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Abstract
Information systems have to deal with an increasing amount of data that is heterogeneous, unstructured, or incomplete. In 
order to align and complete data, systems may rely on taxonomies and background knowledge that are provided in the form 
of an ontology. This survey gives an overview of research work on the use of ontologies for accessing incomplete and/or 
heterogeneous data.

1  Introduction

In the digital age, we are dealing with a huge and growing 
amount of data in research, medicine, business and further 
areas. Information systems help us process and interpret that 
data. This is a challenging task because data used for a single 
purpose is often coming from heterogeneous sources, and 
is often unstructured and incomplete. In order to deal with 
these problems, ontologies provide taxonomies and back-
ground knowledge, which is useful (not only) for comple-
tion and alignment of data. In this survey we provide an 
overview of research on the use of ontologies for accessing 
incomplete and/or heterogeneous data. Since it is impos-
sible to give a complete and detailed account of this broad 
and highly active research field, this overview treats most 
aspects briefly and omits others completely. In particular, 
we will focus on a family of ontology languages based on 
the so-called Description Logics, and only touch on other 
languages.

This survey begins with a discussion of ontology lan-
guages and available reasoning systems (Sect. 2). The main 
part of the survey (Sect. 3) treats the variety of research 
topics revolving around ontologies and data, divided into 
core topics (Sect. 3.1), extensions (Sect. 3.2), design-phase 
considerations (Sect. 3.3), and further topics (Sect. 3.4). We 
also give a brief overview of available resources (Sect. 4) 

and finish with a conclusion and a list of research challenges 
(Sect. 5).

2 � Ontologies

Ontologies originate from the philosophical branch of meta-
physics, which studies existence. Since the 1970s, they have 
been used in the Knowledge Representation (KR) subfield 
of Artificial Intelligence (AI) for modeling the knowledge 
about various domains of interest, including (bio-)medicine, 
software engineering, cultural heritage, business processes, 
multimedia annotation, and the semantic web [142, 363]. 
Using an ontology, information systems have access to the 
represented knowledge and, via automated reasoning, can 
compute inferences. Early KR systems date back to the 
1980s and early 1990s [83, 286, 288, 298, 323]. Thomas 
Gruber defined the notion of an ontology in the context of 
computer science as an “explicit specification of a concep-
tualization”, which is not limited to a taxonomy or a set of 
(conservative) definitions, but may also contain knowledge 
about the world [190].

In the following, we provide a brief account of avail-
able ontology languages and systems. A complete review 
of these topics would certainly require a separate survey 
article; hence we do not aim for completeness. Further infor-
mation is provided in several books and book chapters [30, 
33, 129, 363].

2.1 � Ontology Languages

Researchers have proposed ontology languages based on 
various formalisms. Frame-based languages such as F-Logic 
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[11] are probably the earliest examples; they rely on the KR 
mechanism of frames [290], and their semantics is speci-
fied only operationally. In contrast, logic-based languages 
employ the formal semantics of their underlying logic, usu-
ally a suitable Description Logic (DL) or first-order logic 
(FO). FO-based ontology languages, such as Common Logic 
[359] and the Knowledge Interchange Format (KIF) [169] 
feature all or most of the high expressive power of FO, but 
provide limited support for automated reasoning, given the 
undecidability of the basic reasoning problems in FO.

DLs comprise a prominent family of KR languages almost 
all of which are technically fragments of FO, although they 
use a different, variable-free syntax, tailored to KR. Unlike 
FO, DLs are typically decidable. We refer the reader to 
[30, 33] for details on the foundations of DLs. The various 
members of the DL family have been designed to provide a 
balance between expressive power and computational prop-
erties of the relevant reasoning problems that is suitable for 
various applications. Despite their restricted expressivity, 
DLs are powerful enough to formalize in a logic-based lan-
guage (fragments of) popular modeling languages, such as 
UML and ER diagrams [13, 58]. Originating in frame-based 
languages, DLs have been studied since the 1980s, and this 
field is still active, as witnessed by the dedicated series of 
DL workshops.1

Among DL-based ontology languages, the Web Ontology 
Language OWL [211] stands out, being a W3C standard.2 
A large number of ontologies is nowadays written in OWL, 
as witnessed by large corpora such as the NCBO BioPortal 
repository with over 860 bio-medical ontologies3 [345], the 
ontology repository at the University of Oxford with over 
780 ontologies,4 or the OWL corpus at the University of 
Manchester with over 4500 ontologies5 [287].

The current standard OWL 2 is based on an expressive 
DL called SROIQ [208] and supports additional features 
such as datatypes [292] and a “safe” form of key constraints 
[322]. OWL 2 also provides the profiles EL, QL, and RL, 
which are considered lightweight ontology languages par-
ticularly suited to certain application areas. OWL 2 EL is 
based on the EL family of DLs and ensures efficient stand-
ard reasoning (e.g., classification) in polynomial time [29] 
via consequence-based reasoning algorithms. OWL 2 EL 
is used in healthcare and life-science ontologies, includ-
ing SNOMED CT ontology (Systematized Nomenclature 
of Medicine—Clinical Terms), which systematizes the 
meaning of over 400,000 medical terms and is used in the 

healthcare systems of the US, the UK, and other coun-
tries [362]. OWL 2 QL is based on the DL-Lite family of 
DLs and enables very efficient sound and complete query 
answering using standard relational database technology 
[14]. We further discuss DL-Lite in Sect. 3.1. See also [38] 
for an introduction to lightweight DLs.

Inspired by database tradition, at least three families 
of logic-based ontology languages with features of rela-
tional databases have been developed to varying extents. 
The first family is based on existential rules, also known 
as tuple-generating dependencies (TGDs) [93, 297]. These 
languages embed into the well-understood Horn fragment 
of FO and conveniently generalize lightweight DLs such 
as those underlying OWL 2 EL and QL. They have been 
designed particularly towards enabling effective and effi-
cient query answering. Among the three families, this one 
is most covered and best understood in the literature. We will 
discuss them in Sect. 3.2, together with further rule-based 
languages.

The second family comprises various extensions of DLs 
that support (legacy) database features, such as DLs with 
identification constraints and (path-)functional dependencies 
[100, 289, 334, 376], and variants of lightweight DLs with 
the bag (i.e., multiset) semantics [302].

The third family is in a much more experimental stage 
than the previous families, and consists of attributed DLs 
[250, 314]. Those have been designed to represent and rea-
son with meta-knowledge, in the presence of knowledge 
graphs such as Wikidata [380] and DBpedia [256]. Attrib-
uted DLs are based on lightweight as well as expressive DLs.

Given the many reasons for using logic-based, and espe-
cially DL-based, ontology languages as well as the vast 
amount of available literature and ontologies, the remain-
der of this survey focuses almost exclusively on ontologies 
based on DLs.

2.2 � Ontology Systems

Developing, maintaining, and using ontologies requires tools 
such as editors, APIs and reasoners; the W3C website pro-
vides a brief overview of available implementations.6 Mod-
ern reasoners are typically based on sound and complete 
techniques for solving standard reasoning problems such as 
consistency checking, satisfiability testing, or classification, 
but there are also tools that solve more advanced relevant 
reasoning tasks such as query answering, module extraction, 
forgetting, explanation generation, abduction, etc.

