

e
h
2 �2

a
�2

e
h
2 �2

a
�2

e
h
2

Grain  yielda 509.30 862.37 0.40 607.70 792.10 0.43 308.84 684.40 0.31
Grain  moisturea 3.20 0.90 0.80 7.655 1.621 0.82 4.89 0.62 0.89
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(grain yield and moisture) and all the VIs. However, cor-
relation results are presented only for NDVI and NDRE. 
This is because NDVI is the most commonly used VI to 
measure important crop phenotypes and it was found to have 
consistently high heritability across site/year and genetic 
correlation with the end-of-season traits in this study, and 
NDRE tends to be less prone to saturation at a maximum 
value of 1 (Cammarano et al. 2014). Genetic correlation 
between the rest of the VIs (EVI, GNDVI, SAVI and Ratio) 
and the end-of-season traits at each site/year is presented in 
“Appendix 1.”

Figure 1 shows the genetic and residual correlation of 
grain yield with NDVI and NDRE at different growth stages 
in 2015 at NYH2 and NYH3, and in 2017 at NYH2. In 2015 
at NYH2 and NYH3, both genetic and residual correla-
tions of grain yield with NDVI and NDRE were positive 
and range from moderate to very strong at different growth 
stages. In 2017, however, stronger genetic correlations of 
grain yield with NDVI and NDRE were observed during 
the early reproductive stage (R1–R2) and show a decreas-
ing pattern in the later reproductive stages (R3–R6). Weaker 
residual correlations were observed in 2017 when compared 
to the residual correlations in 2015.

Figure 2 shows the genetic and residual correlation of 
grain moisture with NDVI and NDRE at different growth 
stages in 2015 at NYH2 and NYH3 and in 2017 at NYH2. 

In 2015 at NYH2 and NYH3, genetic and residual correla-
tions with both of the VIs were negative and weak during 
the late vegetative stages (VT) and early reproductive stage 
(R1–R2). At the later reproductive stages, however, posi-
tive and moderately strong correlations were observed. The 
same is true for the residual correlation at both locations, 
where negative correlations were observed during the late 
vegetative stage/early reproductive stage and positive at later 
growth stages. In 2017 at NYH2, genetic correlation with 
NDVI and NDRE was high and positive throughout different 
reproductive stages. The residual correlations, on the other 
hand, were very weak or close to zero.

Accuracy of genomic prediction

In order to investigate the advantage of using VIs as a sec-
ondary trait, multi-trait genomic prediction for grain yield 
and moisture was performed. Prediction accuracies from the 
multi-trait model for grain yield and moisture in reference 
to the prediction accuracy from the single-trait model are 
presented in Figs. 3 and 4. In this figure, prediction accuracy 
from ST-GBLUP model is presented as a horizontal line, and 
results are averages from fivefold cross-validation. Predic-
tion accuracy from the multi-trait models is presented only 
when NDVI or NDRE was used as a secondary trait.

Table 3  Within site/year 
heritability estimates for NDVI, 
GNDVI, NDRE, SAVI, EVI, 
and Ratio at different time 
points and their standard errors 
as a subscript

