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Abstract

Doubly truncated data are found in astronomy, econometrics and survival analysis literature. They 

arise when each observation is confined to an interval, i.e., only those which fall within their 

respective intervals are observed along with the intervals. Unlike the one-sided truncation that can 

be handled by counting process-based approach, doubly truncated data are much more difficult to 

handle. In their analysis of an astronomical data set, Efron and Petrosian (1999) proposed some 

nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the 

work of Bhattacharya et al. (1983) for right truncated data, we propose a general method for 

estimating the regression parameter when the dependent variable is subject to the double 

truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by 

existing software packages. Weighted rank estimation are also considered for improving 

estimation efficiency. We show that the resulting estimators are consistent and asymptotically 

normal. Resampling schemes are proposed with large sample justification for approximating the 

limiting distributions. The quasar data in Efron and Petrosian (1999) and an AIDS incubation data 

are analyzed by the new method. Simulation results show that the proposed method works well.
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1 Introduction

In their analysis of quasar data, Efron and Petrosian (1999) proposed nonparametric methods 

for doubly truncated data. Their methods deal with two common statistical issues: 1. testing 

independence between the explanatory variable and the dependent variable when the latter is 

subject to the double truncation; 2. estimating nonparametrically the marginal distribution of 
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the response variable when the independence is true. For the first issue, they constructed an 

extension of Kendall’s tau that corrects for possible bias due to the truncation. For the 

second issue, they applied the nonparametric EM algorithm to obtain a self-consistent 

estimator.

The existing literature contains many nonparametric methods for dealing with truncated 

data. Turnbull (1976) developed a general algorithm for finding the nonparametric 

maximum likelihood estimator of distribution for arbitrarily grouped, censored and truncated 

data. This estimator was obtained earlier by Lynden-Bell (1971) for singly truncated data. 

The large sample properties of Lynden-Bell’s estimator were established by Woodroofe 

(1985). Wang, Jewell, and Tsai (1986), Keiding and Gill (1990) and Lai and Ying (1991a) 

applied the counting process-martingale techniques.

There is a substantial literature on regression analysis with the response variable subject to 

right or left truncation. Motivated from an application in astronomy, Bhattacharya, Chernoff, 

and Yang (1983) formulated the relationship between luminosity and red shift as a linear 

regression model in which the response variable is subject to right truncation. They extended 

the Mann-Whitney estimating function with a modification to correct for possible bias due 

to the truncation, and showed that their estimator is consistent and asymptotically normal. 

Tsui, Jewell, and Wu (1988) developed an iterative bias adjustment technique to estimate the 

regression parameter in the linear regression model. Tsai (1990) made use of Kendall’s tau 

to construct tests for independence between the response and the explanatory variables. Lai 

and Ying (1991b) constructed a semiparametrically efficient estimator using rank based 

estimating functions. For modeling and analysis of truncated data in the econometrics 

literature, see Amemiya (1985) and Greene (2012), and references therein. For general 

biased sampling that contains truncation as special cases, we refer to recent works of Kim et 

al. (2013) and Liu et al. (2016).

Compared with singly truncated data, doubly truncated data are technically more 

challenging to deal with. Few results have been obtained for doubly truncated data due to 

lack of explicitly expressed estimating functions. Similar difficulties also arise for doubly 

censored data. Chang and Yang (1987) and Gu and Zhang (1993) discussed nonparametric 

estimators based on doubly censored data and established their asymptotic properties. 

Semiparametric regression M-estimators with doubly censored responses were studied by 

Ren and Gu (1997). For doubly truncated data, based on Efron and Petrosian (1999), Shen 

(2010) developed a nonparametric maximum likelihood estimator for the truncated variable 

distribution, and investigated the related asymptotic porperties. Moreira and Alvarez (2012) 

proposed a kernel-type density estimation approach and explored its asymptotic behavior. 

Bilker and Wang (1996) and Shen (2013) extended the two-sample Mann-Whitney test, with 

parametric modeling of the truncation variables. For regression with doubly truncated data, 

Shen (2013) considered semiparametric transformation models and used nonparametric EM 

algorithm as in Efron and Petrosian (1999) to obtain regression parameter estimation. 

Nonparametric regression analysis was considerd by Moreira and Alvarez (2016) by using a 

kernel-type approach.