The most common methods for solving standard rea-
soning problems include tableaux [207], hypertableaux 
[295], resolution [291], and consequence-based techniques. 

1  http://dl.kr.org/.
2  https​://www.w3.org/TR/owl2-overv​iew/.
3  https​://biopo​rtal.bioon​tolog​y.org/.
4  http://www.cs.ox.ac.uk/isg/ontol​ogies​/.
5  http://owl.cs.manch​ester​.ac.uk/owlco​rpus. 6  https​://www.w3.org/2001/sw/wiki/OWL/Imple​menta​tions​.

http://dl.kr.org/
https://www.w3.org/TR/owl2-overview/
https://bioportal.bioontology.org/
http://www.cs.ox.ac.uk/isg/ontologies/
http://owl.cs.manchester.ac.uk/owlcorpus
https://www.w3.org/2001/sw/wiki/OWL/Implementations
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The latter were originally developed for Horn DLs such 
as tractable members of the EL family, resulting in highly 
efficient reasoning procedures based on completion rules 
[29]. The completion-based approach later became known 
as consequence-based reasoning and was carried over to 
more expressive Horn and even non-Horn DLs [53, 224]. 
In general, the technique of consequence-based reasoning 
combines ideas from hypertableaux and resolution. See also 
a recent survey [131].

A large number of DL reasoners are based on success-
ful implementations and optimizations of these methods: 
(hyper)tableau-based reasoners such as FaCT++ [378], Pel-
let [358], HermiT [173], or Konclude [366] typically cover 
all of OWL 2. For OWL 2 EL, highly efficient consequence-
based reasoners exist, such as CEL [37] or ELK [225]. Con-
sequence-based reasoners for more expressive DLs include 
CB [224] and Sequoia [132].

We also note that there are hybrid reasoners that com-
bine several other reasoners for more efficiency, sometimes 
relying on module extraction. Examples include Chainsaw 
[379], MORe [336], and PAGOdA [391].

For more information, see the proceedings of the ORE 
workshop7 and the list of reasoners maintained by the Infor-
mation Management Group at the University of Manchester 
(last updated in June 2018).8

3 � Ontologies and Data

3.1 � Core Topics

We now discuss some of the basic topics related to the use 
of DLs to build ontologies, and employ such ontologies in 
the context of data management.

Basic reasoning problems DLs allow to model the domain 
of interest using only unary and binary predicate symbols, 
called concept names and role names, respectively. Differ-
ent DLs support different constructors for building complex 
concepts and roles, and for expressing relationships among 
them. A knowledge base (KB) expressed in a DL is usually a 
pair K = (T,A) , where T  is a set of inclusion axioms (called 
TBox), and A is a set of facts (called ABox). In particular, 
ABoxes consist of concept membership assertions and role 
membership assertions. In the DL literature, the term “ontol-
ogy” has at least two common usages: often it is used to 
refer to a whole KB K as above (this is especially true in 
the context of OWL ontologies), or to refer to the TBox of 
a KB. Intuitively, in the latter case, a DL KB consists of an 
ontology that is paired with some data in the form ABox 

assertions. Given the nature of this survey, we adopt this 
usage and use the term “ontology” (instead of “TBox”) to 
refer to the set T  of inclusion axioms in a KB K = (T,A) . 
In terms of classical logic, inclusion axioms can be seen as 
a special kind of closed formulas in first-order logic, and 
concept and role membership assertions are just a kind of 
ground atomic formulas.9 Sometimes it is convenient to 
think of an ABox simply as a collection of unary and binary 
(database) relations.

For an example, consider a KB K = (T,A) , where the 
ontology T  contains the following inclusion axioms (all sup-
ported, e.g., in the basic DL ALC):

The above ontology tells us that exchange students are stu-
dents, that students are persons, and that a student must 
attend at least one course. Let the ABox A consist of the 
following assertions, whose meaning is obvious:

The most basic reasoning task in DLs is satisfiability testing, 
that is, checking the existence of a model of a plain ontology 
T  , or a fully-fledged KB K = (T,A) . Roughly speaking, a 
model I  of T  is a (possibly infinite) relational structure that 
satisfies all the inclusion axioms (i.e., all closed formulas) 
in T  . Furthermore, the structure I  is a model of the full KB 
K if it additionally agrees with all the facts in A . We remark 
that T  or K may have (possibly infinitely) many models, or 
no model at all. Another standard reasoning task is subsump-
tion testing, which consists of deciding whether one concept 
is at least as general as another concept, possibly in the con-
text of other ontological axioms. This corresponds to check-
ing whether an inclusion C ⊑ D seen as a logic sentence is 
valid, or is a logical consequence of some ontology T  . For 
example, ��������������� ⊑ ������ is a logical consequence 
of the above ontology T  , while ������ ⊑ ∃�������.������ is 
not. Another important task, which already points to data 
management, is answering instance queries. It consists of 
retrieving, given an ontology and an ABox, all instances of 
a given concept or role, i.e., all objects that can be inferred 

��������������� ⊑ �������

������� ⊑ ������

������� ⊑ ∃�������.������

�������(John) �������(John, CS)

���������������(Ann) �������(Ann, CS)

�������(John, Logic) �������(Bob, CS)

�������(Bob, Logic)

7  https​://dblp.uni-trier​.de/db/conf/ore/.
8  http://owl.cs.manch​ester​.ac.uk/tools​/list-of-reaso​ners.

9  We are making a simplifying assumption here. ABoxes, in general, 
are allowed to contain more sophisticated assertions, but this usually 
does not add expressiveness to the formalism at hand, and thus we 
ignore them for the sake of presentation.

https://dblp.uni-trier.de/db/conf/ore/
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners


332	 KI - Künstliche Intelligenz (2020) 34:329–353

1 3

to belong to a certain concept, or pairs of objects connected 
by a role.

Most DLs can be seen as fragments of C2 , the two-vari-
able fragment of first-order logic with counting quantifiers 
[71, 374]. Unlike in full first-order logic, satisfiability testing 
is decidable in C2 [188, 319, 329]. The computational com-
plexity of reasoning in DLs is a central topic of investiga-
tion in the DL literature, and it is well understood for most 
of the common DLs and for a wide variety of reasoning 
tasks, ranging from satisfiability testing to query answer-
ing. In fact, DLs vary greatly in terms of expressiveness 
and complexity of reasoning; e.g., lightweight DLs of the 
DL-Lite and EL families provide a limited set of construc-
tors and thus are usually tractable. More expressive DLs 
like SROIQ [208] are not tractable.

Ontology-based data access A major application of DLs 
is in Ontology-based Data Access (OBDA) [328] (see also 
[385] for a dedicated survey). This data integration para-
digm aims at providing seamless access to multiple, pos-
sibly heterogeneous data sources. In OBDA, an ontology 
expressed in a DL provides a conceptual view of the applica-
tion domain, while mappings relate the various data sources 
to the terms in the ontology. A user of the system poses a 
query using the vocabulary of the ontology, i.e., over the 
conceptual view. The OBDA system is then tasked to answer 
the user query by incorporating the information from the 
various information sources, possibly employing the domain 
knowledge in the ontology to infer new information. See 
Fig. 1 for an overview of OBDA.

