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SUMMARY

Searching for food, friends, and mates often begins with an airborne scent. Importantly, odor 

concentration rises with physical proximity to an odorous source, suggesting a framework for 

orienting within olfactory landscapes to optimize behavior. Here, we created a two-dimensional 

odor space composed purely of odor stimuli to model how a navigator encounters smells in a 

natural environment. We show that human subjects can learn to navigate in olfactory space and 

form predictions of to-be-encountered smells. During navigation, fMRI responses in entorhinal 

cortex and ventromedial prefrontal cortex take the form of grid-like representations with 

hexagonal periodicity and entorhinal grid strength scaled with behavioral performance across 

subjects. The identification of olfactory grid-like codes with 6-fold symmetry highlights a unique 

neural mechanism by which odor information can be assembled into spatially navigable cognitive 

maps, optimizing orientation, and path finding toward an odor source.

In Brief

Grid cells in entorhinal cortex underlie spatial orientation and path finding. Bao et al. show that 

entorhinal grid-like codes with behavioral relevance emerge when humans mentally navigate an 
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olfactory landscape, highlighting potential neural mechanisms for locating odor sources in 

odiferous environments.

INTRODUCTION

A key function of sensory systems is to optimize one’s physical proximity to distant objects. 

Sensory cues are essential for guiding animals closer to appetitive sources and further from 

aversive sources. Through exploration and experience, animals can adaptively learn to 

harness the sensory properties of their environments, enabling them not only to locate salient 

positions in space but also to plan and predict the most efficient route to those positions. 

Across different sensory modalities, the olfactory system is uniquely suited for achieving 

these goals.

The sense of smell is fundamentally a predictive sense. Each sniff represents an olfactory 

snapshot at a specific time and place and simultaneously represents a prediction of what 

odor is likely to be encountered on the next sniff, at the next time and place (Jacobs, 2012). 

The sense of smell is also a distance sense, as airborne odors can defy physical boundaries 

and the absence of light in ways that visual information cannot, providing a means of 

identifying and tracking remote sources (Gire et al., 2016). Finally, there is a relative 

physical constancy of an odor source, given that a lingering imprint of the odor is typically 

rooted at a fixed position in the environment. These features endow the olfactory system 

with a keen capacity for using chemical cues to navigate physical spaces. Curiously, studies 

examining the behavioral and neural underpinnings of odor navigation are sparse (Jacobs, 

2012). In the animal kingdom, olfactory cues play an indispensable role in navigation, such 

as foraging in insects (Reinhard et al., 2004), homing behaviors in pigeons (Papi, 1991), and 

scent tracking in dogs (Thesen et al., 1993). When blindfolded, humans are able to track 

odors (Porter et al., 2007) and identify the direction of an odor source from distance (Welge-

Lussen et al., 2014). However, it is unknown whether humans can navigate a sensory space 

informed only by odor cues and how the brain might internalize a representation of two-

dimensional olfactory space.

Here, we posit a world populated exclusively with odor stimuli to determine whether and 

how a navigator—with only the luxury of the sense of smell—can traverse an olfactory 

landscape. Our first step was to design an ecologically plausible landscape of smells that 

might be naturally encountered in the environment. We took advantage of the fact that odor 

concentration decreases with distance from its source and that perceived odor intensity 

monotonically scales with concentration (Conover, 2007; Gire et al., 2016; Jacobs, 2012; 

Vickers et al., 2001). To this end, we created a two-dimensional plane where x,y coordinates 

were defined by two different odors (banana and pine) that independently varied in 

perceived intensity from 0% to 100%, at 20% increments, forming a 6 × 6 space (Figures 1A 

and 1B). Based on theoretical (Wallraff, 2000) and empirical (Jacobs et al., 2015) data, each 

position in this two-dimensional space can be derived from the intensity of the two odors, 

enabling a navigator to extrapolate new information from learned odors, to predict future 

odor percepts, and, by extension, to predict future locations (Jacobs, 2012).
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An important feature of our stimulus set was guided by hypotheses about how the brain 

would encode a mental map of odor space. In rodents, open-field foraging elicits spatially 

modulated activity in medial entorhinal cortex (ERC), with individual neurons (grid cells) 

firing at multiple discrete and hexagonally periodic locations in space (Hafting et al., 2005; 

Stensola et al., 2012). In tiling spatial fields, grid cells provide a neural metric and 

internalized representation for self-location, route planning, and path integration (Bush et al., 

2015). Similarly, humans can navigate virtual (Doeller et al., 2010), visual (Julian et al., 

2018; Nau et al., 2018), abstract (Constantinescu et al., 2016), and imagined space 

(Bellmund et al., 2016; Horner et al., 2016), inferred solely from visual inputs, with single-

cell recordings (Jacobs et al., 2013) and fMRI (Doeller et al., 2010) techniques supporting 

evidence for grid-like representations in ERC as well as medial prefrontal, posterior parietal, 

and lateral temporal cortices (Constantinescu et al., 2016; Doeller et al., 2010; Jacobs et al., 

2013). Therefore, based on our hypothesis that navigation of an odorinformed space would 

rely on a grid-like coding scheme, we ensured the odor array was optimized to assess grid-

like fMRI responses, including sufficient angle resolution to identify hexagonal (6-fold) 

symmetry and sufficient range to characterize odor trajectories rather than odor identities per 

se (Figures 1C and S1).

In this study, we asked human subjects to mentally navigate along a trajectory defined by a 

“start” odor and an “end” odor and to indicate whether their predicted translation 

corresponded to the veridical end odor. Success on this task requires access to an 

internalized map of odor space, and our behavioral data revealed above-chance accuracy in 

orienting within this space. We demonstrate that grid-like representations with hexagonal 

periodicity emerged in ERC and ventromedial prefrontal cortex (vmPFC) during olfactory 

navigation, with grid strength in ERC correlating with behavioral performance across 

subjects. Our findings reveal that two-dimensional arrays of odor intensities, which 

themselves cannot be topographically encoded as a set of Cartesian coordinates on the 

olfactory epithelial sheet, nevertheless map onto grid-like scaffolds that can support spatial 

orientation and route planning within an olfactory space.

RESULTS

Humans Can Mentally Navigate Two-Dimensional Odor Space Defined Purely by Olfactory 
Stimuli

To encourage mental navigation through odor space, we adapted a task similar to those used 

in virtual and abstract navigation studies (Bellmund et al., 2016; Constantinescu et al., 2016; 

Doeller et al., 2010; Horner et al., 2016; Nau et al., 2018). Subjects were provided a start 

location and a trajectory and then assessed whether their predicted (imagined) endpoint 

along the trajectory corresponded to the veridical endpoint. Our task was introduced to 

subjects as an “odor prediction” task, but the latent structure of the map was not revealed 

until after the experiment. Trajectories were defined using a start odor mixture, along with a 

visual instruction screen indicating how much the intensities of banana and pine in the 

mixture would change upon delivery of the end odor (Figures 1B, 1D, and S2). After a 6-s 

period of mental navigation along the specified trajectory, subjects received the end odor and 

indicated whether it matched their prediction. On 50% of trials, the end odor was on 
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trajectory, and on 50% of trials, the end odor was off trajectory, varying by 15°–60°. Correct 

answers would be compatible with successful navigation.