Growth stage GDD NDVI GNDVI NDRE SAVI EVI Ratio

2015 NYH2
R1–R2 686 0.160.07 0.100.06 0.160.07 0.200.07 0.200.07 0.430.07

R1–R2 882 0.200.08 0.120.07 0.130.07 0.320.08 0.300.07 0.360.06

R3–R4 1037 0.400.08 0.250.08 0.230.08 0.420.07 0.410.07 0.500.06

R5–R6 1272 0.340.07 0.050.03 0.040.04 0.120.05 0.130.08 0.100.04

2015 NYH3
VT 554 0.100.06 0.100.06 0.100.05 0.100.04 0.100.04 0.000.00

R1–R2 759 0.360.07 0.320.07 0.330.07 0.310.07 0.320.07 0.330.07

R1–R2 916 0.500.06 0.310.07 0.270.07 0.210.07 0.230.07 0.350.07

R3–R4 1157 0.500.06 0.280.07 0.330.07 0.620.05 0.620.05 0.380.06

2016 NYH2
VT 524 0.320.07 0.320.07 0.300.07 0.210.06 0.220.07 0.260.07

R1–R2 816 0.320.08 0.370.08 0.360.07 0.230.07 0.300.08 0.330.07

R3–R4 1129 0.500.07 0.410.07 0.460.07 0.540.06 0.530.06 0.480.07

R3–R4 1173 0.600.06 0.580.06 0.580.06 0.600.06 0.610.05 0.620.05

R5–R6 1501 0.770.04 0.690.05 0.800.03 0.780.03 0.780.03 0.800.03

2017 NYH2
R1–R2 814 0.250.07 0.100.04 0.100.03 0.330.07 0.300.07 0.250.08

R3–R4 974 0.450.07 0.210.06 0.180.06 0.590.06 0.590.06 0.500.07

R3–R4 1102 0.580.07 0.260.07 0.250.07 0.670.05 0.660.05 0.560.06

R5–R6 1135 0.620.05 0.310.07 0.330.07 0.730.04 0.730.04 0.500.07

R5–R6 1167 0.820.03 0.320.07 0.440.07 0.870.02 0.870.02 0.840.03
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Figure 3 shows prediction accuracies for grain yield from 
the MT-GBLUP model, in 2015 at NYH2 and NYH3 and 
in 2017 at NYH2. In 2015 at NYH2, a considerable amount 
of gain (17–20%) in prediction accuracy from multi-trait 
model was observed at the early (R1–R2) and mid (R3–R4)- 
reproductive stages. This is true when either of the two VIs 
was used as a secondary trait. At later reproductive stages, 
however, there was no gain in prediction accuracy from the 
multi-trait models. In 2015 at NYH3, substantial increase 
(15–40%) in prediction accuracies from multi-trait model 
was observed at all growth stages and when either of the 
two VIs was used as a secondary trait. In 2017 at NYH2, 
considerable increases in prediction accuracies (70–100%) 
were obtained from the multi-trait model throughout differ-
ent growth stages.

Figure 4 shows prediction accuracies for grain mois-
ture in 2015 at NYH2 and NYH3 and in 2017 at NYH2. In 
2015 at NYH2, there was no gain in prediction accuracies 
from multi-trait models during the early (R1–R2) and mid 
(R3–R4)- reproductive stages. A smaller increase in predic-
tion accuracy was observed at late (R5–R6) stages and only 

when NDVI was used as a secondary trait. In 2015 at NYH3, 
significant increases (7–10%) in prediction accuracy were 
obtained from the multi-trait model. This is, however, true 
only when NDVI was used as a secondary trait, with zero 
to small gains in prediction accuracy observed when NDRE 
was used as a secondary trait. In 2017 at NYH2, increases in 
prediction accuracy from multi-trait model were significant 
(7–20%) when either of the two VIs was used as a second-
ary trait.

Random regression

In 2016, the first two and the last two time points were fit 
as knot points, and in 2017 the first, fourth and last time 
points were fit as knot points in the random regression 
model. The random regression models fit permanent envi-
ronmental effects to account persistent environmental effect 
associated with a given plot. The permanent environmental 
effects account for the correlated residuals observed when 
fitting the multi-trait models. The genetic effect estimates 
from the random regression model at these time points 

Fig. 1  Genetic and residual correlation of grain yield with NDVI and NDRE at different time points in 2015 at NYH2 and NYH3 and in 2017 at 
NYH2
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( bki ) were correlated with their counter estimates from the 
multi-trait mixed model ( ai ). For 2016, the correlation at 
the four knot points was 0.99, 0.99, 0.99 and 0.99. Given 
the multi-trait model did not converge for 2016 using all 
data, these correlations were obtained by comparing to a 
multi-trait model including only the times used a knots. In 
2017, since the multi-trait model with all the time points was 
able to converge, the correlations at all the time points were 
estimated. The correlations at all five time points were 0.92, 
0.96, 0.97, 0.98 and 0.99. Moreover, (co)variance structure 
for all the time points was constructed using Eqs. 9 and 10 
and the covariance structure between all the time points 
estimated from the multi-trait mixed model was compared 
to the covariance structure that was constructed from the 
covariance function and is found in Fig. 5. As it can be seen 
from the correlation structures (Fig. 5), the constructed cor-
relation structure (right) from the spline covariance func-
tion approximates very well to the full correlation structure 
(left) that was estimated from the multi-trait mixed model. 
Figure 6 shows mean NDVI curves of random regression 
estimates for high- and low-yielding lines in 2017. As it can 

be seen from the figure, the high-yielding hybrids tend to 
have high NDVI values and the low yielding hybrids tend to 
have lower NDVI value throughout the growing degree days.

