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A B S T R A C T

The persistence and intensity of the current severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2) pandemic, and the advanced planning required to balance competing concerns of saving lives and
avoiding economic collapse, may depend in part on whether the virus is sensitive to seasonal changes in
environmental variables, such as temperature and humidity. Although multiple studies have sought to
address possible effects of these variables on SARS–CoV-2 transmission, results of these studies have
been varied. It is possible that at least some of the differing results are due to insufficient understanding
of atmospheric science, including certain physical and chemical principles underlying selected
meteorological variables, and how global seasons differ between tropical and temperate zones. The
objective of this brief perspective is to provide information that may help explain some of the differing
results of studies regarding the influence of environmental variables on transmissibility of SARS-CoV-2.
This information may promote better variable selection and results interpretation in future studies of
coronavirus disease 2019 (COVID-19) and other infectious diseases.
© 2020 The Author. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

Introduction

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-
2) is a novel virus that causes an acute highly contagious infection,
which may result in death. Coronavirus disease 2019 (COVID-19)
appeared in December 2019 in Wuhan, China, in patients exposed
via that city’s wet animal market (Xu et al., 2020). Human-to-
human transmission was subsequently described and increased
rapidly so that, by February 2020, there were over 77,000
laboratory confirmed infections reported globally (Shen et al.,
2020). The World Health Organization (WHO) declared the
situation a pandemic on March 11, 2020 (World Health Organiza-
tion (WHO, 2020). COVID-19 was initially thought to be a
respiratory illness, but it later became apparent that the disease
was more than that. Like SARS-CoV-1, SARS-CoV-2 is acquired
primarily via respiratory droplets. Unlike SARS-CoV-1, evidence
now suggests that SARS-CoV-2 is vasculotropic, with respiratory
symptoms due to effects on pulmonary vasculature resulting in
poor gas exchange (Poor et al., 2020). SARS-CoV-2 has affinity for
blood vessel endothelial cells in many anatomic locations, which
could explain autopsy findings (Ackermann et al., 2020) and
especially the variety of non-pulmonary findings (e.g., Pain et al.,
2020).

Each SARS-CoV-2 virus particle has a diameter of 50–200 nm
(Xu et al., 2020), includes a surrounding lipid envelope, and
contains single-stranded positive-sense RNA. This envelope is a
cell membrane hijacked from a previously infected cell, so its
molecules are arranged with their hydrophobic ends on the
internal surface and their hydrophilic ends on the external surface,
making the virion soluble in liquid water. The virus adds club-
shaped glycoprotein projections to this envelope to give it a
characteristic crown-like (corona) appearance (Tyrrell and Myint,
1996). The most closely related human coronavirus to SARS-CoV-2
is SARS-CoV-1 (Wu et al., 2020). In an extensive review of the 2003
SARS-CoV-1 outbreak, Cheng et al. (2007) noted that genetic
recombination in coronaviruses is common and that the presence
of a large bat reservoir along with a local human culture of eating
exotic animals that are kept alive and comingled until the point of
sale is “a time bomb.”

In lieu of a vaccine, perhaps the most effective public health
measures are the so-called non-pharmaceutical interventions
(NPI), which include self-isolation, social distancing, masks,
closing non-essential businesses and schools, and quarantine.
NPI have been implemented in many countries and regions to limit
the spread of the disease (Flaxman et al., 2020). Adherence to NPI
has proven very successful in reducing virus transmission (Markel
et al., 2007; Ferguson et al., 2020). Because of economic impacts of
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ompeting concerns (e.g., saving lives and avoiding economic
ollapse) (Anderson et al., 2020), depend in part on whether the
irus is sensitive to seasonal changes. There has been much
peculation as to whether higher temperatures arriving with the
oreal summer might help flatten the epidemic curve. If so, specific
egions may be impacted differently according to their respective
easonal climate changes. Furthermore, knowledge of COVID-19
easonality would help prepare for the timing and degree of any
esurgence of the epidemic during cooler months (Kissler et al.,
020).