Twenty-five subjects underwent behavioral training on the prediction task for φ days, 

followed by fMRI scanning on day 5. Two different measures of task performance suggested 

that subjects internalized mental maps of the odor space. First, prediction accuracy was 

consistently higher than chance (50%) on training and scan days (Figure 2A), though no 

significant difference was observed across days (repeated-measures ANOVA; F3.41,81.91 = 

1.41; p = 0.24). Second, we used signal detection methods to derive a navigation index, 

which adjusted for subject-specific olfactory perceptual limits (see STAR Methods). This 

analysis revealed an effect of training on navigation performance, particularly for easier 

trials in which the “off-trajectory” end odor was at a larger angle from the instructed 

trajectory, with a significant performance gain from day 1 to subsequent days (t24 = −2.17; p 

= 0.04; paired t test; two-tailed; Figure 2B). Collectively, these findings indicate that human 

subjects can generate predictions of to-be-encountered odors that vary in magnitude across 

two independent feature dimensions.

Grid-like Representations of Two-Dimensional Odor Space in vmPFC

We next asked whether the human brain uses a grid-like architecture as a metric of odor 

space. Because most grid cells share a common grid-axis angle in the same animal (Hafting 

et al., 2005; Sargolini et al., 2006), the group activities of grid cells can be manifested in 

fMRI signals showing a hexagonal periodicity as a function of moving direction (Figures 3A 

and 3B). Such profiles have been identified in ERC and medial prefrontal cortex in 

neuroimaging studies of human navigation (Bellmund et al., 2016; Constantinescu et al., 

2016; Doeller et al., 2010; Horner et al., 2016; Julian et al., 2018; Nau et al., 2018). Here, 

we first searched for regions where fMRI signals were hexagonally modulated by the odor 

trajectory direction θ during the navigation period (Figure 1D). Using a quadrature filter 

(effectively, a pair of sine and cosine regressors with 60° periodicities; Doeller et al., 2010; 

see STAR Methods), we identified the largest cluster in ventromedial prefrontal cortex 

(vmPFC) (Figure 3C). Notably, within the vmPFC region of interest (ROI) of a given 

subject, the grid angles of individual voxels were closely aligned to the same angle, a profile 

that was observed in all but one subject (Figure S3A).

Insofar as the quadrature filter is effectively a functional localizer, this approach is 

predisposed toward identifying regions with 6-fold symmetry. Therefore, to minimize any 

analysis bias, we created a new independent anatomical localizer of the vmPFC (5-mm 

radius), centered at the vmPFC coordinate (6, 44, −10) reported in the grid cell study by 

Constantinescu et al. (2016). In this way, we could test the strength of vmPFC modulation 

for the 6-symmetry fold, as well as for other control folds (from 3- to 5-fold). Among all 

symmetries tested, only the 6-fold model yielded a significant modulatory effect, but not 3-, 

4-, or 5-fold models (Figure S4).

Our 6-fold model of odor space included the “movement” period of the task, in which 

vertical translations of two visual bars informed upcoming changes in odor intensity. To 

minimize the possibility that the observed grid-like effects could be attributed to visual 

stimulation, we ensured the positions of the odor columns (“pine” and “banana”) and the 

Bao et al. Page 4

Neuron. Author manuscript; available in PMC 2020 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



axis labels (“more” and “less”) were randomly alternated across trials, dissociating spatial 

changes in visual features from magnitude changes in odor features. As a formal test that 

grid-like maps in vmPFC were not driven by visual confounds, we designed a 

complementary model in which θ was determined by the absolute directions and translations 

of the visual bars (Figure S5). Visual stimulation had no significant effect on grid-like 

vmPFC representations, and the emergence of hexagonally modulated activity was specific 

for odor versus visual trajectory (Figure 3D). Interestingly, a visual model with 4-fold 

symmetry showed significant modulation of fMRI activity in primary visual cortex (Figure 

4), indicating sensitivity to the low-level visual movements of the rating scale bars.

Finally, to assess the reproducibility of these effects in vmPFC, we performed a leave-one-

out cross-validation analysis to test whether the 6-fold periodic signals conform to a 

consistent grid-axis angle across time. Using N-1 scan runs, we estimated each subject’s grid 

angle φ from the vmPFC and reserved the left-out (Nth) run as the test set, which was 

organized into 12 conditions by binning trials into successive 30° bins relative to φ. The key 

prediction was that fMRI activity would be higher for trials aligned to φ (0° modulo 60°) 

than those misaligned (30° modulo 60°). Using this unbiased analysis, we confirmed that the 

same grid angle was consistently identified in vmPFC (Figure 3E), implying stability of grid 

angle over the duration of the experiment. This effect was specific to 6-fold symmetry: a 

control analysis based on a 4-fold periodicity, corresponding to a square grid field, did not 

elicit significant modulation in vmPFC (Figure 3F).

Grid-like Representations in APC Align with vmPFC Grid Angle

Using the same approach, we tested whether other brain regions might align to the same 

vmPFC angle (Figure 3G). The demonstration of interregional angle stability would support 

the idea that a coordinated network of regions—tuned to the same grid angle—helps direct 

navigation of an odor space. Here, we focused on ERC, based on its prominent role in grid 

cell coding (Doeller et al., 2010; Hafting et al., 2005), and anterior and posterior piriform 

cortex (APC and PPC), given that our task centers on exploration of olfactory space (Giessel 

and Datta, 2014). Of note, mean fMRI signal activity in APC significantly varied in a 6-fold 

symmetric manner, entrained to the same angle as in vmPFC (Figure 3H). A similar trend 

was observed in PPC but was not significant (aligned > misaligned; t24 = 2.02; p = 0.027; α 
= 0.016; Bonferroni correction for multiple comparisons of three ROIs). No hexagonal effect 

was found in the mean ERC signal (aligned > misaligned; t24 = 0.19; p = 0.42), and the 

preferred grid angles independently estimated in vmPFC and in ERC were not correlated 

across subjects (circular correlation r = −0.034; p = 0.86).

Multi-voxel Ensemble Patterns of Olfactory Grid-like Codes in Entorhinal Cortex

Although grid-like coding in ERC was not identified in the above analysis, it is possible that 

ERC employs a distributed coding scheme during odor navigation (Diehl et al., 2017; 

Hardcastle et al., 2017), which might be better characterized using multi-voxel pattern-based 

approaches (Bellmund et al., 2016). Moreover, to the extent that low signal quality in ERC 

(due to its location in an area of high susceptibility artifact) limits our ability to resolve ERC 

grid angles using univariate analyses, multi-voxel pattern analysis (MVPA) methods might 

be more robust to signal dropout in ERC. To this end, we reasoned that, if distributed grid-
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like representations of odor space exist in ERC, then for each subject, there should be an 

intrinsic preferred grid angle φ (presumably aligned with vmPFC) with 60° periodicity, such 

that trial trajectory θ at any 60° equivalent of φ should exhibit greater pattern overlap than 

with 30° trajectories (Figures 5A and S6). A region-of-interest analysis in ERC (Figure 3G) 

confirmed this prediction: after aligning trials to φ estimated from vmPFC activity, ensemble 

pattern similarity in ERC was significantly greater for trial pairs with trajectories aligned to 

the same 60° periodicity, in comparison to trial pairs in which one of the trajectories was 

offset by 30° (Figure 5B).