Ying et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This paper proposes a general approach to estimating the regression parameter in the linear 

regression model when the response variable is subject to the double truncation. An 

extended Mann-Whitney-type loss function is introduced that takes into consideration of the 

double truncation. A Mann-Whitney-type rank estimator is then defined as its minimizer. 

The minimization can be carried out easily and efficiently using existing software packages. 

A random perturbation approach is proposed for variance estimation and distributional 

approximation. By applying the large sample theory for U-processes, a quadratic 

approximation is developed for the loss function and, as a consequence, the usual asymptotic 

properties are established for the proposed estimator. Large sample justification for the 

random perturbation approach is also given. Extensive simulation results are reported to 

assess the finite sample performance of the proposed method. The method is applied to two 

real data sets. Additionally, extension to weighted Mann-Whitney-type pairwise 

comparisons that may improve efficiency is proposed.

The rest of the paper is organized as follows. The next section introduces some basic 

notation and defines the doubly truncated linear regression which is the focus of this paper. 

In Section 3, we introduce an extension of the Mann-Whitney-type objective function for 

regression parameter estimation that adjusts for double truncation, followed by a weighting 

scheme to improve efficiency. The usual large sample properties of the proposed method are 

established in Section 4. Sections 5 and 6 are devoted to simulation results and analyses of 

two real data sets, the quasar data and AIDS incubation data, respectively. Some concluding 

remarks are given in Section 7. The technical developments are summarized in the 

Appendix.

2 Notation and model specification

Consider the linear regression model

Y = β⊤X + ε, (1)

where Y  is the response variable, X the p-dimensional covariate vector with β the 

corresponding regression parameter vector and ε the error term that is independent of 

covariates. This model becomes much more complicated when the response variable Y  is 

subject to double truncation. Specifically, let L and R denote the left and right truncation 

variables. The response Y , the truncation pair (L, R) and covariates X  are observed if and 

only if L < Y < R. Throughout this paper, we will make the usual (conditionally) 

independent truncation assumption: Y  and (L, R) are conditionally independent given X or, 

equivalently, ε is independent of (X, L, R). We will use f and F to denote respectively the 

density and distribution functions of ε.

Let Z = Y , X⊤, L, R
⊤

 and Z1, …, Zn be n independent and identically distributed (i.i.d.) 

copies of Z. Because of truncation, for each i, Zi is observed if and only if Li < Y i < Ri. Let 

n = # i : Li < Y i < Ri , the number of observations. Furthermore, let 
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Zi = Y i, Xi
⊤, Li, Ri

⊤
, i = 1, …, n, be the observed Zi’s with εi the corresponding error 

terms.

There are two approaches to formulating the truncation data. The first one, as being used 

here, is from the missing data viewpoint with Zi, i = 1, …, n as the complete data. The 

second one is to directly model the observed data, i.e. to assume that Zi, i = 1, …, n are i.i.d. 

observations with joint density

f Y i − β⊤Xi
F Ri − β⊤Xi − F Li − β⊤Xi

ℎ Li, Ri, Xi , Li < Y i < Ri, (2)

where h is the joint density of Li, Ri, Xi
⊤ ⊤

. We assume that the truncation variables and the 

covariates are ancillary, that is, h does not depend on β. It can be shown that these two 

approaches are equivalent. In the next section, we use the first formulation to motivate our 

estimator and the second one for rigorous justification.

The following notation is used throughout the rest. For each i = 1, …, n, Li(β) = Li − β⊺ Xi, 

Ri(β) = Ri−β⊺ Xi and ei(β) = Yi−β⊺ Xi. Likewise, Li(β) = Li − β⊤Xi, Ri(β) = Ri − β⊤Xi and 

ei(β) = Y i − β⊤Xi, i = 1, …, n.

3 Methods

3.1 Main idea

We are concerned with inference about the regression parameter β. If Z1, …, Zn were 

observed, one could use the following Mann-Whitney-type estimating equation (Jin, Ying, 

and Wei, 2001)

Un(β) = ∑
i = 1

n
∑
j = 1

n
Xi − Xj sgn ei(β) − ej(β) = 0, (3)

where sgn {·} is the sign function. This estimating function is unbiased since, by symmetry, 