For understanding the computational aspects and expres-
siveness of OBDA, the notion of an ontology-mediated 

query (OMQ) is very convenient. An OMQ is usually given 
as a pair Q = (T,Q) , where T  is an ontology, and Q is a 
(user) query. Intuitively, while T  is meant to be constructed 
and maintained by domain experts, Q is an information 
request that can be made by a user of an OBDA system, 
who need not be a domain expert. Usually, standard data-
base query languages, e.g., conjunctive queries (CQs), are 
used to express user queries. In the spirit of classical data-
base queries, OMQs are evaluated over ABoxes (recall that 
ABoxes can be seen as relational databases). The evaluation 
of an OMQ Q over an ABox A yields a relation, which is 
called the query answer (to Q over A). Roughly speaking, 
the answer to Q = (T,Q) over an ABox A contains a tuple �  
if and only if �  is in the answer to the query Q in all models 
I  of the KB K = (T,A) . This is an example of the certain 
answer semantics, which is well known in databases.

Example 1  Consider an OMQ Q = (T,Q) , where the ontol-
ogy T  is defined above, and the query Q is a CQ written as 
follows:

The query Q asks for all persons who attend something and 
are members of the Computer Science department. We note 
the expression (1) is a simple example of a rule: the atom 
�(x) is called the head atom, while the atoms on the right-
hand side of “ ← ” are called the body atoms of this rule. We 
will discuss more general rules later.

Consider the ABox A from above. Recall that our exam-
ple ontology says that exchange students are a kind of stu-
dents, that students are persons, and that every student 
must attend some course. Computing the certain answer to 
Q = (T,Q) over A yields precisely the constants (or, indi-
viduals) John and Ann . The certain presence of John in the 
answer is due to A and the second inclusion in T  , which 
tells us that John is a person (slightly more precisely, John 
is a person in any model of K = (T,A) ). In particular, if we 
evaluate Q in any model I  of K = (T,A) , John is present 
in the query answer. The same is true for Ann , but now all 
three inclusions of T  play a role: the first one tells us that 
Ann is a student, and consequently from the second and the 
third inclusions we know that in any model of K = (T,A) 
we have that Ann is person who attends some course. The 
individual Bob is not in the certain answer to Q over A 
because from the given assertions and inclusion axioms 
we cannot infer that Bob is actually a person. 	�  ◻

The computational aspects of answering OMQs is 
a popular research topic, covering a range of DLs and 
(user) query languages. For instance, lightweight DLs of 
the DL-Lite and EL families support OMQ answering that 
is computationally not significantly more expensive than 

(1)𝗊(x) ← 𝖯𝖾𝗋𝗌𝗈𝗇(x), 𝖺𝗍𝗍𝖾𝗇𝖽𝗌(x, y),𝗐𝗈𝗋𝗄𝗌𝖨𝗇(x, CS)

ONTOLOGY-BASED

DATA ACCESS
ONTOLOGY

?
?

?
?

LOGIC REASONER

Fig. 1   OBDA in a nutshell: a logic reasoner equipped with an ontol-
ogy mediates access by multiple applications to multiple, possibly 
heterogeneous data sources
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queries in the standard relational database setting (see, 
e.g., [14, 239]). However, answering OMQs based on 
CQs and expressive DLs is significantly more expensive 
in the worst-case (under standard assumptions in complex-
ity theory), already because core tasks like satisfiability 
are ExpTime-hard for the basic expressive DLs like ALC 
[349]. ExpTime-completeness of answering OMQs based 
on CQs for ALC ontologies was established in [272, 312]. 
The problem is 2ExpTime-complete for extensions of ALC 
with inverse roles [272], with nominals [299], with role 
hierarchies and transitivity [152], or for positive first-order 
queries in plain ALC [311]. Algorithms for these prob-
lems have been obtained using a variety of techniques, 
e.g., reductions to consistency testing [175, 272], modi-
fied tableaux algorithms [307], resolution [214, 326], tech-
niques based on tree automata [106, 309], type elimination 
[152, 153], and even combinations of some of the men-
tioned techniques [391]. Many of the above papers deal 
with computational complexity measured in the combined 
size of all input components (i.e., the size of the OMQ and 
the input ABox); they deal with the combined complexity 
of a problem at hand. However, motivated by the database 
perspective, the data complexity of query answering (i.e., 
the complexity measured in the size of the input ABox 
only, disregarding the size of the OMQ) has also received 
significant attention (see, e.g., [98, 213, 307]). For most 
common DLs, the data complexity ranges from very low 
(in particular, membership in AC0 for DL-Lite) to coNP-
completeness for expressive DLs (see Table 3 in [310]). 
Unfortunately, for the very expressive DLs that feature 
inverse roles, number restrictions, and nominals, in the 
best case decidability is established, but no tighter com-
plexity results are available; this applies, e.g., to the DL 
ALCOIQ [346].

Horn DLs As mentioned above, expressive DLs suffer 
from intractable data complexity, which hinders their appli-
cation in data management scenarios. This raised a natural 
question whether there exist useful fragments of expres-
sive DLs like SHIQ that have tractable data complexity. 
The authors of [213] have identified Horn-SHIQ as one 
such DL, in which (the decision problem corresponding to) 
instance query answering is PTIME-complete in data com-
plexity. In [148] this tractability result was extended to CQs. 
Most DLs of the DL-Lite and EL families are considered 
to be Horn DLs, e.g., they are generalized by Horn-SHIQ 
[251]. The complexity of query answering in variants of EL 
was explored in [248, 252, 342], yielding complexity results 
that range from tractability to undecidability. The complex-
ity of standard reasoning and conjunctive query answering 
in the expressive DLs Horn-SHOIQ and Horn-SROIQ has 
been studied in [308, 309], showing that these problems are 

ExpTime-complete in combined complexity, but are tractable 
in data complexity.

Query rewriting Database research is very mature, and 
a lot of highly optimized database systems exist and are 
used in almost any organization. For instance, the popular 
relational database management systems (DBMSs) provide 
efficient implementations for the SQL query language. CQs 
that are used in OBDA are closely related to select-project-
join queries in SQL. Thus of course it makes sense to reuse 
existing DBMSs as much as possible, and the positive 
theoretic and practical results in this respect are one of the 
main reasons for the success of OBDA. Most OBDA sys-
tems—like Mastro [97] and Ontop [335]—use versions of 
DL-Lite as the ontology language. This lightweight DL has 
a very useful property, called first-order rewritability (FO-
rewritability). In particular, OMQs Q = (T,Q) , where T  is 
a DL-Lite ontology and Q is a CQ, can be translated into 
unions of conjunctive queries (UCQs), which are a mild gen-
eralization of CQs [14, 99]. That is, from Q we can obtain 
a UCQ Q′ such that evaluating Q′ over A (seen as a plain 
relational database) yields the answer to the OMQ Q over 
A , for any possible input ABox A . This shows very low data 
complexity (in particular, membership in AC0 ), and opens 
the way for handling large amounts of data by reusing avail-
able database systems.