To test whether this multivariate effect in ERC emerged only in context of 6-fold rotational 

symmetry, we conducted the same analyses with 3- to 5-fold symmetries. Importantly, we 

found no evidence of periodic pattern signals in 3-, 4-, or 5-fold control models (Figure 6A). 

Moreover, a visual model where trajectory directions were determined by visual movements 

of the scale bars found no significant grid-like coding in ERC patterns (Figure 6B). 

Interestingly, a complementary whole-brain searchlight analysis did reveal limited evidence 

for 6-fold multivoxel representations in vmPFC (Figure S7), though these effects were 

relatively weak and did not survive multiple comparison correction (Z = 2.74; p = 0.003 

uncorrected). Finally, to investigate whether olfactory grid-like pattern representations in 

ERC are capable of supporting behavior, we computed the linear correlation between grid-

pattern robustness (aligned versus misaligned) and performance on the odor prediction task. 

Across subjects, stronger grid-like ensemble activity in ERC was associated with greater 

ability to predict which odor would be encountered on a specified trajectory (Figure 6C), 

implicating the potential involvement of this region in orienting an olfactory navigator in 

two-dimensional odor space.

Our pattern analysis was based on the assumption that the grid angle in ERC was aligned to 

vmPFC grid angle φ (see STAR Methods). However, it remains possible that any periodic 

regularity in the ERC signal, irrespective of vmPFC grid angle φ, might still show significant 

variations between mod 60° and mod 30°. Therefore, we explicitly tested the hypothesis that 

the pattern-based hexagonal effect in ERC is most robust at vmPFC grid angle φ. Here, the 

prediction was that, with increasing divergence from φ (estimated in vmPFC), the strength of 

the correlation difference (between aligned and misaligned pairs) in ERC would 

progressively decrease. In this analysis, we computed correlations by offsetting the assumed 

grid angle φ by 15°, 30°, and 45° away from the subject’s preferred vmPFC angle. These 

results establish that the hexagonal effect is only significant for the vmPFC grid angle φ, but 

not for the other three conditions (Figure 6D). Moreover, fitting a linear regression across 

the four conditions revealed that the slope is significantly negative across subjects (t24 = 

−2.65; p = 0.014).

Olfactory Grid-like Representations in Entorhinal Cortex Are Not Driven by Mere 
Differences in Stimulus Discriminability or Task Difficulty

The use of angular parameters as regressors in our models of 6-fold symmetry is predicated 

on the assumption that the olfactory behavioral trials to which subjects were exposed were 

analogous to navigating on a two-dimensional “arena.” However, it remains possible that the 

same brain areas would have been uncovered if the data had been analyzed without 
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including any angular parameters. In other words, it would be important to determine 

whether ERC is reflecting the discriminative abilities of the subjects rather than the spatial 

structure underlying the odorant combinations. To explore this question, we sorted trials into 

correct responses (hits + correct rejections) and incorrect responses (misses + false alarms). 

We then used two different classifier methods to assess whether information about odor 

discrimination aptitude could be decoded from pattern representations in ERC. First, a 

correlation analysis between linear vectors of voxel-wise pattern activity demonstrated that 

within-condition pattern similarities (e.g., “correct” versus correct trial pairs) did not differ 

from between-condition similarities (e.g., correct versus “incorrect” trial pairs; t24 = 0.046; p 

= 0.96). Second, a support vector machine (SVM)-decoding analysis showed that 

classification accuracy (correct or incorrect) for individual trials was not different from 50% 

chance level (t24 = 0.034; p = 0.97). Together, these data suggest that odor discrimination per 

se did not influence effects in ERC.

We also inspected three additional potential confounding factors. First, we examined task 

difficulty. Here, trials were sorted into “hard” versus (“medium” + “easy”) difficulty levels, 

based on our definition of “difficulty” as the difference between the subject’s mental 

prediction of the end odor and the actual delivered end odor. The hypothesis is that, on hard 

trials, reflecting a shorter distance between the imagined endpoint and the actual endpoint 

(based on delivery of the actual end odor), it would be more difficult to estimate whether the 

end odor differed from its instructed trajectory. Using classifier models, we found that task 

difficulty could not be decoded from ERC patterns (correlation analysis: t24 = 1.71, p = 0.10; 

SVM decoding: t24 = −0.57, p = 0.58). Second, we examined trial distance. We performed a 

median split of trials based on the distance of the trajectory (from [x1,y1] to [x2,y2]), where 

further distances between start odor and end odor would presumably be easier to 

discriminate. Using either correlation analysis or SVM, the factor of distance could not be 

decoded from ERC patterns (correlation analysis: t24 = 0.33, p = 0.74; SVM decoding: t24 = 

−0.28, t = 0.78). Finally, we examined the change in the number of odor components. We 

separated trials based on whether the number of odorants in the start odor differed from the 

number of odorants in the end odor, e.g., moving from 60% pine and 40% banana to 0% 

pine and 40% banana. Again, using correlation analysis or SVM, the factor of component 

change could not be decoded from ERC patterns (correlation analysis: t24 = −0.81, p = 0.43; 

SVM decoding: t24 = 0.54, p = 0.59).

DISCUSSION

Neural mechanisms addressing the “where” question of human olfaction—that is, how the 

olfactory system tracks and locates odor sources in an odiferous environment—are poorly 

understood. Indeed, spatial navigation is a core function of the olfactory system in most 

animal species, yet a unified model of olfactory navigation, incorporating neurobiological 

data with a spatially plausible array of odors, is almost completely lacking. In this study, we 

tested the hypothesis that human subjects, using only the sense of smell, could navigate 

through a two-dimensional olfactory space. When provided with a start odor location and 

route (trajectory) instructions, subjects were able to imagine and predict their perceptual 

translocation in this odor space. Odor navigation was associated with hexagonal grid-like 

coding in vmPFC, APC, and ERC, with behavioral performance scaling with the robustness 
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of entorhinal responses across subjects. These findings mirror the behavior relevance of 

grid-like units in navigation of physical and abstract spaces (Constantinescu et al., 2016; 

Doeller et al., 2010; Kunz et al., 2015) and highlight the idea that the human brain has 

access to internalized representations of odor mixture arrays to guide spatial orientation and 

route planning.

Insofar as the two orthogonal axes of our odor space (banana, 0%–100% and pine, 0%–

100%) naturally establish angle symmetries of 90°, we tested whether the 6-fold periodicity 

observed in vmPFC and ERC could not be better accounted for by a 4-fold periodicity. This 

analysis confirmed that the 6-fold model was significantly stronger than the 4-fold model in 

both brain regions. Furthermore, by randomizing the visual directions of the odor trajectory 

and testing a visual model, we eliminated the possibility that grid-like signals were 

influenced by gaze movement from the visual field (Julian et al., 2018; Killian et al., 2012; 

Nau et al., 2018). These control tests bring greater confidence to the idea that the human 

brain can create a 6-fold map out of systematic translations in olfactory perceptual space.