E sgn ei(β) − ej(β) |Xi, Xj = 0 when β takes the true value. Under the double truncation, 

only those ei(β) satisfying Li(β) < ei(β) < Ri(β) are observed. Un(β) would be biased if the 

summation on the right-hand-side of (3) only include those observed pairs. However, this 

bias can be corrected if we impose an artificial symmetrical truncation with further 

restriction Lj(β) < ei(β) < Rj(β). To this end, we define

Un(β) = ∑
i = 1

n
∑

j = 1

n
I Li(β) ∨ Lj(β) < ei(β) < Ri(β) ∧ Rj(β), Li(β) ∨ Lj(β) < ej(β) < Ri(β) ∧ Rj(β)

× Xi − Xj sgn ei(β) − ej(β) ,

where I{·} is the indicator function and ∧ (∨) is the minimum (maximum) operator. Again, 

by symmetry, Un(β) is an unbiased estimating function as its conditional expectation given 

Ying et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Li, Ri, Xi is zero. Furthermore, the non-zero terms in Un(β) are observed because of the 

constraints being imposed. In fact, we can write

Un(β) = ∑
i = 1

n
∑

j = 1

n
I Lj(β) < ei(β) < Rj(β), Li(β) < ej(β) < Ri(β) Xi − Xj sgn ei(β) − ej(β) .

Similar to Bhattacharya et al. (1983), we call ei(β) and ej(β) comparable only if Lj(β) < ei(β) 

< Rj(β) and Li(β) < ej(β) < Ri(β). The proposed estimating function is the sum of the 

weights ±(Xi −Xj) of all the comparable pairs, with the sign being decided by whether ei(β) 

⩽ ej(β) or not.

Estimating function Un(β) is a step function, thus discontinuous. Finding root of a 

discontinuous function is typically not easy, especially for multidimensional cases. However, 

in the case of no truncation, finding root of Un(β) is equivalent to minimizing an L1-type loss 

function Gn(β) = ∑i = 1
n ∑j = 1

n ei(β) − ej(β) = ∑i = 1
n ∑j = 1

n Y i − Y j − β⊤ Xi − Xj , which 

is convex (Jin et al., 2001). In fact, this is a linear programming problem (Koenker and 

Bassett, 1978).

For doubly truncated data, we propose the following loss function

Gn(β) = ∑
i = 1

n
∑
j = 1

n
ei(β) − ej(β) ∧ Rj − Y j ∧ Y i − Li ∨ Lj − Y j ∨

Y i − Ri .
(4)

Clearly, Gn(β) becomes Gn(β) when there is no truncation, i.e. Li ≡ − ∞ and Ri ≡ ∞. 

Unlike Gn(β), Gn(β) is generally not a convex function. To see this, let 

Dij = Lj − Y j ∨ Y i − Ri , Dij = Rj − Y j ∧ Y i − Li , Yij = Yi − Yj and Xij = Xi − Xj. We 

have

Gn(β) = ∑
i = 1

n
∑

j = 1

n
Yij − β⊤Xij ∧ Dij ∨ Dij .

Since for any constants a < b, function g(x) = |x∧a∨b| is neither convex nor concave, Gn(β) 

is generally not a convex function.

To see that minimizing the loss function Gn(β) induces a consistent estimator, let

G(β) = E ei(β) − ej(β) ∧ Rj − Y j ∧ Y i − Li ∨ Lj − Y j ∨ Y i − Ri . (5)

It is shown in the Appendix A.1 that under mild conditions, G(β) is the limit of [n(n − 1)]
−1Gn(β) uniformly for β over a compact set. Differentiation of the right-hand side of (5) can 

be carried out by interchanging the differentiation and the expectation. Except on a set with 

zero probability, the derivative of the term inside the expectation sign is equal to
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I Lj − Y j ∨ Y i − Ri < ei(β) − ej(β) < Rj − Y j ∧ Y i − Li
Xi − Xj sgn ei(β) − ej(β) . (6)

From Lemma 1 in the Appendix, we can see that

Lj − Y j ∨ Yi − Ri < ei(β) − ej(β) < Rj − Y j ∧ Yi − Li

occurs if and only if Lj(β) < ei(β) < Rj(β) and Li(β) < ej(β) < Ri(β). Thus, by symmetry, the 

expectation of (6) is equal to zero when β takes its true value, implying that Ḡ(β) has a 

minimizer at the true value of β.

Although Gn(β) is generally not convex, in many cases it has a global minimizer, especially 

when the truncation is mild, making Gn(β) close to Gn(β). In our experience, we find that 

optimization functions in standard software packages can be used effectively to find the 

minimizer of Gn(β) directly. For instance, ‘fminsearch’ in the ‘Optimization Toolbox’ of 

MATLAB may be used to find the global minimizer.