Unfortunately, the UCQ Q′ can easily become of exponen-
tial size in the size of the original OMQ Q. For this reason, 
the succinctness aspect of various rewritings for DL-Lite 
has received significant attention [64, 181, 186, 344]. E.g., 
the authors of [186] showed that polynomially sized non-
recursive Datalog programs can be constructed for OMQs 
formulated using DL-Lite ontologies. Datalog is a standard 
rule-based language in (deductive) databases, with several 
efficient implementations. FO-rewritability for existential 
rules that often generalize members of the DL-Lite family 
have also received significant attention [42, 95, 127, 372].

Unfortunately, FO-rewritability is impossible for DLs 
whose data complexity (e.g., of consistency testing) is 
higher than AC0 , and this applies to most richer DLs dis-
cussed above. Fortunately, for many common DLs there 
exist rewritings into Datalog and its extensions, which have 
led to implemented tools (see, e.g., [154, 326, 377]). The 
seminal paper [214] showed that instance queries mediated 
by ontologies expressed in the DL SHIQ can be rewrit-
ten into disjunctive Datalog programs, which unfortunately 
could be of exponential size in the worst case. This rewriting 
is achieved by converting the input ontology into standard 
clauses in first-order logic, saturating the resulting theory 
using a resolution calculus, and then obtaining a disjunc-
tive Datalog program by deleting all clauses with function 
symbols. Polynomial time rewritings into variants of Data-
log were presented, e.g., in [5, 308]. The deep connections 
between OMQs and variants of Datalog (like monadic or 
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frontier-guarded disjunctive Datalog) were also studied in 
[62].

The combined approach Query rewritings have been 
applied in several settings, from lightweight DLs to expres-
sive DLs. The target languages change depending on the 
data complexity of the considered query answering prob-
lem. While for members of the DL-Lite family we usually 
have FO-rewritability, already for DLs as simple as EL FO-
rewritability is impossible and we need a more expressive 
target language if we want to achieve rewritability. As an 
alternative to (pure) query rewritings, Lutz et al. introduced 
the combined approach to query answering in DLs, demon-
strating the idea for the DL EL [280]. The idea is that the 
data is completed using the ontological knowledge only, in 
a query-independent way. This structure over-approximates 
query answers, i.e., it might provide answers that are not 
intended according to the certain answer semantics. Thus the 
next step is the filtration step that eliminates the non-answers 
from the candidate set. This approach was extended to rich 
fragments of DL-Lite in [238, 239, 276]. Lifting the com-
bined approach to extensions of EL up to Horn-ALCHOIQ 
has been explored in [112, 160, 364]. Two techniques for 
eliminating unsound answers exist: query rewriting and 
reusing a database engine at hand [238, 239, 280], or imple-
menting a separate post-processing procedure [276, 364].

Navigational queries Since in standard DLs we only 
use unary and binary predicate symbols, DLs are naturally 
related to graph-structured data and to graph databases. 
However, CQs discussed previously lack navigational fea-
tures that are central in query languages for graph data-
bases [50, 51, 128]. In particular, they lack constructs for 
the declarative specification of possibly complex paths that 
are to be traversed in a given structure, like a model of a 
DL ontology. Navigational queries like regular path que-
ries (RPQs) in graph databases allow to specify complex 
paths by means of regular expressions built from roles [2, 
104]. In recent years, several important generalizations of 
RPQs have emerged. For instance, conjunctive regular path 
queries (CRPQs) allow for flexible ways to specify joins 
of different RPQs [103, 109, 163], while nested RPQs are 
a close relative of the XPath query language for XML data 
[52]. These query languages are popular choices to access 
not only graph databases but also the graph-structured data 
on the Web, as they allow for recursion that is both compu-
tationally well-behaved and sufficient for expressing (varia-
tions of) reachability queries. The SPARQL 1.1 query lan-
guage recommended by W3C as a standard for querying 
RDF data [381] includes the specification of property paths, 
which makes CRPQs one of the key building blocks for con-
structing queries in SPARQL 1.1.

Answering navigational queries mediated by DL ontolo-
gies has received significant attention in the literature. E.g., 
algorithms and complexity bounds for navigational queries 

in lightweight DLs have been studied in [61, 66, 245, 365]. 
Calvanese et al. have shown that CRPQ answering is 2Exp-
Time-complete for the very expressive DLs ZIQ , ZIO , 
and ZOQ [106, 107]. Recently this result was sharpened in 
[55], by showing that the complexity result holds even under 
the binary encoding of numbers, and by proving ExpTime-
completeness of the query entailment problem for CRPQs 
with a bounded number of atoms. We note that ZIQ , ZIO , 
and ZOQ extend the more well-known DLs ALCHIQ , 
ALCHIO and ALCHOQ with regular expressions as role 
constructors. Automata-based algorithms for CRPQs medi-
ated by Horn-SHOIQ and Horn-SROIQ ontologies were 
proposed in [309], resulting in worst-case optimal ExpTime 
and 2ExpTime upper bounds, respectively. The work in [191] 
shows a 2ExpTime upper bound for CRPQs over SQ ontolo-
gies, where number restrictions are allowed both on transi-
tive and non-transitive roles. We note that in some of the 
works above, generalizations of CRPQs to positive regular 
path queries are considered, and sometimes the ability to 
“walk” both along roles and role inverses is explicitly indi-
cated by introducing “2-way” queries. Hence, the acronyms 
like 2RPQs, C2RPQs or P2RPQs can be encountered in the 
literature.

Inconsistency-tolerant query answering In real-world 
data we often observe significant quality problems. In the 
presence of an ontology, some facts of a real-world ABox 
might easily become contradictory, which causes a logical 
inconsistency and renders query answering under the classi-
cal semantics meaningless. Several authors have considered 
inconsistency-tolerant semantics for query answering with 
DL ontologies, which are specifically geared towards infer-
ring meaningful query answers in the presence of inconsist-
ency. For more details on this important topic, we refer the 
reader to a dedicated survey included in this special issue 
[59].

Closed-world and open-world assumptions In the 
traditional database setting one makes the closed-world 
assumption. If a fact is not explicitly present in the data-
base, then it is assumed to be false. This is not adequate for 
data integration scenarios, where information incomplete-
ness naturally occurs. For this reason, standard OBDA 
settings drop this assumption, and make the so-called 
open-world assumption instead. It has been acknowledged 
however that that both of these assumptions are too strong, 
and that there is the need to explicitly control which parts 
of the knowledge should be considered complete and 
which could be seen as incomplete. E.g., in an OBDA sys-
tem that integrates information about a city’s restaurants 
and bus routes, it may be useful to view the municipality-
provided data about existing bus routes as complete, while 
a crowd-sourced collection of restaurants as incomplete. 
One way to achieve such control is via the so-called closed 
predicates (or DBoxes) [165, 278, 357]. In particular, we 
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may know that the extensions of certain concepts and 
roles are complete, and thus should not vary in the dif-
ferent models of a given knowledge base. Unfortunately, 
reasoning in this mixed setting is computationally more 
challenging, e.g., the data complexity of query answering 
becomes NP-hard if closed predicates are added to (the 
core fragment of) DL-Lite [165]. Some ways to regain 
tractability in the presence of closed predicates in DL-Lite 
were presented in [278]. The recent work in [279] deals 
with more fine-grained notions of complexity as well as 
with the identification of first-order rewritable cases. The 
combined complexity of query answering in the presence 
of closed predicates was investigated in [299]. In general, 
the problem of combining the closed-world and the open-
world assumptions has received significant attention. One 
can observe two lines of research here. First are the vari-
ous combinations of DLs with non-monotonic rule-based 
languages, which we briefly discuss in Sect. 3.2. Another 
direction are the extensions of DLs with non-monotonic 
features (without a direct involvement of rules); see, e.g., 
[32, 69, 70, 82, 90, 91, 114, 115, 171, 187, 231, 249, 325, 
331].