iscussion

Exhaled viruses are encapsulated by liquid droplets, which then
vaporate or grow based upon the water vapor content of the
urrounding air, with the rate of evaporation increasing with
ncreasing temperature (Nadykto et al., 2003). Droplet evaporation
lso depends on the velocity and dynamics of the exhaled cloud
Bourouiba, 2020). Droplets that grow large enough fall to the
round or on fomites, while those with diameter <10 mm can
emain airborne for hours and are easily inhaled deeply into the
espiratory tract (Blachere et al., 2009). Lower ambient tempera-
ure and higher atmospheric water vapor content tend to promote
roplet growth, while higher temperature and lower water vapor
ontent promote droplet evaporation.
When atmospheric temperatures fall below freezing, the liquid

roplet changes phase to become an ice crystal. Because the liquid
ater surface vapor pressure is greater than the ice surface vapor
ressure, liquid droplets shrink and ice crystals grow as water
olecules escape more easily from liquid droplets than from ice
rystals. The virion’s lipid envelope becomes a gel at its freezing
oint, which varies with its chemical composition, but is at a lower
emperature than that for water (Alberts et al., 2002). Jaakkola
t al. (2014) found that influenza viruses, which also have a lipid
nvelope, remain infectious at temperatures near and below
reezing. Florek et al. (2014) demonstrated stability of infectious
uman coronavirus NL63 (the main cause of croup) at temper-
tures around freezing. Temperature and humidity are the most
ommon weather variables examined in studies of disease
easonality. Therefore, a detailed understanding of these variables
s warranted.

There are a variety of measures of atmospheric water vapor
ontent (e.g., Rogers and Yau, 1996). Relative humidity is perhaps
he most common measure. However, relative humidity (RH) is
ot, as often assumed, relative to air’s maximum capacity to hold
ater vapor (e.g., Bohren and Albrecht, 1998). Indeed, humid air is

ess dense than dry air occupying the same volume (e.g., Daidzic,
019). If you took a clean smooth container of pure water vapor,
ou could create a relative humidity of over 300% before you would
et condensation because air is mostly void. This phenomenon is
sed in studies of homogeneous nucleation (e.g., Hoppel and
inger, 1973; Hamill and Toon, 1991; Hesson, 2012), and is also
ited in college meteorology textbooks (e.g., Rogers and Yau, 1996).
ost gases are indefinitely soluble in other gases (Ostwald, 1891).

n an equilibrium state, the amount of vapor above a liquid
epends almost entirely on the temperature of the liquid. John
alton concluded that the vapor pressure of water in air is
ndependent of the presence of dry gases in the air (Cardwell,1968;
alton, 1805).

means that the rates of condensation and evaporation are equal at
the surface of pure water, so there is no net decrease or increase in
the water vapor in the air above it. This equilibrium is dependent
on temperature as described by the Clausius–Clapeyron equation
(e.g., Rogers and Yau, 1996). This dependence means that relative
humidity is not an absolute measure of humidity because it
depends upon temperature. It is thus incorrect to assume that
temperature and relative humidity are independent variables.
Absolute humidity, specific humidity, and mixing ratio are
alternative humidity measures that remove this temperature
dependency (e.g., Rogers and Yau, 1996). Absolute humidity is
water vapor density, defined as the ratio of the mass of water vapor
present to the volume occupied by the moist air. Specific humidity
is defined as the mass of water vapor per unit mass of moist air.
Mixing ratio is defined as mass of water vapor per unit mass of dry
air. However, there is an easily accessible direct water vapor
measurement called dewpoint. Although dewpoint has a nonlinear
relationship with mixing ratio and absolute/specific humidity, it is
often used because it is measured directly. Dewpoint is more useful
than relative humidity to meteorologists for predicting precipita-
tion. Even if relative humidity reaches 100%, it does not mean
precipitation will occur (e.g., Pruppacher and Klett, 2010).
Therefore, dewpoint is commonly included in weather data and
no further calculations are needed to obtain it. The value of
dewpoint can be illustrated as follows. An atmosphere with both a
temperature and dew point of 2 �C would have a relative humidity
of 100%. If the temperature and dew point instead were 20 �C and
13 �C, respectively, the relative humidity would drop to 64%, even
though there is actually a higher water vapor concentration in the
air. Therefore, dewpoint is preferable to relative humidity because
it is an absolute measure of water vapor content, is independent of
temperature, and is readily available in weather data.

While there are papers (e.g., Graham, 2003) describing
statistical pitfalls associated with assuming covariates are inde-
pendent when they are not, a simple example may be helpful.
Assume that the results of a regression analysis using daily
temperature (T) and daily RH were described by the following
equation:

Log(daily COVID cases) = Coefficient1 + Coefficient2*T + Coef-
ficient3*RH

One would then interpret the atmospheric water vapor
contribution to be described by Coefficient3. However, this
assumption is not valid because RH is a function of temperature
T. Therefore, Coefficient3 does not describe atmospheric water
vapor impacts. In contrast, assume that the results of this analysis
were described by the following equation:

Log(daily COVID cases) = Coefficient1 + Coefficient2*T + Coef-
ficient3*Td

where Td is the dewpoint temperature. Now, Coefficient3
describes the contribution of water vapor content alone.