Alternatively, the computation can be formulated as an iterative L1-minimization problem. 

To be specific, consider the following modification of (4)

Gn(m)(β, b) = ∑
i = 1

n
∑

j = 1

n
I Lj(b) < ei(b) < Rj(b), Li(b) < ej(b) < Ri(b) ei(β) − ej(β) .

Let β (0) be an initial estimate, which may be taken as the naive estimate of β by ignoring the 

truncation. An iterative algorithm is given by β (k) = argminβGn
(m) β, β (k − 1) , k ⩾ 1. Note that 

in each iteration, G(m) β, β (k − 1)  is an L1-type objective function, and β (k) solves the 

equation

∑
i = 1

n
∑

j = 1

n
I Lj β (k − 1) < ei β (k − 1) < Rj β (k − 1) , Li β (k − 1) < ej β (k − 1) < Ri β (k − 1)

× Xi − Xj sgn ei(β) − ej(β) = 0,

If β (k) converges to a limit as the number of k → ∞, then the limit must satisfy Un(β) = 0.

Let βn denote the minimizer of Gn(β) over a suitable parameter space. We show in Section 4 

that βn is consistent and asymptotically normal under suitable regularity conditions. The 

limiting covariance matrix involves the error density f. Thus, direct variance estimation 

involves density estimation. In principle, one may apply the nonparametric method proposed 

by Efron and Petrosian (1999) to the residuals to first estimate F and then, via smoothing, f, 
under suitable conditions. Following Jin et al. (2001), we propose using resampling 

approach based on random weighting that bypasses density estimation. Specifically, we 
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generate i.i.d. nonnegative random variables Wi, i = 1, …, n, with mean μ and variance 4μ2. 

Define the following perturbed version of Gn(β)

Gn*(β) = ∑
i = 1

n
∑
j = 1

n
W i + W j ei(β) − ej(β) ∧ Rj − Y j ∧ Y i − Li ∨

Lj − Y j ∨ Y i − Ri

(7)

and let β * = argminβGn*(β). We show in Section 4 that the conditional distribution of 

n β * − βn  given data converges to the same limiting distribution as that of n βn − β0 , 

where β0 is the true value of β. By repeatedly generating {Wi, i = 1, …, n}, we can obtain a 

large number of replications of β *. Then the conditional distribution of n β * − βn  given 

data can be approximated arbitrarily closely. In our numerical studies, we choose a gamma 

distribution to generate Wi. Other distributions, such as the beta distribution with proper 

parameters, can also be used (Jin et al., 2001).

3.2 Weighted estimation

It is well known that choosing proper weights can improve efficiency in rank estimation; see, 

for example, Hajek and Sidak (1967), Prentice (1978), Harrington and Fleming (1982) and 

Jin et al. (2003). For the full data, we may extend the estimating function Un(β) in (3) by 

assigning weights to its summands. Specifically, we consider the following weighted 

estimating function

Un, w(β) = ∑
i = 1

n
∑
j = 1

n
wij(β) Xi − Xj sgn ei(β) − ej(β) , (8)

where the weights wij(β), which may depend on β, are symmetric, i.e., wij(β) = wji(β). By 

symmetry, we can easily see that the estimating function is unbiased, i.e., E Un, w β0 = 0. 

The choice of wij(β) ≡ 1 corresponds to the Wilcoxon-Mann-Whitney statistic. It is 

asymptotically efficient when ε in model (1) follows the standard logistic distribution. Under 

this weighting scheme, Un, w(β) reduces to the unweighted estimating function Un(β). 
Another commonly used weighting scheme in rank estimation is that of the log-rank, which 

is asymptotically efficient when ε follows the extreme value distribution. Let 

wij(β) = ψn β, ei(β) ∧ ej(β) , where ψn(b, t) = ∑i = 1
n I ei(b) ⩾ t −1

. We show in Lemma 2 

in the Appendix that with such wij(β), Un, w(β) becomes the log-rank estimation function for 

β.