Finite model reasoning Most works on reasoning in DLs 
make the assumption that the domain of models may be infi-
nite, and reasoning algorithms are often tailored to build 
finite representations of possibly infinite models. However, 
it has been acknowledged that in some data management 
applications one should only consider structures over finite 
domains. This is the case, e.g., when DLs are used to model 
relational databases. For instance, if we use a DL ontology to 
express some integrity constraints on a relational database, 
the models of the ontology should exactly be the finite data-
bases that satisfy the constraints. This topic, known as finite 
model reasoning, has always been considered of interest in 
the DL community, but it is less developed than reasoning 
about possibly infinite models, mostly because it is signifi-
cantly more challenging [217, 273, 343]. In this area integer 
programming has been very fruitfully applied [273, 329]. 
Another technique that has been studied for finite model 
reasoning in the so-called Horn DLs is the cycle reversion 
technique, which allows to reduce basic finite model reason-
ing problems to standard reasoning problems, i.e., reasoning 
over possibly infinite structures [217, 343]. We also recom-
mend to see [161, 177, 179], where finite model reasoning 
for answering complex queries in the presence of ontologies 
in expressive languages is considered.

Explanation services In order for ontology-based systems 
to be truly useful to users, they must provide services to 
explain the outcomes of automated reasoning. For instance, 
if some inclusion is logically entailed by a possibly very 
large ontology, we may want to see which axioms of the 
ontology are actually responsible for the observed entail-
ment. The task of computing such a justification is also 

known as axiom pinpointing and has received significant 
attention in the literature [39, 206, 222, 351]. We refer the 
reader to [324] for a dedicated survey.

The techniques developed for explaining entailments can-
not be directly used for explaining non-entailments, such 
as missing answers to a query. That problem is addressed 
by abductive reasoning, which has also received significant 
attention, particularly the task of ABox abduction [138, 
143, 156, 198, 226]: we are required to compute a collec-
tion of ABox assertions (an explanation) whose addition to 
the available knowledge base would imply some given fact 
(the observation). This task is non-trivial, not least because 
the space of possible explanations is infinite in general. The 
above ideas have also been applied in the context of query 
answering in DLs, where services are provided to explain 
why some tuple is or is not present in the answer of some 
OMQ [72, 111, 117, 118, 144].

Evolving data In most of the works discussed so far, data 
that is managed and queried with the help of ontologies 
is mostly assumed to be static. However, in most realistic 
scenarios data is not fixed, but it evolves because users are 
performing some data-manipulating actions, new informa-
tion becomes available, some information becomes outdated, 
and so on. Reasoning about evolving data in the presence of 
ontologies is a core topic that is closely related to the classic 
AI area of reasoning about actions and change [333]. Many 
works in this classic area, especially the ones on decidable 
formalisms and actual systems, are in the realm of propo-
sitional theories. Reasoning about evolving data is more 
challenging, because the propositional setting is often not 
sufficient (e.g., it may require reasoning about a transition 
system with an infinite number of states). Reasoning about 
actions in DLs has received significant attention; see, e.g., 
[24, 36, 137, 260] for some positive decidability results. Fur-
ther decidability and complexity results on reasoning (e.g., 
verification) in dynamic systems that involve databases or 
domain knowledge expressed using DLs can be found in [31, 
35, 105, 108, 110, 201, 387]. This topic is closely related 
to the larger area of temporal DLs, which we will review in 
the next section.

3.2 � Extensions of Standard Ontology Languages

Even the most expressive DLs have a restricted ability to 
capture particular aspects of knowledge and/or data such 
as temporal changes, probabilistic behavior, or vagueness. 
In order to design ontology languages that overcome these 
limitations, several extensions of DLs have been studied, 
such as temporal, probabilistic, or fuzzy DLs, as well as 
generalizations of DLs with relations of higher arities, and 
combinations of DLs with rules.

Temporal DLs In many applications, data is changing 
over time, or the background knowledge has an inherently 
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temporal component (e.g., in a medical context, one may 
think of patient records, or diseases and treatments hav-
ing effects on a patient in the future). Standard ontology 
languages cannot capture temporal data or knowledge con-
veniently. For this reason, temporal extensions of ontology 
languages have been considered. Temporal DLs (TDLs) com-
prise a large and diverse family of DLs equipped with the 
ability to represent and reason over time. There are several 
ways to represent time: (1) in the point-based setting, dis-
crete time points are assumed and operators from temporal 
logics such as LTL, CTL, and CTL* [157–159, 327] are 
used; (2) in the interval-based setting, time is represented 
by intervals and fragments of the Halpern-Shoham logic 
[200] are employed; (3) dense time is usually represented 
via variants of LTL that provide quantitative temporal opera-
tors [6, 7, 282]. Further ways to represent time include the 
use of datatypes [271] or formalisms in the spirit of action 
logics [15], but we focus on (1)–(3) here. Much of the work 
on TDLs since Schmiedel’s and Schild’s seminal papers 
[350, 352] is concerned with identifying combinations that 
provide a useful balance between expressive power on the 
one hand, and decidability and feasibility of the reasoning 
problems on the other hand. 

(1) Point-based variants of TDLs date back to Schild 
[350] and have been receiving particular attention in the 
past two decades, as witnessed by several surveys [16, 17, 
20, 34, 167, 285]. Many point-based TDLs are fragments 
of 2-sorted FOL [375] and correspond to combinations of 
modal logics, such as fusions or products; the extensive 
study of many-dimensional modal logics [167] has had a 
significant impact on their study.

There are several degrees of freedom when combining 
a DL and a temporal logic; the respective design choices 
affect the expressive power and computational behavior, and 
sometimes drastically so. The design choices are of syntac-
tic nature (such as the underlying DL and temporal logic, 
the amount of integration of the temporal operators) and 
semantic nature (whether to assume domains to be constant 
or varying over time, whether to admit time-invariant predi-
cates, and more).

TDLs with temporal concepts—i.e., the use of temporal 
operators as concept constructors—are useful for referring 
to the temporal evolution of concepts (unary predicates). A 
“person who will be a student at some time in the future” 
is a possible temporal concept. TDLs with temporal con-
cepts have been studied based on ALC and the temporal 
logics LTL and CTL. They provide only limited interaction 
between the DL and temporal components, and are compu-
tationally well-behaved, i.e., their standard reasoning prob-
lems—concept satisfiability, consistency—typically are not 
harder than in the component logics [18, 193, 285, 350, 
384]. The interaction between both dimensions is increased 
significantly by adding rigid roles, i.e., the ability to assert 

that certain binary predicates are constant over time. This 
desirable modeling feature already makes combinations of 
LTL or CTL and the lightweight DL EL undecidable [21, 
195], unless severe syntactic restrictions are imposed [196].

TDLs with temporal roles but without temporal concepts 
offer an “intermediate” amount of interaction between the 
dimensions and typically have decidable standard reasoning 
problems, with an increase in complexity compared to the 
component logics [23].