Discussion

The main objective of this study was to investigate the amount 
of variation present in several VIs derived from MSI and the 
relationship between growth curves, as measured by VIs, and 
end-of-season traits. Results indicate that variations in growth 
curves are heritable, ranging from low to high heritabilities, 
and genetically correlated with important end-of-season traits. 
Similar results were observed by Sun et al. (2017), where 
moderate to higher heritability estimates were observed for 
NDVI and NDRE across different locations in wheat.

In 2015 at NYH3, and in 2016 and 2017 at NYH2, the 
heritability estimates for all the VIs were lower at the early 
reproductive stage, as was the total phenotypic variability 
(0.005–0.001) compared to the total phenotypic variabil-
ity at the mid- and late reproductive stages (0.01–0.002), 

Fig. 2  Genetic and residual correlation of grain moisture with NDVI and NDRE at different time points in 2015 at NYH2 and NYH3, and in 
2017 at NYH2



2862 Theoretical and Applied Genetics (2020) 133:2853–2868

1 3

indicating the MSI was not able to detect variability between 
plots at this stage. The heritability estimates at the mid-
reproductive stage in 2015 at NYH3 and at late reproduc-
tive stage in 2016 and 2017 at NYH2 were quite high, which 
could be due to the differentiation of the early/mid- and late 
maturing hybrids. These results suggest that mid- and late 
reproductive stages are important time points for the collec-
tion of MSI and differentiation of growth curves between 
hybrids.

Strong genetic correlations (− 0.50 to 0.90) were found 
between the two VIs and the end-of-season traits, especially 
with grain yield, throughout different growth stages and 
sites. These high correlations throughout the growing season 
suggest VIs derived from UAV platforms have the potential 
to be used as an indicator trait in phenotypic selection and 
also to improve genomic prediction accuracy.

As observed in Figs. 3 and 4, the amount of prediction 
accuracy from the multi-trait model for grain yield and mois-
ture was considerable. This was the case at most of the time 
points in 2015 and 2017, and when either NDVI or NDRE 
was used as a secondary trait. Similar results were observed 
by (Rutkoski et al. 2016), where gain in prediction accuracy 

from multi-trait models was observed when either canopy 
temperature, NDVI or GNDVI was used as a secondary trait.

It has been reported in wheat that when correcting grain 
yield for days to heading, the amount of prediction accuracy 
that can be obtained using VIs as a secondary trait reduces 
(Rutkoski et al. 2016; Krause et al. 2019). This suggests that 
some of the predictive power of vegetative indices comes 
through indirect correlations with maturity when grain yield 
and maturity are genetically correlated. In this study, grain 
yield was corrected for days to flowering for all sites and years 
included in the study and multi-trait genetic analysis was con-
ducted between corrected grain yield and the two VIs NDVI 
and NDRE. For data collected in 2015, the correlation between 
VIs and grain yield shows no reduction after correcting for 
days to flowering. However, for data collected in 2017, sig-
nificant change in genetic correlations between grain yield and 
the two VIs was observed, suggesting that genetic correlations 
could be sensitive to correction on days to flowering. These are 
expected since no relationship was observed between days to 
flowering and grain yield for the data collected in 2015 (Fig. 7). 
For the 2017 data, however, there was an observed relationship 
between days to flowering and yield (Fig. 8). Nevertheless, 

Fig. 3  Prediction accuracy from ST-GBLUP (horizontal line) and MT-GBLUP model for grain yield when NDVI or NDRE was used as a sec-
ondary trait in 2015 at NYH2, NYH3 and in 2017 at NYH2. These results are averages from fivefold cross-validation
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more data from diverse germplasm evaluated across years and 
locations are necessary in order to gain a better understanding 

of the relationship among grain yield, maturity and VIs across 
a range of genetic and environmental factors.

Fig. 4  Prediction accuracy from ST-GBLUP (horizontal line) and 
MT-GBLUP model for grain moisture when NDVI or NDRE was 
used as a secondary trait at different growth stages in 2015 at NYH2, 

NYH3 and in 2017 at NYH2. These results are averages from fivefold 
cross-validation