For the doubly truncated data, similar to (8), we can also introduce weights to the proposed 

estimating function Un(β), that is, to consider

Un, w(β) = ∑
i = 1

n
∑

j = 1

n
wij(β)I Lj(β) < ei(β) < Rj(β), Li(β) < ej(β) < Ri(β) Xi − Xj sgn ei(β) − ej(β) ,
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where the wij(β) are again symmetric, i.e. wij(β) = wji(β). For wij(β) ≡ 1, Un,w(β) reduces to 

Un(β). For the log-rank version, we let wij(β) = ψn(β, ei(β) ∧ ej(β)), where 

ψn(b, t) = ∑i = 1
n I ei(b) ⩾ t −1

. Other weighting schemes can also be considered. Though 

the data are subject to double truncation, we still expect, as simulation results in Section 5 

indicate, that proper choices of weights will generally improve the estimation efficiency.

Similar to Un(β), Un,w(β) is discontinuous and solving Un,w(β) = 0 directly may not be easy. 

We consider loss function

Gn, w(β, b) = ∑
i = 1

n
∑

j = 1

n
wij(b) ei(β) − ej(β) ∧ Rj − Y j ∧ Yi − Li ∨ Lj − Y j ∨ Yi − Ri .

By differentiating with respect to β, it is easily seen that

∂Gn, w(β, b)
∂β b = β

= ∑
i = 1

n
∑
j = 1

n
wij(β)I Lj(β) < ei(β) < Rj(β), Li(β) < ej(β) < Ri

(β) × Xi − Xj sgn ei(β) − ej(β) ,
(9)

which becomes the weighted estimating function Un,w(β). Therefore, we propose the 

following iterative algorithm. First set the initial b to be β (0)
w , and then find the estimator 

iteratively through β (k)
w = argminβGn, w β, β (k − 1)

w , k ⩾ 1. From (9) we see that if β (k)
w

converges to a limit, say βn
w, as k goes to infinity, then the limit satisfies Un, w βn

w = 0.

We show in Section 4 that under some regularity conditions, βn
w is consistent and 

asymptotically normal. Moreover, as noted in Jin et al. (2003), when using the above 

algorithm, for each fixed k, β (k)
w  is itself a legitimate estimator, i.e. it is consistent and 

asymptotically normal. In view of this result, one may in practice consider the proposed 

iterative algorithm only for a relatively small number of the iterations to obtain a reasonable 

estimator. In our simulation study, we set the number of iterations to be 3 to get the log-rank 

estimate. We also iterated the algorithm until the difference between successive estimates 

attains a pre-specified accuracy as “convergence”. We found that β (k)
w  converged in all the 

cases and the converged estimate was quite close to the β (k)
w  after 3 iterations.

For the variance estimation, we again apply the random weighting approach. We introduce 

the following perturbed version of Gn,w(β, b):

Gn, w* (β, b) = ∑
i = 1

n
∑

j = 1

n
W i + W j wij(b) ei(β) − ej(β) ∧ Rj − Y j ∧ Yi − Li ∨ Lj − Y j ∨

Yi − Ri ,

Ying et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Wi, i = 1, …, n, are i.i.d. nonnegative random variables with mean μ and variance 4μ2. 

The perturbed estimate is solved by exactly following the above iterative algorithm. We first 

obtain β * from minimizing Gn, w*  by setting wij(b) = 1. Note that this β * is just the minimizer 

of (7). Then let β (0)* = β *, and iterate the value of the estimate by 

β (k)* = argminβGn, w* β, β (k − 1)* . It is important to point out that here the number of iteration 

should stay the same as that for solving the point estimate. The asymptotic distribution of 

n β (k)
w − β0  can be approximated by the conditional distribution of n β (k)* − β (k)

w  given the 

observed data. By repeatedly generating the Wi sequences, we can obtain many realizations 

of β (k)*  and make inference based on the empirical distribution of the realized β (k)* ’s.

4 Large sample theory

This section is devoted to the development of a large sample theory for the methods 

proposed in the preceding section. Assume that Zi, i = 1, …, n are i.i.d. observations from 

(2). Let B be the parameter space. We shall assume that B is compact and β0 is an interior 

point of B. We first discuss the asymptotic properties of βn. Let

ξ Zi, Zj, β = I Lj(β) < ei(β) < Rj(β), Li(β) < ej(β) < Ri(β) Xi − Xj sgn ei(β) − ej(β)

and V = E[ξ(Zi, Zj, β0)ξ⊺(Zi, Zk, β0)]. Also, let A = ∂2G/ ∂β ∂β⊤
β = β0. The following 

regularity conditions will be used.

A1 The error density f is bounded and has a bounded and continuous derivative.