TDLs with temporal axioms allow for the use of tem-
poral and Boolean operators on DL axioms (ontology or 
ABox or both), which again strongly limits the interaction 
between the components. For these TDLs, the standard rea-
soning problems as well as temporal ontology-mediated 
query answering has been studied extensively. The standard 
reasoning problems for the combination of ALC and LTL 
are not harder than the component logics in the case of, 
even when temporal concepts are added [31, 167, 285, 384]; 
decidability is preserved even when fixpoints are added 
[166] or the DL component becomes more expressive, e.g., 
SHIQ [285]. If the temporal component is replaced with a 
branching-time logic, then decidability is much harder (in 
the case of CTL) or undecidable (with CTL*) [54, 204]. 
Rigid roles lead to undecidability already in the presence of 
EL , but not of DL-Lite [21].

For temporal ontology-mediated query answering 
(TOMQA), data and combined complexity are the most rel-
evant complexity measures, and the notion of rewritability 
into standard query languages is strongly related. In this 
context, the data (ABox) is usually assumed to consist of 
time-stamped facts, the queries are equipped with tempo-
ral operators, and the background knowledge (ontology) is 
either considered static or uses temporal operators as well. 
Typically, constant domains and a linear flow of time (the 
naturals, the reals, or an interval thereof) is assumed.

For TOMQA with static ontologies, with LTL-based tem-
poral CQs (TCQs), and with and without rigid symbols, data 
and combined complexity have been studied [27, 75, 76]. 
The ontology languages considered in these works range 
from lightweight to expressive DLs. We briefly summarize 
the results: for data complexity, tractability holds for ontolo-
gies in (a) “very light” DL-Lite dialects or (b) EL without 
rigid symbols; many cases that involve ontology languages 
up to SHQ are coNP-complete. In all cases, there is an Exp-
Time upper bound on data complexity. For the combined 
complexity, the results range from PSpace-completeness for 
the above cases (a) and (b) to 2ExpTime-completeness for 
the most expressive settings ( SHQ with rigid symbols, or 
“heavier” DL-Lite dialects with role inclusions).

Rewritability has been investigated in the context of 
the temporal database monitoring problem [73], where a 
fixed temporal query is evaluated over temporal segments 
of a database. Three approaches have been developed 
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[73]: rewritings into a temporal extension of SQL such as 
ATSQL [125], rewritings that only discard future operators 
from the query and allow the use of an algorithm based on 
bounded history encoding [124], and an extension of the 
latter algorithm that can handle future operators. An alter-
native approach to the monitoring problem consists in the 
streaming data scenario [315–317], leading to the Stream-
Temporal Query Language STARQL [318], which again 
permits rewritings to SQL [360].

Temporal extensions of DL-Lite with temporal (LTL) 
concepts have been tailored carefully to ensure FO-rewrit-
ability of OMQs based on full two-sorted CQs or queries 
consisting of positive temporal concepts/roles [17, 19, 246]. 
A similar extension of EL ensures Datalog-rewritability for 
OMQs based on atomic queries [192].

TOMQA has also been studied for clausal fragments of 
LTL, where the ontology language is in the style of DL-Lite 
but additionally allows temporal operators in front of con-
cept names, and the query language consists of atomic or 
positive temporal concepts, i.e., essentially LTL formulas 
without negation. Results on data complexity and rewrit-
ability into 2-sorted FOL and monadic second-order logic 
(MSO) have been obtained [19].

(2) Interval-based TDLs have also been considered for 
TOMQA. Decidable fragments of the Halpern-Shoham 
interval temporal logic HS [88, 89, 200] were combined 
with DL-Lite for answering atomic OMQs 22]; this setting 
was extended to CQs and fragments of multidimensional HS 
combined with Datalog [240].

(3) TDLs with dense time provide the ability to express 
that events take place within certain time intervals. Metric 
TDLs have been studied under several of the above design 
choices, i.e., with and without temporal concepts, temporal 
axioms and interval-rigid concepts and roles; most combina-
tions are decidable, although often of higher complexity [26, 
194, 215]. TOMQA has been studied for Datalog combined 
with Metric Temporal Logic [6, 247] and atomic queries; in 
particular, the data complexity for the non-recursive frag-
ment is AC0 [84]. This TDL has been used in practice in the 
contexts of turbine monitoring and weather monitoring [84], 
and in a video search system for ballet learners [332]; an 
implementation and evaluation have been described [84, 85].

DLs with uncertainty and vagueness The necessity to rep-
resent uncertain or vague information has fostered the study 
of probabilistic, possibilistic, and fuzzy extensions of DLs.

We start with a brief overview of probabilistic logics. The 
literature on probabilistic first-order and probabilistic DLs 
distinguishes two types of probabilistic information to be 
represented [40, 199, 388]: (1) statistical information about 
the world, via asserting probabilities for a randomly chosen 
individual to belong to a class/property; (2) epistemic infor-
mation, via asserting a degree of belief that a certain indi-
vidual belongs to a class/property. Probabilistic extensions 

of DLs have been reviewed and categorized via the two types 
by Zese [388, Chapter 12]; we provide a summary:

Type 1 only:  A simple extension of ALC with probabil-
istic axioms has been devised and equipped with incomplete 
local inference rules [203, 218].

Type 2 only:  Prob-ALC [275] allows probabilistic con-
cept expressions and assertions in the style of Halpern’s 
probabilistic first-order logic of type 2 [199]. PR-OWL [113] 
adds the first-order probabilistic logic MEBN [255] to OWL. 
EL++-LL [300] combines the DL underlying the OWL EL 
profile with probabilistic log-linear models; reasoning has 
been implemented in E-LOG [303]. Several probabilistic 
extensions of DLs of varying expressivity are based on, or 
translatable into Bayesian networks [136, 141, 233, 386]; 
Recently, for a Bayesian extension of DL [121] the reasoner 
BORN [119] was implemented and query answering was 
studied [120]. Ontology-based access to probabilistic data 
and ontological data exchange were investigated under var-
ious semantics and based on various DLs and existential 
rules [86, 162, 182, 220, 266, 267]. Combinations of DLs 
with probabilistic logic programs were introduced for query 
answering and learning [96, 388] (the latter with a reasoner 
TRILL) and representing ontology mappings [268].

Type 1 and 2:  P-SHOQ(D) and P-SHIQ(D) [172, 263, 
265] are based on a semantics from probabilistic default rea-
soning; for P-SROIQ , satisfiability and entailment check-
ing are implemented in the reasoner PRONTO [229, 230]. 
crALC [130] admits reasoning by translations to relational 
Bayesian networks and has also been studied in the context 
of learning [270].

As an alternative to probabilistic DLs, an extension of 
ALC (and more expressive DLs) based on possibilistic logic 
has been devised and implemented in the PossDL reasoner 
[205, 330]. Possibilistic ALC allows the annotation of axi-
oms with weights, which are interpreted as lower bounds of 
necessity degrees based on the fuzzy set semantics of pos-
sibilistic logic [145, 259].