One striking finding is that, when human subjects chart their course through odor space, 

fMRI-based representations in ERC, vmPFC, and APC are generally aligned to the same 

grid angle. It is possible that different brain areas utilize hexagonal grid architectures to 

represent different types of mental maps, but for each of these areas to converge on the same 

preferred grid angle seems unlikely unless there was direct interareal coordination. 

Moreover, the few rodent studies testing for hexagonal profiles outside of ERC have only 

identified grid fields in the presubiculum and parasubiculum (Boccara et al., 2010), though 

single-neuron recordings from humans have reported grid-like spiking patterns in the 

cingulate cortex (Jacobs et al., 2013). Thus, a plausible alternative explanation would be that 

odor navigation engages hexagonally periodic activity in ERC, with feedback projections to 

vmPFC and APC signaling whether the subject is either on or off trajectory as they traverse 

through olfactory space. Information about angle alignment could be integrated with action-

outcome contingencies in vmPFC to refine behavior and support more sophisticated 

cognitive maps (Schiller et al., 2015; Wikenheiser and Schoenbaum, 2016) and with 

olfactory information in APC to tag or strengthen a set of odor representations associated 

with the current trajectory.

Whether our findings are a manifestation of abstract conceptual spaces more broadly, 

especially for a region such as vmPFC, cannot be ruled out here (Constantinescu et al., 

2016). However, the identification of grid-like representations in APC reasonably implies 

that there is something “olfactory” being endowed upon this network, rather than being a 

pure (modality-free) abstract space. In future work, we could test the hypothesis that a grid-

like code of odor space is not observed when the start and end odors are navigationally 

irrelevant, for example, using a task in which subjects simply indicate whether the second 

odor is stronger or weaker in intensity than the first odor.

In this study, grid-like representations of olfactory space in ERC were identified in the form 

of multivoxel patterns instead of mean univariate signals. In turn, a pattern-based hexagonal 

profile was not found in vmPFC (aligned > misaligned; t24 = 0.33; p = 0.37). We suspect 

that the discordance between the MVPA and the standard (univariate) analyses is because 

Bao et al. Page 8

Neuron. Author manuscript; available in PMC 2020 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each analysis is sensitive to different types of signals: MVPA is sensitive to signals that vary 
across voxels, whereas univariate analysis is sensitive to mean activation that is consistent 
across subjects. To this point, the absence of a multivoxel effect in vmPFC could be due to 

low variability across voxels, whereas a pattern-based effect in ERC only emerges if there is 

substantial variation across voxels. To test this hypothesis, we compared cross-voxel 

variance for the raw fMRI time series between vmPFC and ERC (see STAR Methods). 

Supporting our prediction, we found that voxel-wise variability was significantly lower in 

vmPFC than in ERC (Figure S8), implying that fundamental signal differences between the 

two brain regions account for why grid-like codes in vmPFC and ERC were uncovered using 

different analysis approaches.

An inverse question can also be posed: why was the quadrature filter unable to identify 6-

fold (univariate) effects in ERC? One possible explanation is that fMRI signal quality 

(temporal signal-to-noise ratio [tSNR]) is relatively weak in ERC, consistent with its 

position in an area of higher MRI signal artifact. Therefore, to examine whether lower 

overall ERC signal quality—in a given subject—tends to be associated with weaker ERC 

grid-like effects, we tested the hypothesis that, across subjects, ERC voxels with weaker 

tSNR would also have lower 6-fold effects based on the use of the quadrature filter (see 

STAR Methods). This analysis revealed a marginally positive effect across subjects (Fisher 

Z-transformed R = 0.032 ± 0.025; Wilcoxon signed rank test, Z = 1.61, p = 0.053, one-

tailed), suggesting that a stronger univariate hexagonal effect is more likely to be found in 

ERC voxels with better signal quality. As such, our ability to identify univariate grid-like 

effects in ERC may be principally limited by tSNR in this region.

Aside from potential differences in signal quality between ERC and vmPFC, it is also 

possible that grid-like representations in ERC are fundamentally different for olfactory 

spaces, as opposed to visual spaces and abstract relational spaces. Such differences could 

arise from the fact that, in rodents at least, olfactory inputs predominantly converge on the 

lateral ERC, whereas visual and spatially modulated inputs converge on the medial ERC 

(Kerr et al., 2007; Witter et al., 2017). Assuming that a similar dichotomy exists in the 

human ERC, it is plausible that neural representations of two-dimensional odor space are 

associated with grid angles, spacing, and phase that are qualitatively distinct, such that 

MVPA methods are more sensitive for identifying olfactory grid-like representations.

The identification of olfactory grid-like neural representations has important implications for 

understanding how animals navigate through odor space. It has been suggested that odor 

concentration differences across sequential sniffs and odor timing differences at each nostril 

can be useful cues for tracking an olfactory source (Catania, 2013; Gire et al., 2016; Porter 

et al., 2007; Rajan et al., 2006). However, neither of these models is sufficient for encoding 

the full relational details among elements in an odorous environment. Our data highlight a 

novel mechanism by which the brain can construct a cognitive map of odor space. Having 

access to such a map would enable animals to plan how to navigate through an olfactory 

terrain and to select a route that optimizes their physical proximity to odor objects. The 

utility of olfactory cognitive maps is ideal for environments where odor sources are spatially 

and temporally anchored to a landscape, such as fruit trees, watering holes, and nesting sites, 

but given that grid cell fields can re-map to a new set of physical features (Diehl et al., 2017; 
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Fyhn et al., 2007; Marozzi et al., 2015), olfactory maps may also be effective in less 

stationary environments.

Our experimental paradigm is the first to use odors exclusively as metric cues (including 

distance and direction) to study the neural foundations of human spatial navigation. As a 

reductionist model, we show that grid-like representations can be assembled from an array 

of odor mixtures, but in theory, each individual olfactory mixture can signify a unique 

“place” in two-dimensional odor space. In the rodent literature, an interplay between 

hippocampal place fields and entorhinal grid cells is thought to enhance and stabilize place 

cell activity (Hales et al., 2014; Langston et al., 2010; Wills et al., 2010) and may provide a 

mechanism for associating episodes, position, and velocities to predict future locations 

(Bush et al., 2014; Rennó-Costa and Tort, 2017; Sanders et al., 2015). Indeed, a 

computational simulation of spatial navigation showed that an artificial agent with a “grid 

network” incorporated into the system learns more efficiently than a control agent with only 

“place cells” available (Banino et al., 2018). The extent to which discrete odor mixtures can 

be represented as place fields in human hippocampus, and how place cells shape the 

emergence of grid fields, will be important questions for future work.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Xiaojun Bao (xiaojunbao2011@u.northwestern.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-five participants (22 women, aged 18–37, mean age 24.3 years) completed this 

study. They reported to be right-handed nonsmokers with no history of significant medical 

illness, psychiatric disorder, or olfactory dysfunction. Fifty-two participants (40 women, age 

range: 18–39) gave informed consent as approved by the Northwestern University 

Institutional Review Board. All subjects participated in an initial screening session on day 0, 

which comprised an odor intensity rating task and an odor discrimination task. Thirty-four 

subjects who reached 70% accuracy on the odor discrimination task entered four consecutive 

days of behavioral training with an odor prediction task on days 1–4. Twenty-five of them 

who reached 60% on at least one training day then took part in an fMRI scan with the same 

prediction task on day 5.