A2 The covariate vector has a bounded second moment, i.e., E(∥X∥2) < ∞.

A3 The true parameter value β0 is the unique global minimizer of the limiting loss 

function Ḡ(β) over B.

A4 The second derivative of Ḡ(β) at β0 is nonsingular, i.e., matrix A is strictly 

positive definite.

Conditions A1, A2 and A4 are mild conditions. In particular, when there is no truncation, 

A4 is always satisfied except for the degenerate case when covariates are co-linear with 

probability one. In general, the loss function will no longer be convex due to truncation, but 

we still expect that A4 should hold, at least when truncation is not heavy. Condition A3 is 

implied by condition A4 when there is no truncation. It is assumed to guarantee that the 

proposed estimator is consistent. The following theorem gives the asymptotic properties of 

βn.

Theorem 1.

Under conditions A.1–A.4, βn is consistent and n βn − β0  converges in distribution to N(0, 

A−1V A−1).
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The objective function Gn(·) is a typical U-process of order 2. Thus, we can apply results on 

quadratic approximations of U-processes to prove the above result. The details are provided 

in the Appendix.

As being proposed in Section 3.1, we approach the variance estimation through random 

weighting. The theoretical justification of this approach is given by the following theorem, 

which is again proved in the Appendix.

Theorem 2.

Let β * be the minimizer of the perturbed loss function Gn*(β) as defined by (7). Then under 

conditions A.1–A.4, the conditional distribution of n β * − βn  given Z1, …, Zn converges 

in probability to N(0, A−1V A−1). In particular, the conditional covariance matrix of β *
given Z1, …, Zn converges in probability to A−1V A−1.

Next we turn to the weighted estimators proposed in Section 3.2. For the weights wij(β) with 

form ψn(β, ei(β) ∧ ej(β)), where ψn(b, t) may depend on the data, we assume the following 

condition.

A5 There exists a deterministic function ψ(t) such that supt |ψn(β0, t) − ψ(t)| = op(n
−η) for some η > 0.

The asymptotic properties of the weighted estimators are given by the following theorem.

Theorem 3.

Under conditions A.1–A.5, (i) βn
w is consistent and n βn

w − β0  converges in distribution to 

N 0, Aw
−1V wAw

−1 ; (ii) for each k ⩾ 0, n β (k)
w − β0  converges in distribution to a normal 

distribution with zero mean and some variance-covariance matrix.

Matrices Aw and Vw are the asymptotic slope and covariance matrices for the weighted 

estimating function Un,w that reduce to A and V when wij(β) = 1. The proof is given in the 

Appendix.

5 Simulation study

We conducted simulation studies to assess the finite sample performance of the proposed 

method. For model (1), we considered a two-dimensional covariate vector, i.e., 

X = X1, X2
⊤, where X1 and X2 were independently drawn from a binomial distribution 

with success probability 0.5 and uniform distribution on [0, 2], respectively. We set the two 

regression coefficients, denoted by β1 and β2, to be 0 and 1. For the error distribution F, 

three distributions, standard normal distribution, standard logistic distribution and extreme 

value (EV) distribution, were used. We considered two truncation schemes. The first one 

was covariate-dependent truncation with a random truncation interval, where the truncation 

variables L and R were independently generated from the uniform distribution on 

c1, X1 + X2/2  and the uniform distribution on X1 + X2/2, c2 , respectively. The second one 

was covariate-dependent truncation with a fixed truncation interval, where L was generated 
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from the uniform distribution on c1, X1 + X2/2  and R = L + c3. The constants c1, c2 and c3 

were chosen to yield about 30% percentage of truncation under various error distributions 

(with both left and right truncation proportions being 15%). The observable sample size n 
was chosen to be 200, 300 and 400. Under each scenario, 1,000 replications were carried 

out. We first used loss function (4), which corresponds to the Wilcoxon weight. We then 

used the log-rank weighting scheme along with the proposed iterative algorithm with 3 

iterations as suggested in Section 3.2. The minimization was implemented via the MATLAB 

function ‘fminsearch’ in the ‘Optimization Toolbox’ of MATLAB, which uses a simplex 

search method to find the minimizer. For estimating standard errors, we used the proposed 

resampling approach with 500 sets of Wi, i = 1, …, n being generated from Gamma(0.25, 

0.5).