Yet another approach to modeling vagueness and impreci-
sion is taken by fuzzy extensions of DLs which are related 
to classical fuzzy logics [126, 197] and many-valued logics 
[176, 228, 262]. They can model vagueness and imprecision 
by adding new degrees of truth to the standard values “true” 
and “false”. There are several semantics for fuzzy logics; 
they all are based on (non-Boolean) functions interpreting 
the Boolean operators. Fuzzy logics thus enjoy “truth func-
tionality” in contrast to probabilistic or possibilistic logics: 
the truth degree of a formula in fuzzy logic is uniquely deter-
mined by the truth degrees of its subformulas.

Fuzzy DLs have been studied based on several (expres-
sive and inexpressive) DLs and under several fuzzy seman-
tics. Standard reasoning tasks as well as conjunctive query 
answering have been considered and implemented in several 
reasoners and ontology editor plug-ins. We limit ourselves to 
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mentioning that essentially every truly fuzzy DL that allows 
for expressing terminological cycles is undecidable, see the 
discussion in a recent project report [28]. For a concise 
overview of fuzzy DLs, we refer the interested reader to a 
recent survey article [74], which also contains information 
on diverse applications of fuzzy DLs.

Higher-arity relations Recall that—with just a few 
exceptions (see, e.g., [101])—DLs allow building ontolo-
gies using only unary and binary relation symbols. Recall 
also that most DLs can be seen as fragments of C2 , which in 
turn is a decidable fragment of first-order logic with count-
ing quantifiers. Another prominent decidable fragment of 
first-order logic is the guarded fragment (GF), which also 
captures many DLs yet features relations with higher arities 
and allows for formulas with an arbitrary number of vari-
ables [9, 216]. An even more expressive yet decidable frag-
ment is the guarded negation fragment [47], which combines 
the ideas behind GF and another fragment called the unary 
negation fragment [353]. Another decidable fragment, called 
the triguarded fragment, combines GF with the two-variable 
fragment of first-order logic [347] (see also [81, 223]).

The ideas behind GF have spurred efforts to develop new 
expressive ontology languages that support higher-arity rela-
tions, often resulting in formalisms that are orthogonal to 
DLs in terms of expressiveness. One prominent example 
is guarded tuple-generating dependencies (TGDs) (also 
known as guarded existential rules) [93]. Roughly speak-
ing, an ontology here is a set of rules with possibly exis-
tentially quantified variables in head atoms. Decidability of 
reasoning is ensured by requiring TGDs to be guarded: each 
rule is required to have a body atom (a guard) that contains 
all universally quantified variables of the given rule. The 
authors of [93] also relaxed this condition to weak guard-
edness, which excludes from guarding the variables that 
can be safely assumed to range over a small collection of 
known values. The notion of frontier-guarded rules, which 
generalizes guarded rules, was proposed in [42, 43]. Fron-
tier-guarded rules are defined as guarded rules except that 
a guard in a rule is not required to contain all of the rule’s 
universal variables, but must contain all universal variables 
that occur in the head of the rule.

Many of the above and other related languages have been 
studied in various aspects, including decidability, data and 
combined complexity, query answering, expressive power, 
rewritability, and others. Query answering has naturally 
received most attention; see, e.g., [41, 48, 80, 93–95, 221]. 
Rewritability of query answering—targeting first-order 
logic (FO-rewritability) or more expressive languages like 
variants of Datalog—is an important tool in many of these 
paper, but sometimes it is studied on its own right (see, e.g., 
[4, 46, 185]). The combined approach (to query answering), 
discussed in Sect. 3.1 for DLs, was explored for existen-
tial rules in [183, 373]. Reasoning in the presence of closed 

predicates, which we discussed previously, has also received 
some attention [56, 60]. Please also see [184, 296] for tutori-
als on existential rules.

Ontologies and rules We have seen that in the area of 
query answering in DLs, CQs provide a basic way to specify 
what needs to be retrieved from the available data while tak-
ing into account a given ontology. We have also mentioned 
that CQs are an example of simple rules (see Example 1). 
Naturally, many authors have considered the use of more 
complex rules and rule sets in combination with ontologies; 
see, e.g., [154, 189, 209, 210, 253, 254, 258, 294]. This 
is a challenging topic as here usually recursion is consid-
ered, which brings a lot of expressiveness yet can easily 
lead to undecidability if no syntactic restrictions on rules 
are applied. Several authors considered extending rules with 
default negation (or, negation as failure), which allows rules 
to infer new facts based on the absence of information. Since 
such facts can be retracted after new information becomes 
available, inference with such rules is non-monotonic, which 
brings additional challenges. Often the so-called answer set 
semantics and the well-founded semantics known from logic 
programming are used to handle ontologies equipped rules 
with default negation; see, e.g., [8, 44, 149, 155, 231, 232, 
264, 269, 293, 339–341]. We note that in these and other 
related works the level of separation between the ontology 
and the rules varies significantly, and often rules are an inte-
gral part of the knowledge representation toolkit, rather than 
just being tools for specifying user queries.

3.3 � Design‑Phase Considerations

Most of the works discussed so far aim at providing intelligent 
services to the users of an ontology-based system. However, 
the development of such systems also requires reasoning sup-
port, which is often challenging since we do not have concrete 
data available (such problems are often called static analysis 
problems). Reasoning support for the development and optimi-
zation of queries, for building correct and accurate ontologies, 
as well as for the development and debugging of mappings in 
OBDA systems have received attention in the literature. We 
next discuss some of the reasoning services related to queries 
and ontologies, which is a rather well-established area. The 
development of OBDA mappings has received less attention; 
we only point to [67, 257] for some examples.

Query containment The most prominent example of a static 
analysis problem is query containment [3], which is a key 
task in contexts like query optimization, information integra-
tion, knowledge base verification (see, e.g., [116, 258] and the 
references therein). Given a pair Q1,Q2 of database queries, 
the query containment problem is to decide whether all the 
tuples in the answer to Q1 are included in the answer to Q2 , 
for any possible input database D. The complexity of query 
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containment has been studied extensively in database theory, 
starting from the classical NP-completeness result for plain 
CQs [122]. In the context of ontologies, a more representative 
problem is that of query containment under constraints, where 
the containment of query answers is tested quantifying over 
all databases that satisfy a given set of constraints. E.g., this 
problem has been considered for various database integrity 
constraints [219], and for queries over XML documents under 
DTD constraints [116]. In the context of ontology-mediated 
queries, this problem corresponds to checking query contain-
ment in the models of a given ontology. In this setting, the 
initial results for (unions of) CQs were presented in [101, 
212]. A tight 2ExpTime upper bound for (an extension of) 
CRPQs was obtained in [106], but under the restriction that 
inverse roles and role functionality are not present together as 
language features. Decidability and tight upper bounds in the 
case when both inverses and functionality are allowed were 
presented in [109].

A more general setting, where the containment is tested 
for a pair of OMQs with two possibly different ontologies, 
has been explored in [65]. The authors show that this richer 
setting remains decidable for many common DLs and query 
languages, but higher computational costs are incurred. E.g., 
containment of instance queries mediated by lightweight 
DLs of the DL-Lite and EL families easily becomes intrac-
table or even ExpTime-hard. Several 2NExpTime-complete-
ness results for OMQ containment in expressive DLs can be 
found in [79]. A notable exception to decidability results is 
the case when functionality of roles or number restrictions 
are supported by the DL, e.g., containment of instance que-
ries mediated by ALCF  ontologies is undecidable [65]. The 
query containment problem for some important Horn DLs 
was studied in [63]. This problem for ontologies expressed 
using existential rules was studied in [49].