METHOD DETAILS

Odor stimuli and delivery—Two monomolecular odorants, β-pinene (pine smell) and 

isoamyl acetate (banana smell) were diluted in mineral oil and matched for intensity. Odors 

were delivered using a custom-built air-dilution olfactometer. In the odor intensity rating 

task, subjects rated each pure odorant at 6 different levels of air-diluted concentrations (0%, 

14.5%, 19.5%, 27%, 36.5%, and 50%). In the odor discrimination and odor prediction tasks, 

the two odorants, at each of the 6 concentrations, were combined into 36 different pine-

banana mixtures. Each mixture represented a location in a 6 × 6 2-D odor space. Clean 
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(odorless) or odorized air was directed toward subjects via Teflon tubing at a rate of 4L/min. 

Subjects were cued to sniff for the odors upon viewing instructions on a computer screen.

Odor intensity rating and odor discrimination task—On the screening day, subjects 

first rated 6 concentrations (3 trials per concentration) of pure pine odorant and pure banana 

odorant on a linear visual analog scale (anchors “not detectable” and “extremely strong,” 

from 0–10). Next, they performed an odor discrimination task with the pine-banana 

mixtures. In the discrimination task, subjects were cued to smell two odor mixtures 

consecutively, and were prompted to respond whether the second odor has “more pine (or 

banana)” or “less pine (or banana),” compared to the first odor. During half of the trials (72 

in total) they were asked to focus on discriminating pine, and the other half of trials on 

discriminating banana. They did not know which component they would be asked about 

until the choice options appeared on the screen after the second odor. The stimulus set was 

drawn from the “hard” trials used in the odor prediction task (see below), to ensure that 

subjects can perceptually discriminate between on-trajectory and off-trajectory odors spaced 

only 15° away from each other.

Odor prediction task—On training days 1–4 and the scanning day 5, subjects performed 

an odor prediction task. This task was designed to be analogous to those in virtual spatial 

navigation (Constantinescu et al., 2016; Doeller et al., 2010). The basic idea was that 

subjects would first smell an initial “start” odor, then mentally navigate to an “end” odor 

based on instructive visual cues, and finally smell a second odor, reporting whether it 

corresponded to their mental prediction. Subjects were familiarized on the task with a set of 

16 practice trials prior to training day 1.

At the start of a trial, subjects viewed a screen display showing two vertically oriented scale 

bars, one labeled “PINE” and the other labeled “BANANA” (Figure 1D, timeline 0–3 s). 

Verbal labels were placed alongside the scales: “no change” at the midpoint, and “more” and 

“less” at the endpoints of the scales. The labels “more” and “less” referred to the amounts of 

intensity change to be expected from the first sniff (first odor) to the second sniff (second 

odor). After viewing the scale, subjects were cued to smell an initial “start” odor (timeline 

3–5 s) and instructed to pay attention to the intensities of pine and banana components in the 

mixture. The next part of the task was designed to encourage mental navigation in the odor 

space, whereby instructive cues in the visual scale bars specified the movement trajectories 

for a given trial. First, two bars appeared at the midpoints of each scale (“no change”), and 

subjects watched these bars move up and/or down along the two scales for 3 s (timeline 5–8 

s), indicating proportional changes of the two odor components (in relation to the initial start 

odor). The further that each bar moved away from the midpoint, the more the respective 

odor component would be expected to change. In an imagination phase of the task, the same 

screen remained for another 3 s (timeline 8–11 s) as subjects actively imagined what the end 

odor would smell like, based on the start odor and the movements of the bars. Finally, 

subjects were cued to smell a second (end) odor (timeline 11–13 s), and pressed a button 

indicating whether they thought the end odor was on-trajectory (“YES”) or off-trajectory 

(“NO”). Half of the end odors were on-trajectory and half were off-trajectory. Among off-

trajectory odors, there were three “difficulty levels”: easy, medium, and hard. The direction 
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of the off-trajectory was 60° ± 5° away from the on-trajectory in easy trials, 30 ± 5° in 

medium trials, and 15° ± 5° in hard trials. Subjects received feedback after their response. 

Another 8 s passed before the next trial began. There were 72 trials per training day, and 4–6 

fMRI runs (24 trials per run) on the scanning day.

Our definition of “trial difficulty” referred to the moment after completion of the 

imagination phase of the trial, when subjects are presented with actual odor 2 (end odor) and 

need to decide whether this odor corresponded to their imagined trajectory. This is the point 

at which a given trial could be considered easy, medium, or hard in difficulty: easy trials 

were those where the actual odor 2 appeared at a 60° offset away from the imagined 

trajectory (and thus was more discriminable); medium trials, at a 30° offset; and hard trials, 

at a 15° offset. In terms of the trial structure of the task, subjects were first asked to imagine 

their perceptual trajectory from odor 1 (start odor) to odor 2 (end odor). In this way, during 

the imagination period of the trial, any given trajectory was no more “easy” or “difficult” for 

the subjects than other trajectories, and thus each movement direction was sampled with the 

same difficulty. Of course, there were exceptions, including trials where the translation from 

odor 1 to odor 2 involved moving in only one of the two cardinal axes (e.g., 20% pine and 

40% banana to 20% pine/80% banana), or trials involving shorter translation distances. 

Follow-up analyses of task difficulty can be found in the Results section, “Olfactory grid-

like representations in entorhinal cortex are not driven by mere differences in stimulus 

discriminability or task difficulty.”

Note, across trials, the “more” and “less” labels randomly switched between top and bottom 

positions, and the “PINE” and “BANANA” labels randomly alternated between left and 

right sides of the visual display. With this randomization, imagined movement within the 2-

dimensional odor space could be dissociated from mere visual cues and directional 

translations of the scale bars and labels.

Odor navigation index—The performance accuracy of the prediction task depended on 

two factors: subjects’ ability to make fine perceptual discriminations between pairs of 

closely related odor mixtures, and their memory ability to navigate to the designated location 

on the odor map. The former sets the upper limit of their prediction accuracy, and the latter 

is what we would like to capture. It is important to note that performance accuracy is 

intrinsically limited by the subjects’ ability to make fine perceptual discriminations between 

pairs of closely related odor mixtures (where average discrimination accuracy across 

subjects was 77%). This means that even if subjects can perfectly navigate through the odor 

space, their performance (on average) will be at a ceiling level of 77% due to their intrinsic 

limitations in discrimination acuity. Therefore, we adjusted the prediction performance by 

the discrimination performance to derive an odor navigation measure. We calculated the 

sensitivity index d’ of discrimination and prediction tasks to account for response bias 

(Macmillan and Creelman, 1990). The odor navigation index was computed as prediction d’ 

divided by discrimination d’.