Besides the proposed estimates, we also calculated “naive” estimates for the regression 

coefficients by ignoring the truncation. That is, we treated the observed data as data without 

double truncation, and solved the Mann-Whitney type estimating equation (3) for the 

estimates. The random weighting approach proposed by Jin et al. (2001) was applied to get 

the estimated standard errors. For all the estimates, we recorded the average bias, empirical 

standard error, the average of the standard errors estimated from the random weighting 

approach, and the empirical coverage probability of the 95% Wald-type confidence intervals. 

The results under random truncation interval scenario are summarized in Table 1, while the 

results under fixed truncation interval are in Table 2.

We found that under the both truncation schemes, both naive estimates for β1 and β2 were 

biased and the empirical coverage probabilities of the confidence intervals were far less than 

the nominal level. However, under all scenarios, the proposed estimates obtained from the 

loss function in (4) (i.e., Wilcoxon weight) and log-rank weight with k = 3 were both 

essentially unbiased. The average of the standard error estimates were quite close to the 

corresponding empirical standard errors. The empirical coverage probabilities of the Wald-

type confidence intervals were close to the nominal level of 95%. For the normally 

distributed random error, the estimates with the two weighting schemes had comparable 

efficiency. For the logistic random error, the Wilcoxon weight gave slightly more efficient 

estimates than those with the log-rank weight, while for the extreme value random error, the 

estimate with log-rank weight was significantly more efficient. The results implied that for 

the doubly truncated data, one could still expect substantial efficiency improvement if a 

proper weighting scheme was chosen, as one would expect for the case with no truncation. 

In general, the simulation results showed that the proposed method worked well for practical 

sample sizes.

We also examined the difference between the log-rank estimates with 3 iterations versus 

those obtained after convergence. The algorithm was treated as convergence in the sense that 

the sum of absolute component differences between two consecutive estimates was less than 

0.01. We took EV error distribution and random truncation interval case for illustration. The 

estimates with 3 iterations and at convergence were plotted for the two regression parameters 

under different sample sizes. In Figure 1, the top panel corresponds to the plots for β1 and β2 

under n = 200, the middle panel corresponds to the plots for β1 and β2 under n = 300, and 

the bottom panel corresponds to the plots for β1 and β2 under n = 400. The two sets of 
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estimates were quite similar, implying that a small number of iterations (such as 3) should be 

sufficient. The results were quite similar for the other error distributions and truncation 

mechanisms.

6 Applications

6.1 Quasar data

We applied the proposed methods to the quasar data analyzed by Efron and Petrosian 

(1999). The original dataset consists of quadruplets (zi, mi, ai, bi), i = 1, …, n, where zi is the 

redshift of the ith quasar, mi is its apparent magnitude (with larger values of m 
corresponding to dimmer objects), and the two numbers ai and bi are lower and upper 

truncation bounds on apparent magnitude, respectively. Due to the experimental constraints, 

quasars with mi above bi were too dim to yield dependable redshift zi, while the lower limit 

ai was used to avoid confusion with nonquasar steller objects. Thus, any quasar with its 

apparent magnitude outside the lower and upper bounds was not visible (Bhattacharya et al., 

1993), with no information being included in the dataset. Each observed mi is subject to 

doubly truncation with truncation bounds ai and bi. In this study ai = 16.08 remains the same 

for all i, and bi varies between 18.494 and 18.93. The full dataset has n = 1, 052 quasars.

Farther quasars tend to have bigger values of mi, so they are dimmer. According to Hubble’s 

law, one can transform apparent magnitudes into a luminosity measurement which should be 

independent of distance. The transformation depends on the cosmological model supposed. 

Following the Einstein-deSitter cosmological model (Weinberg, 1972), one can obtain the 

log luminosity values yi from formula

yi = t zi, mi = 19.894 − 2.303 mi
2.5 + log Zi − Zi

1
2 − 1

2log Zi (10)

where Zi = 1 + zi. Larger values of yi correspond to intrinsically brighter quasars. Since mi is 

doubly truncated, so is yi. The truncation limits for yi, denoted by Li and Ri, are obtained by 

applying (10) to bi and ai, respectively, i.e., Li = t(zi, bi) and Ri = t(zi, ai).