Query emptiness Another important static analysis prob-
lem is deciding query emptiness, which was first studied for 
DLs in [261]. Roughly speaking, given an OMQ Q = (T,Q) , 
we would like to know if the answer to Q over A is empty, 
for any ABox A that is consistent with T  . If that is the case, 
then Q is clearly erroneous and should be corrected. Often 
in OBDA applications the signature of input ABoxes is sig-
nificantly smaller than the signature of the ontology. Thus it 
is more suitable to narrow down the quantification from all 
ABoxes to ABoxes constructed using a restricted set of rela-
tion symbols. However, this restricted quantification often 
causes intractability and even undecidability [25]. In fact, 
several intractability and undecidability results for query 
containment in [65] are inherited from the lower bounds 
for query non-emptiness in [25]. For navigational queries, 
the closest work is [57], which considers satisfiability of 
XPath queries with DTD constraints. The query emptiness 
problem plays an important role also in other applications 

of ontologies in data management; for example, it is used for 
ontology focusing algorithms in [178].

Modularity Modern ontologies can reach considerable 
sizes; SNOMED CT (mentioned in Sect. 2.1) and the NCI 
Thesaurus [180] are prominent examples with (much) more 
than 100,000 axioms. Large ontologies pose serious chal-
lenges not only to the best optimized reasoners, but to all 
constituents of the ontology development process, such as 
navigation, editing, comprehension, and debugging. Module 
extraction and modularization help alleviate these problems 
and support application scenarios such as reuse, collabora-
tive development, or versioning; see also [320]. Modularity 
has been studied extensively both theoretically and practi-
cally; see, e.g., [369]. The studied approaches can be divided 
into a-priori and a-posteriori approaches.

A-priori approaches allow the developer to impose a 
modular structure on an ontology at the time of develop-
ment. They comprise suitable extensions of standard ontol-
ogy languages, such as package-based DLs [45], distributed 
DLs [356], and E-connections [134].

A-posteriori approaches can be applied to a given mono-
lithic ontology to either extract a single module, or decom-
pose an ontology into several modules. The term “module” 
can be understood in a broad sense: often it is a subset of the 
given ontology with certain logical guarantees that ensure 
an encapsulation of knowledge; however, logical guarantees 
as well as the subset requirement are not postulated by all 
a-posteriori approaches.

Module extraction and decomposition approaches with-
out logical guarantees are usually based on some form of 
syntactic traversal of an ontology’s class hierarchy or other 
representation [305, 354, 370]. In contrast, approaches with 
logical guarantees are based on the notion of a conservative 
extension (CE), which ensures that a subset M of an ontol-
ogy O encapsulates all the knowledge in O about a given 
signature (part of O ’s vocabulary) [170]. CEs come in sev-
eral variants (deductive, query-based, model-theoretic) and 
are generalized by the notion of inseparability [236], see also 
a recent survey on CEs [77]. Since inseparability and CEs 
are very hard or even undecidable for most DLs [170, 281, 
283], most logic-based a-posteriori module notions either 
apply to inexpressive DLs [168, 235, 241] or approximate 
minimal modules while guaranteeing conservativity [133, 
304, 337]; the latter often provide further guarantees such 
as self-containment and depletingness [242]. Among those, 
locality-based modules (LBMs) [133] are particularly ver-
satile, well-behaved [139, 348], and available in the OWL 
API10; they have recently been generalized via an approach 
based on Datalog reasoning [337].11 Other studies have 
investigated the size of modules depending on the chosen 

10  https​://githu​b.com/owlcs​/owlap​i.
11  http://www.cs.ox.ac.uk/isg/tools​/PrisM​/.

https://github.com/owlcs/owlapi
http://www.cs.ox.ac.uk/isg/tools/PrisM/
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module notion [168, 304]; further implementations exist 
(such as AMEX, or in the CEL reasoner; see the links in the 
original articles).

Decomposition approaches with logical guarantees exist 
in the form of signature decomposition [234, 321] or “true” 
ontology decomposition [135, 140]. The former induce 
modules of the input ontology that are no longer subsets 
(and related to interpolants, see below) and which exist 
only under certain conditions, which limits the benefits of 
these approaches for practical applications. Of the latter two 
approaches, the atomic decomposition (AD) partitions an 
ontology into atoms that are connected via a logically mean-
ingful dependency relation [140]. The AD is implemented 
in the OWL API tools.12

Uniform interpolation and forgetting As just indicated, 
interpolants are related to modules; in particular, uniform 
interpolants (UIs) can be regarded as (non-subset) modules 
with very similar logical guarantees. UIs have been stud-
ied widely for DLs of various expressivity [243, 244, 277, 
284, 301, 371, 383]. The same holds for the dual notion of 
forgetting, which is important for applications that require 
information hiding [123, 150, 237, 382, 389, 390]; see also 
a recent survey in this journal [151].

3.4 � Further topics

In addition to the topics discussed so far, further topics are 
being studied. The work on these topics is more ongoing or 
of a more specific interest. Here we list a few examples and 
refrain from a detailed discussion.

–	 Learning (ontologies and queries): see the survey [313]
–	 Privacy management: see [102, 306, 367]
–	 Stream reasoning with ontologies and/or (temporal) 

rules: see [92, 318, 338]
–	 Abstraction refinement for ontology materialization: see 

[87, 174]
–	 DLs of context: see [68, 78, 227, 355]
–	 Interactive query formulation and answering: see [10, 12, 

164, 360, 361]
–	 Relaxations of query answering semantics: see [146, 147]
–	 Ranking OMQ answers: see [368]

4 � Resources

There are recent and comprehensive textbooks and hand-
books on ontologies [363], DLs [30, 33] and, more gen-
erally, on knowledge representation [202] and Semantic 
Web technologies [142]. The proceedings of the Reasoning 
Web summer schools provide tutorial notes introducing a 
wide variety of topics; see the DBLP entry.13 There is also 
a recent survey on OBDA [385], and a recent Festschrift 
[274] gives an overview on active research topics in DLs.

Pointers to various tools, such as reasoners, ontology 
repositories, and web applications, can be found on the OWL 
web page at the University of Manchester.14

A list of related events can be found in the editorial of 
this special issue.

5 � Conclusion and Challenges

In this survey we have provided a rather broad overview of 
DL research that either directly envisions the use of ontolo-
gies in data management, or plays some important support-
ing role in this vision. While many works have been visited 
here, this survey is not meant to provide a full picture, or 
a complete review of the available literature of the field. 
Our goal was to discuss some representative works so that a 
newcomer can use them to start exploring the vast body of 
related literature.

Despite the big research efforts of the last years, many 
challenges remain to be addressed in order to realize the 
potential of ontologies in data management. For example, we 
need methods and techniques that enable interactive query 
answering, context-aware data access, managing information 
change, managing streaming data, assessing data quality, 
data analytics, a finer analysis of computational complex-
ity. The challenges are too many to be discussed here, but 
luckily they have been collected and discussed in detail in 
Section 6 of [385] and in Section 5 of [1], which we recom-
mend to read.
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