Evaporation is a phase change from liquid to vapor, while
condensation is a phase change from vapor to liquid. In situations
where evaporation dominates over condensation, evaporation
removes heat from the air and cools the ambient temperature. This
is evaporative cooling, which is most noticeable as the temperature
drop immediately after a rain shower, perhaps contributing to
tropical transmissibility of aerosolized viruses by reducing the
temperature (Moura et al., 2009).
Relative humidity is the ratio of the water vapor pressure in the

tmosphere to the equilibrium vapor pressure over a hypothetical
at surface of pure water. The vapor pressure over a flat surface is
ifferent from that over water droplets in aerosols and clouds
ecause the droplet curvature has an important effect (Kelvin
ffect) (e.g., Rogers and Yau, 1996). Equilibrium vapor pressure
33
The Earth can be divided into three major climate zones (polar,
temperate, and tropical) based upon sun angle, although the
Köppen classification specifies many more based on vegetation
(Kottek et al., 2006). The tropical zone is defined by where the sun
can be directly overhead, which is between about 23.4 S and 23.4 N
4
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latitude. Tropical climates usually occur within these latitudes, so
these regions have at most two seasons (wet and dry) instead of
the four typical of temperate zones. In tropical regions, weather
changes are better correlated with dewpoint than temperature
(Atkinson, 1991). Note that the dewpoints of tropical regions tend
to stay above 15 �C, while temperate zones will more often have
dewpoints below that value (e.g., Issa Lélé and Lamb, 2010; Minda
et al., 2018). Hence, using dewpoint could take into account some
of the differences between tropical and temperate locations.

Seasonal cyclicity is established in many infectious diseases
(Martinez, 2018), including those caused by non-COVID-19 coro-
naviruses (Gaunt et al., 2010). As reviewed by Pica and Bouvier
(2012), Tang and Loh (2014), Paynter (2015), and Otter et al. (2016),
reported relationships between humidity and viral transmission
have been varied, even for the same virus. Differences in reported
results for humidity may be due to the different humidity variables
usedin these studies,especiallywhen thechosen humidity variables
are not independent of temperature. In addition, water vapor over
land tends to have higher spatial and temporal variability compared
with temperature (e.g., Hubbard, 1994; Robinson, 1998; Oke, 1987),
which is one reason that it is more difficult to forecast fog than
temperature for specific locations (Gultepe et al., 2007). As
described earlier, water vapor has a more complicated relationship
with aerosol size than temperature, in part due to its ability to
change phase. This makes studies of relationships between water
vapor and transmission more complicated than those between
temperature and transmission.

In contrast to studies of humidity, the reviews mentioned above
found higher temperatures associated with decreased transmis-
sion to be more consistently reported, with few exceptions. In
terms of biological plausibility, Kampf et al. (2020) reviewed 22
human coronavirus studies and found that, while these viruses
may remain infectious on inanimate surfaces from hours to days,
this duration was reduced at higher temperatures and increased at
lower temperatures. Among studies showing the opposite
correlation were those by Xie and Zhu (2020). They used a
multi-day moving average of daily mean temperatures between
January 23 and February 29, 2020 for 122 cities in China. They
concluded that daily mean temperature has a positive linear
relationship with the number of COVID-19 cases when the
temperature is below 3 �C. Breton (2020) performed a study to
determine whether higher temperatures resulted in reduced rates
of COVID-19 transmission across the 48 states in the continental
USA between February 10 and March 10, 2020. This study
concluded that the evidence was weak for any temperature effect.
Note that these two studies used mean daily temperatures and
were over a period of 1 month during the winter season. For
temperature effects on virus transmissibility, daily minimum,
rather than maximum or average, temperatures appear to be more
important (Eggo et al., 2016). Using daily minimum temperatures
captures lower bounds and longer durations of temperature
effects, which could show a more consistent reduction in
transmissibility than using daily mean, median, or maximum
temperatures.

Proper understanding and use of information about seasonal
effects on transmissibility could be used by governments and
public health agencies in regional planning for phasing out NPI and
phasing in a return to work, based in part on seasonal timing (e.g.,
as temperature increases differently geographically) in addition to
many other factors (e.g., social distancing compliance, population
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