Respiratory recording and analysis—During scanning, breathing activity was 

monitored using an MRI-compatible respiration transducer for MRI (BIOPAC Systems) 

affixed around subjects’ torso and recorded using PowerLab (ADInstruments). Breathing 
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traces from each run were smoothed with a low-pass FIR filter (cutoff frequency at 2 Hz) 

and scaled to have a mean of 0 and standard deviation of 1 (Howard et al., 2016). The cued 

sniff waveforms were extracted from each trial. Inhalation duration and volume were 

computed and used as nuisance regressors in statistical modeling of the fMRI data (see 

below).

fMRI acquisition—Gradient-echo T2*-weighted echo-planar images (EPI) were acquired 

on a Siemens 3T Prisma scanner with the following parameters: repetition time (TR) = 2000 

ms, echo time (TE) = 22 ms, flip angle = 80°, matrix size = 104 3 98 voxels, field of view 

(FoV) = 208 mm, voxel size = 2 × 2 × 2 mm3, 58 slices per volume. The slice angle was set 

15° relative to the anterior-posterior commissure line to minimize signal dropout in the basal 

frontal areas of the brain (Deichmann et al., 2003; Weiskopf et al., 2006). In addition, a field 

map with dual echo-time images was acquired for geometric distortion correction of the EPI 

functional scans, with the following parameters: TR = 555 ms, TE1 = 4.92 ms, TE2 = 7.38 

ms, flip angle = 50°, FoV = 208 mm, voxel size = 2 × 2 × 2 mm3. A 0.8 × 0.8 × 0.8 mm3 

T1-weighted structural MRI scan was also obtained to facilitate normalization of EPIs into 

standard space and to define piriform cortex and entorhinal cortex ROI.

Image pre-processing—fMRI data were pre-processed with SPM12 software (https://

www.fil.ion.ucl.ac.uk/spm12/) in MATLAB. Functional images were spatially realigned to 

the first image in the time series, and were corrected for movement-related variance based 

on the field map and movement-by-distortion interactions using the Unwarp tool in SPM 

(Andersson et al., 2001; Hutton et al., 2002). The T1 structural image was co-registered to 

the mean aligned functional image, and underwent segmentation and spatial normalization 

to MNI space. Realigned functional images were normalized using the transformation 

parameters derived from the structural image normalization. Finally, the normalized 

functional images were smoothed with a 6mm full-width half-maximum Gaussian kernel. 

For multivariate pattern analysis of the entorhinal cortex, as well as for the whole-brain 

searchlight analysis, images were smoothed with a 2mm kernel.

Univariate analysis in whole brain—After pre-processing, we modeled fMRI time 

series using a set of general linear models (GLMs). All models included regressors for the 

main effects of the movement-and-imagination period (red box in Figure 1C), parametric 

modulators of this period (see below), start odor and end odor periods, the response event, 

and nuisance regressors to account for head movement and differential sniff sizes. All main 

regressors were convolved with the canonical hemodynamic response function (HRF) in 

SPM. Nuisance regressors included the following: six movement parameters derived from 

spatial realignment, their squares, derivatives, and squares of derivatives (24 in total), 

within-volume slice variance and odd-versus-even slice differences, their derivatives and 

squares (to account for within-scan motion), breathing trace, trial-by-trial sniff volume and 

duration convolved with HRF and orthogonalized with the sniff events.

Additional regressors were included when needed to model individual volumes that 

exhibited excessive head motion. An individual volume was defined as “excessive” head 

motion if one of 10 motion-correction parameters exceeded 6 SD (of the mean) from one 

volume to the next volume. Such volumes were excluded by modeling these events as 
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nuisance regressors in the GLM. On average, 12 volumes (range, 4–57) were excluded from 

each subject, out of a total of 2,100 fMRI volumes (350 volumes per session, 6 sessions) 

acquired during the experiment. Note, for two subjects, one entire session was excluded 

from fMRI analysis because more than 30 volumes from a single session (about 9% of the 

session) were identified as having excessive head motion. Data were high-pass filtered at 

1/128 Hz, and temporal autocorrelation was adjusted using an AR(1) process.

GLM1: functional localizer for hexagonal modulation—See Figure 3C. GLM1 was 

used as the first step to localize brain areas that showed the strongest hexagonal modulation. 

This analysis searched for brain areas where fMRI activity profiles fit a waveform of 

cos(6(θ-φ)), where θ is the movement trajectory direction on each trial, φ is the hypothetical 

axis angle of the grid field, and the factor 6 gives a 6-fold periodicity. According to the angle 

difference formula for cosine:

cos(6(θ − ϕ)) = cos6θ ∗ cos6ϕ + sin6θ ∗ sin6ϕ

the cosine term on the left side of the equation (a sinusoid with angle modulation) can be 

decomposed into two amplitude-modulated sinusoids, cos6θ and sin6θ. Therefore, we 

created two parametric modulators for the regressor of the movement-and-imagination 

period (Doeller et al., 2010): cos(6θ) and sin(6θ). We used an F-test to search for brain areas 

where the linear combination of the two parameter estimates (βcos and βsin) produced the 

largest amplitude. We transformed the F-statistic to a Z-statistic in each subject (Hughett, 

2007), and performed a 1-sample t test across the group. To test an alternative 4-fold 

periodicity corresponding to a square grid, we included parametric modulators of both 4-fold 

and 6-fold in the same GLM.

Note that the main purpose of GLM1 was to serve as a functional localizer to identify brain 

regions for subsequent cross-validation analysis (GLM2; see next section). However, 

statistical analyses of hexagonally modulated vmPFC activity in Figures 3C and 3D (derived 

from GLM1) should be interpreted with care. As discussed in Constantinescu et al. (2016), 

because of temporal autocorrelations that naturally occur in fMRI time-series data, within-

subject variance at the first level of analysis can be underestimated. As such, analysis of 

variance (ANOVA) models to estimate six-fold symmetry can lead to an overestimation of 

the F-statistic at the first level, which in turn will lead to an inflated Z-score, biasing the 

group-level effect. Given that a direct comparison of odor versus visual trajectories (Figure 

3D), both of which shared the same autocorrelation structure, revealed significant effects, we 

believe that statistical overestimation was not a problem. Nevertheless, these considerations 

formed part of our rationale for conducting cross-validation analyses (GLM2) to obtain 

unbiased estimates of group-wise effects.

GLM2: iterative cross-validation analysis in vmPFC—See Figure 3E. To test 

whether the 6-fold symmetry was robust and reproducible in vmPFC, we performed a leave-

one-run-out cross-validation analysis. Each subject completed 4–6 scanning runs. First, per 

subject, we performed GLM1 on all but one scanning run of the data (“training data”), and 

estimated grid angle φ for each voxel within the vmPFC ROI (cluster threshold, p < 0.001). 
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To this end, we averaged the parametric modulator estimates (betas; β) across all voxels in 

the ROI, then calculated φ as the angular coordinate mapped from Cartesian coordinates 

(βcos, βsin), divided by 6 (Doeller et al., 2010). We then performed a new GLM2 on the left-

out run of the data (“test data”). In GLM2, we aligned the trajectory direction θ to each 

individual subject’s grid angle φ, and separated all directions into 12 bins of every 30° 

around the unit circle. We created 12 regressors for trials that belonged to each bin. At the 

group level, we extracted the 12 parameter estimates from the vmPFC ROI, and tested 

whether the resulting betas of aligned directions (0° mod 60°) were higher than misaligned 

directions (30° mod 60°). In the control analysis of 4-fold periodicity, we used the same 

approaches as above, but estimated φ with factor 4 and separated all conditions into 8 bins of 

every 45°.