Fig. 5  Estimated genetic correlation from multi-trait mixed model (left) and constructed genetic correlations (right) between NDVI values at dif-
ferent time points in 2017. The size of the circles indicate the degree of correlation and the colors indicate the direction of the correlation
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Multi-trait genomic prediction takes advantage of the cor-
relation between the traits that are under consideration. Moreo-
ver, it was reported that low heritable traits tended to benefit 
more from multi-trait genomic prediction more than relatively 
highly heritable traits, in terms of accuracy of estimated breed-
ing values (Mrode and Thompson 2005). In this study, this was 
hardly the case for grain moisture, where heritability for this 
trait was higher than the heritability of the three VIs at most of 
the growth stages in 2015 and 2017. This could be the reason 
for the limited amount of increase in prediction accuracy that 
was obtained from multi-trait genomic prediction at most of 
the time points, where no to very small gains in accuracy were 
observed for grain moisture. For grain yield, with a lower her-
itability, the increases in accuracy from the multi-trait model 
were substantial at almost all time points. These results suggest 
that predictions using VIs could be useful in environments 
where harvesting is difficult/impossible due to poor weather 
conditions, and the VIs could be used to decrease the cost of 
early stage multi-environmental testing by eliminating the need 
to measure end-of-season traits at all locations. The VIs also 
provide insight into heritable difference in development curves 
which could be related to genotype-by-environmental interac-
tions. Information on growth curves may provide additional 
information for selecting lines that are best adapted to a given 
target population of environments or demonstrate increased 
stability in performance across varied conditions. However, 
given the limitations of multi-trait models to model a large 
number of time points, random regression models are a better 
option for modeling growth curves.

Multi-trait predictions where NDVI and NDRE were fit 
as a secondary trait but without the use of marker informa-
tion were fit for grain yield and moisture. For grain yield, the 
amount of gain obtained from a multi-trait model without the 
marker information was significant only in 2015 at NYH3 
(Fig. 9). For grain moisture, the prediction accuracy from the 
multi-trait model without the marker information was lower 
than the prediction accuracy obtained from the single-trait 
genomic prediction at almost all stages of growth and sites/
years (Fig. 10). These results suggest that the use of VIs alone 

may not be adequate to achieve the best predictions of grain 
yield and moisture.

The convergence issues encountered in the analysis of all 
VIs collected in 2016 using multi-trait mixed model highlight 
the limitations of this approach. As the number of time points 
and frequency of flights increase, convergence issues are likely 
to occur due to high correlation between the records at multiple 
time points and the large number of parameters that need to be 
estimated. One of the benefits of random regression models is 
the ability to partition the sources of variation in the trait of 
interest, such as genetic and permanent environmental varia-
tion, and model the change in these sources of variations as a 
function of time, thus reducing the number of parameters to 
be estimated. As a result, random regression models have been 
used to model longitudinal data for a variety of time dependent 
traits (Schaeffer 2004). This of course assumes that changes in 
(co)variance are some function of time.

In this study, a linear spline function was used to model 
changes in (co)variance for NDVI curves through time. The 
performance of the spline covariance function was evaluated 
by comparing (co)variance and genetic effect estimates to a 
multi-trait model including all time points in 2017. In general, 
the strong correlations observed between the random regres-
sion estimates and the mixed model estimates indicate simi-
lar performance when the number of time points included is 
relatively small. This suggests that random regression mod-
els using spline covariance functions can adequately model 
changes in (co)variance over time. Furthermore, the corre-
spondence between patterns observed in the NDVI growth 
curves and yield measurements in 2017 (Fig. 6) indicates 
that trend in growth curves is related to end-of-season yield 
measurements.

It was reported that the optimal position of the spline 
knots varies between the genetic effect and permanent envi-
ronmental effects, as well as between different traits (Jam-
rozik et al. 2010). Given the limited number of time points 
in this study, there were few options for optimizing the 
placement of knots; however, as the number of time points 

Fig. 6  Mean estimated genetic 
effect for NDVI curve for the 
high (201–270 bu/acre) and 
low (70–120 bu/acre) yielding 
hybrids and for population mean 
across the growing degree days 
in 2017
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increases, knot placement will become increasingly impor-
tant for optimal model fits.

The linear spline covariance function was selected for this 
study because of its simplicity and the sparse nature of the 
MSI data. As new datasets are generated with MSI collected 
frequently throughout the growing season, it will be possible 
to implement covariance functions using orthogonal poly-
nomials to compare model fit for multiple covariance func-
tions. Despite the sparsity of MSI images in this study, the 
multi-trait approach failed to converge using all MSI phe-
notypes, whereas the random regression models converged 
using all available data. As the number of MSI phenotypes 
increases, random regression models should provide a robust 
approach to leverage MSI collected at all time points to 
model growth curves, and given the large genetic correla-
tions between images taken at different growth stages, this 
approach should provide more accurate estimates of genetic 
parameters of growth curves.