GLM3: interregional consistency angle—See Figure 3H. This analysis was similar to 

GLM2, except that the grid angle φ was estimated from all runs from the vmPFC ROI. Of 

note, there was no consistency of the preferred grid angle φ across subjects (Figure S3B). 

After modeling 12 trajectory directions, we extracted the parameter estimates from 

anatomically defined ROIs of entorhinal cortex (ERC), anterior piriform cortex (APC), and 

posterior piriform cortex (PPC). We used an ERC mask in MNI space available online from 

a study using high-resolution 7-T MRI (Maass et al., 2015). APC and PPC were manually 

outlined with reference to a human brain atlas (Mai et al., 1997) using MRIcron software 

(https://www.mccauslandcenter.sc.edu/mricro/mricron/). For each of the ROIs, we tested 

whether trials with directions aligned to vmPFC φ evoked higher activities than ones with 

misaligned directions.

Multi-voxel pattern analysis in entorhinal cortex—See Figure 5B. MVPA offers 

greater sensitivity to capture distributed signals in the brain compared to traditional 

univariate approaches (Norman et al., 2006), which is particularly important in ERC, a brain 

region that is susceptible for distortion and signal drop-out in fMRI recordings. For this 

analysis, a trial-by-trial GLM was specified for the movement-and-imagination period of 

each trial separately from 2mm smoothed functional images. To account fully for all 

variables in the task, the model also included onset times for the start odor, the end odor, and 

the button response. Nuisance regressors were the same as those included in the univariate 

analyses. Following GLM estimation, we extracted single-trial β pattern vectors in each 

subject from each and every voxel within the ERC ROI (Figure 3G). One important aspect 

of this analysis was to realign individual trials according to their trajectory direction θ with 

respect to each subject’s preferred grid angle φ in vmPFC. By defining each individual’s 

own grid angle φ, rather than relying on angle-free MVPA methods, this approach can 

optimize sensitivity for identifying a 6-fold periodic signal from ERC pattern correlations 

between trials separated by 60° increments.

The MVPA procedure involved (a) estimating each subject’s grid angle (φ) from vmPFC; (b) 

using φ as a reference angle for determining whether the trajectory angle (θ) for a given trial 

was aligned to φ (at mod 60°); (c) using MVPA to obtain the linear pattern correlation 

between all pairs of aligned trials (at φ mod 60°), as well as between all pairs of aligned and 

misaligned trials (at φ mod 30°); and finally (d) testing the pattern difference in ERC 
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between aligned and misaligned conditions. In this way, trials that were aligned to the ERC 

grid angle would exhibit higher pattern similarity than trials that were phase-misaligned 

(Figure S6). Importantly, we only considered pattern correlations where (at least) one of the 

trials is aligned to grid angle φ (at mod 60°). This way we excluded those comparisons 

where both trials were misaligned to φ, in which case both patterns would be low-signal 

high-noise.

Whole-brain MVPA searchlight analysis—A complementary searchlight-based 

multivoxel pattern analysis was conducted on normalized, 2mm-smoothed whole-brain 

images using the same method above. A radius of 2.45 voxels was used as the search sphere, 

and the resulting aligned versus misaligned pattern difference maps were smoothed with a 

6mm Gaussian kernel prior to group comparison.

Comparing cross-voxel variance between vmPFC and ERC—To test the spatial 

variability in vmPFC and ERC, the raw data from the full time-series in vmPFC and ERC 

were each averaged across time to obtain an average raw response for each voxel. We then 

computed the variance across voxels, separately for vmPFC and ERC, on a subject-by-

subject basis. By comparing cross-voxel variances between vmPFC and ERC, we found a 

similar pattern of results: voxel-wise variability was significantly lower in vmPFC than ERC 

(Wilcoxon sign rank test, Z = −3.81, p < 0.001).

Comparing fMRI signal quality between vmPFC and ERC—To clarify why the 

quadrature filter was unable to identify 6-fold (univariate) effects in ERC, we tested whether 

temporal signal-to-noise (tSNR) is a limiting factor in detecting grid-like representations in 

this region. The hypothesis was that subjects with weaker tSNR in ERC would also exhibit 

lower 6-fold effects in ERC. Specifically, for each subject, we computed the tSNR value 

(signal quality) for each voxel in ERC. Next, a 6-fold effect size (grid signal magnitude) was 

computed for each ERC voxel. These voxel-wise 6-fold effects were based on the univariate 

quadrature measure in each ERC voxel. We then computed the linear correlation between 

tSNR and the 6-fold effect across voxels, yielding one r value for each subject. Finally, we 

tested whether the correlation was significantly different from zero at the group level.

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars throughout figures are shown as mean ± SEM across subjects (n = 25). In figures 

showing the contrast of aligned versus misaligned conditions with 60° periodicity, bar plots 

were mean-corrected within subjects. The significance threshold was set at p < 0.05 one-

tailed for testing brain areas showing effects of aligned > misaligned directions, as well as 

testing 6-fold > 4-fold periodicity, based on our directional hypotheses (Julian et al., 2018). 

Grid-angle distribution was tested for the Rayleigh test of circular non-uniformity using 

CircStat within MATLAB (Berens, 2009). Significance threshold was otherwise set at p < 

0.05 two-tailed. Non-parametric tests were used in cases where normality was violated based 

on Lilliefors test.

In the correlation plot (Figure 6C) between navigation performance and grid-like coding in 

ERC, one data point exceeded 3 SD on the x axis. Therefore, we also used robust regression, 
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a statistical technique that is relatively insensitive to the presence of outliers by accordingly 

down-weighting each observation point in the data by its deviation from the mean (Wager et 

al., 2005). According to a robust regression analysis (robustfit function in MATLAB), the 

correlation between navigation performance and ERC pattern strength remained significant 

(r = 0.48, p = 0.03). By comparison, the correlation between navigation performance and 

grid-like coding strength were not significant in vmPFC (r = 0.18, p = 0.38) or APC (r = 

0.22, p = 0.28).

DATA AND SOFTWARE AVAILABILITY

Software used in the present study is listed in Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• How the human brain supports navigation in an odorous landscape is poorly 

understood

• Subjects learn to orient within a 2D intensity space defined by two different 

odors

• Odor navigation elicits grid-cell-like activity in prefrontal and entorhinal 

cortices

• Findings suggest a mechanism by which the brain constructs olfactory 

cognitive maps
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Figure 1. Experimental Design and Navigation Performance
(A) Intensity ratings (mean ± SEM) of pure pine and pure banana odors at different 

concentrations. As odor concentrations increased stepwise, subjects’ perceived intensity 

increased stepwise as well (chi-square = 204.93; p < 0.001; Friedman test), but ratings did 

not differ between the two odors at each intensity step (chi-square = 1.03; p = 0.31; 

Friedman test).

(B) Conceptual layout of the odor map, in which each coordinate on the odor map 

corresponds to a unique mixture of the two odors. Trajectory angles were defined by start 

and end odor positions, and the end odor might appear on (“on-traj”) or off (“off-traj”) the 

predicted trajectory. There were three difficulty levels according to the difference between 

on-trajectory θ and off-trajectory θ’. Easy trials: 60° ± 5°; medium trials: 30° ± 5°; hard 

trials: |θ-θ’| 15° ± 5°.

(C) Trajectory θ was sampled evenly across the 60° cycle, with no difference in sampling 

frequency across directions (chi-square = 2.22; p = 0.53; Friedman test). Data are mean ± 

SEM. See also Figure S1.

(D) Timeline of an example trial of the odor prediction task. Red box indicates the time 

period used for the grid-cell analyses; relative movements of the banana and pine scale bars 

(compare left and center screenshots in gray) informed subjects how much to expect the 

intensities of the two odor components to change, who then indicated whether the end odor 

matched their prediction (right screenshot).

See also Figure S2.
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Figure 2. Olfactory Navigation Performance
(A) Performance accuracy during φ training days and the following scanning day were 

consistently and significantly greater than chance (50%; Z > 4.21; p < 0.001; Wilcoxon 

signed-rank test).

(B) Navigation performance (computed as the prediction d’ adjusted for perceptual 

discrimination on a subject-wise basis) revealed a significant effect of training, particularly 

for easy trials (day 1 versus days 2–4; easy trials: t24 = −2.17, *p = 0.04; medium trials: t24 = 

−1.01, p = 0.32; hard trials: t24 = 0.28, p = 0.78; paired t tests; two-tailed). In this and all 

figures, statistical tests are one-tailed unless otherwise noted; error bars, ±1 SEM.
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Figure 3. Grid-like Signals during Odor Navigation
(A and B) Analysis schematic. Given a hexagonal grid field with main axis angle φ, 

trajectories on the odor map can be binned as aligned or misaligned with φ (A). Grid-like 

fMRI activity with 60° periodicity would thus be higher for aligned versus misaligned 

trajectories (angle φ modulo 60° versus angle [φ+30°] modulo 60°) (B).

(C) Hexagonally modulated fMRI signal activity was identified in vmPFC (x = 6, y = 46, z = 

−10; Montreal Neurological Institute [MNI] coordinate space; Z = 3.87; cluster-level 

PFWE-corr = 0.0012, cluster-defining threshold p < 0.001; voxel-level Puncorr = 0.000055). 

Data overlaid on a T1-weighted sagittal brain section are shown (display threshold; p < 0.01 

uncorrected).

(D) Hexagonally modulated activity was not elicited in vmPFC in response to trajectories 

defined by the movement of the visual bars (t24 = 0.037; p = 0.97; two-tailed); the direct 

comparison of odor versus visual trajectories was significantly different (t24 = 2.65; *p = 

0.0070; paired t test). Bar plot shows condition-specific averages of voxels from a 5-mm 

sphere centered at the vmPFC peak in (C). See also Figure S5.
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(E) Cross-validation analysis of the grid-like effect in vmPFC (based on cluster in C; 

threshold; p < 0.001) reveals grid angle reproducibility across time (aligned > misaligned; 

t24 = 2.33; p = 0.014). Orange and blue bars, aligned and misaligned to φ.

(F) The grid-like effect in vmPFC was specific for 6-fold, but not 4-fold, periodicity (aligned 

> misaligned; Z = −0.04; p = 0.97; Wilcoxon signed-rank test), and the difference between 

6-fold and 4-fold symmetry was significant (Z = 1.98; p = 0.048; Wilcoxon signed-rank 

test). See also Figure S4.

(G) Anatomical masks delimiting ROIs in ERC (red), APC (blue), and PPC (green).

(H) The preferred grid angle in vmPFC predicted hexagonally modulated signal in APC 

(aligned > misaligned; t24 = 3.08; p = 0.0026; α = 0.016; Bonferroni correction for multiple 

comparisons of three ROIs).

Data are mean ± SEM.
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Figure 4. 4-Fold Modulation of fMRI Activity Based on Visual Trajectory in Bilateral V1
A visual model, based on the up and down vertical movements of the visual bars during the 

experiment, significantly modulated activity with 4-fold symmetry in bilateral primary 

visual cortex in left V1 (−20/−88/−14, Z = 3.79; puncorr < 0.0001; small-volume correction 

[SVC] using an anatomical mask of Brodmann areas 17 and 18: pSVC-corr = 0.003) and in 

right V1 (22/−90/−8; Z = 3.88; puncorr < 0.0001; pSVC-corr = 0.012). Activations are overlaid 

on coronal (left) and axial (right) sections of T1 template, at a display threshold of p < 0.001 

uncorrected.
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Figure 5. Grid-like Ensemble Activity in Entorhinal Cortex
(A) Conceptual schematic for the multi-voxel pattern analysis of grid-like representations in 

ERC. (Left) Hypothetical fMRI activity in a grid-like system shows hexagonal modulation 

as a function of trajectory direction θ, where θ is aligned to each subject’s preferred grid 

angle φ, estimated from vmPFC. If the trajectories of a given pair of trials are aligned at a 

60° multiple of φ (e.g., trial q at φ and trial r at φ + 120°), then pattern similarity should be 

high. Alternatively, if the trajectories of a given trial pair are misaligned with respect to φ 
(e.g., trial q at φ and trial s at φ + 210°), then pattern similarity should be low. (Right) Linear 

correlations between trial pairs were estimated, enabling a test of the hypothesis that 

aligned-aligned patterns (angular difference of 0° mod 60°; orange colors) would elicit 

greater pattern overlap than aligned-misaligned patterns (angular difference of 30° mod 60°; 

blue colors). See Figure S6 for details.

(B) Pattern similarity between trajectory pairs in ERC exhibited hexagonally periodic 

modulation, with greater similarity for pairs aligned to grid angle φ and its 60° multiples 

(orange versus blue bars; aligned > misaligned; t24 = 2.15; p = 0.021). Data are mean ± 

SEM.
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Figure 6. Grid-like Pattern Representations in ERC Are Specific to 6-Fold Symmetry and to 
Odor Trajectories, with Grid Angle Aligned to vmPFC
(A) N-fold sinusoidal modulation of ERC pattern similarity was significant with the 6-fold 

model (aligned > misaligned; t24 = 2.15; p = 0.021), but not with 3-, 4-, or 5-fold models (t24 

< 0.43; p > 0.33).

(B) Grid-like pattern representations in ERC were significant for odor trajectories, but not 

for visual trajectories (aligned > misaligned; t24 = 0.01; p = 0.49).

(C) Strength of grid-like pattern representations in ERC, estimated as the difference between 

angle-aligned and misaligned conditions, correlated with behavioral performance (“easy” 

trials) on the odor navigation task across subjects (Pearson’s r = 0.44, p = 0.026, two-tailed; 

robust regression r = 0.48, p = 0.03).

(D) Grid-like pattern representations in ERC were only significant when the grid angle in 

ERC was aligned to the vmPFC grid angle φ, but not at 15°, 30°, or 45° offsets from φ 
(aligned > misaligned; φ + 15°: t24 = 1.09, p = 0.15; φ + 30°: t24 = 0.45, p = 0.33; φ + 45°: 

t24 = −0.52, p = 0.67).
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Data are mean ± SEM.
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