Conclusion

Considerable heritable variation exists in all the VIs across 
sites and years. Furthermore, strong genetic correlations 
were found between grain yield, grain moisture and the VIs, 
resulting in moderate to large increases in prediction accu-
racies for grain yield and moisture when selected VIs were 
used as a secondary trait. The heritable variation in growth 
curves, as measured using MSI, and strong genetic correla-
tions with economically important traits indicate that routine 
collection of MSIs throughout the growing season could be 
valuable for selection in breeding programs. While multi-
trait models provide a straightforward approach to model 
end-of-season traits and VIs at multiple time points, conver-
gence issues were encountered as the number of time points 
increase. In contrast, random regression models converged 
using all time points and appear to be a promising approach 
for modeling genetic components of growth curves when 
MSI is captured frequently throughout the growing season. 
Further research is needed to determine optimal covariance 
functions and best approaches for continually modeling 
changes in genetic covariance between VIs and end-of-sea-
son traits throughout the growing season.
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Appendix 1

See Tables 4, 5, 6 and Figs. 7, 8, 9, 10.

Table 4  Genetic correlation between EVI, GNDVI, SAVI and Ratio 
and end-of-season traits, grain yield and moisture at different growth 
stages in 2015 at NYH2

R1–R2 R1–R2 R3–R4 R5–R6

EVI
Grain yield 0.60 0.65 0.42 0.61
Grain moisture − 0.03 0.25 0.37 0.91
GNDVI
Grain yield 0.83 0.62 0.36 − 0.20
Grain moisture − 0.14 − 0.34 − 0.23 0.20
SAVI
Grain yield 0.53 0.40 0.61 0.72
Grain moisture − 0.10 0.40 0.30 0.93
Ratio
Grain yield 0.13 0.10 0.51 0.40
Grain moisture 0.10 − 0.01 − 0.10 0.34

https://www.genomes2fields.org/
http://creativecommons.org/licenses/by/4.0/
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Table 5  Genetic correlation between EVI, GNDVI, SAVI and Ratio 
and end-of-season traits, grain yield and moisture at different growth 
stages in 2015 at NYH3

VT R1–R2 R1–R2 R3–R4

EVI
Grain yield 0.32 0.41 0.51 0.45
Grain moisture − 0.30 0.41 0.43 0.62
GNDVI
Grain yield 0.76 0.63 0.55 0.66
Grain moisture − 0.21 − 0.02 − 0.32 0.12
SAVI
Grain yield 0.26 0.30 0.43 0.41
Grain moisture − 0.30 0.35 0.50 0.63
Ratio
Grain yield 0.98 − 0.001 0.41 0.58
Grain moisture 0.97 0.20 − 0.20 0.44

Table 6  Genetic correlation between EVI, GNDVI, SAVI and ratio 
and end-of-season traits, grain yield and moisture at different growth 
stages in 2017 at NYH2

R1–R2 R3–R4 R3–R4 R5–R6 R5–R6

EVI
Grain yield 0.20 0.63 0.70 0.60 0.53
Grain moisture 0.21 0.50 0.52 0.57 0.67
GNDVI
Grain yield 0.76 0.80 0.76 0.70 0.55
Grain moisture 0.20 0.33 0.40 0.43 0.50
SAVI
Grain yield 0.12 0.55 0.64 0.56 0.51
Grain moisture 0.20 0.50 0.50 0.57 0.67
Ratio
Grain yield 0.46 0.87 0.84 0.68 0.50
Grain moisture 0.17 0.36 0.40 0.40 0.65

Fig. 7  Grain yield for different days to flowering in 2015 at NYH2 and NYH3

Fig. 8  Grain yield at different 
days to flowering in 2017 at 
NYH2
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Fig. 9  Prediction accuracy from ST-GBLUP (horizontal line) and 
MT-GBLUP model for grain yield when NDVI or NDRE was used as 
a secondary trait at different growth stages in 2015 at NYH2, NYH3 

and in 2017 at NYH2. Solid plots indicate when marker informa-
tion was used and open plots when no marker information was used. 
These results are averages from fivefold cross-validation

Fig. 10  Prediction accuracy from ST-GBLUP (horizontal line) and 
MT-GBLUP model for grain moisture when NDVI or NDRE was 
used as a secondary trait at different growth stages in 2015 at NYH2, 

NYH3 and in 2017 at NYH2. Solid plots indicate when marker infor-
mation was used and open plots when no marker information was 
used. These results are averages from fivefold cross-validation
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