The main purpose of the quasar investigation is to study luminosity evolution. Quasars may 

have been intrinsically brighter in the early universe and evolved toward a dimmer state as 

time went out. However, if there is no luminosity evolution, yi should be independent of zi 

except for truncation effects. Thus, testing the absence of luminosity evolution amounts to 

testing for independence. A convenient one-parameter model for luminosity evolution says 

that the expected log luminosity increases linearly as θlog(1 + z), with θ = 0 corresponding 

to no evolution. If θ is a hypothesized value of the evolution parameter, instead of directly 

testing for the independence of yi and zi, Efron and Petrosian (1999) tested the null 

hypothesis that Hθ: yi(θ) = yi – θ log(1 + zi) is independent of zi, using their proposed 

approach. Correspondingly, in their analysis, the truncation regions for yi(θ) also changed 

with θ, that is, Li(θ) = Li – θ log(1 + zi) and Ri(θ) = Ri – θ log(1 + zi).
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Since the one-parameter model for luminosity evolution assumes linear relationship between 

the expected log luminosity and log(1 + z), it is quite natural to consider the following linear 

model

yi = θ log 1 + zi + εi, (11)

where the response yi is subject to double truncation with the truncation region [Li, Ri], εi is 

independent of zi, and the evolution parameter θ becomes the unknown regression 

parameter. We can estimate θ by our proposed method. To make comparison, we used the 

same subset selected by Efron and Petrosian (1999) with n = 210 to do the analysis. Here we 

considered the loss function Gn(θ) defined in (4). The point estimate, denoted by θn, was 

obtained by minimizing Gn(θ). Figure 2 plots the curve Gn(θ) against θ within the range 

from 1 to 4.

The estimate θn, which is the minimizer of the displayed loss function, was 2.458. The 

proposed random weighting approach was used to estimate the standard error of θn. Five 

hundred draws of i.i.d. random variables following Gamma(0.25,0.5) were generated. The 

estimated standard error was 0.641. Consequently, an approximate 90% Wald-type 

confidence interval was [1.40, 3.51]. Under the linear model (11), the hypothesis of no 

evolution, i.e., H0: yi is independent of zi, is equivalent to H0 : θ = 0. To test for H0 : θ = 0 

against a positive evolution parameter Ha : θ > 0, a Wald-type test statistic can be used. The 

test statistic equaled to the ratio of θn and its estimated standard error, giving the value of 

3.835. The corresponding one-sided p-value was about 6 × 10−5, implying rejection of the 

null hypothesis of no evolution in favor of a positive value of θ at any commonly used 

significance level.

The tau test proposed by Efron and Petrosian (1999) for the no evolution hypothesis had an 

one-sided p-value 0.015. At 0.05 significance level, their test also rejected H0 in favor of a 

positive value of θ, but failed to do so at 0.01 significance level. By inverting their test 

statistic, Efron and Petrosian (1999) obtained a point estimate for θ with the value of 2.38 

and an approximate 90% central confidence interval [1.00, 3.20] which was slightly longer 

than the proposed Wald-type confidence interval.

The proposed approach is easy to handle multiple covariates. Here we further considered the 

following model with linear and quadratic term

yi = θ1 log 1 + zi + θ2 log 1 + zi
2 + εi,

where εi is independent of zi and θ1 and θ2 are unknown regression parameters. The 

regression parameters were estimated by minimizing (4), and the standard errors were 

estimated by the random weighting method with 500 i.i.d. Gamma(0.25,0.5) random 

variables being generated. The corresponding p-values of significance test for H0 : θj = 0 

against Ha : θj ≠ 0, j = 1, 2, were calculated. The results are summarized in Table 3.
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The significance tests showed that the effect of linear term, θ1, was statistically significantly 

different from 0, while that of the quadratic term, θ2, was apparently not. This provided 

some evidence to say the one-parameter model for luminosity evolution given by (11) is 

adequate for the current subset we analyzed.

6.2 AIDS incubation data

Another example we considered was an epidemiological data set on transfusion-related 

AIDS, collected by the Centers for Disease Control (CDC) in Atlanta, Georgia. For patients 

thought to be infected by HIV by blood or blood product transfusion, the original data 

recorded the gender and age, the date of reporting AIDS, the date of diagnosis, and the date 

of infection when it could be determined. The problems of interest include the process of 

infection, the distribution of the induction or “incubation” period (the time elapsed from 

HIV infection to the clinical manifestation of AIDS, confirmed by the AIDS diagnosis), and 

the dependence of the induction period on covariates such as age at the time of transfusion. 

The data include 494 cases reported to CDC prior to January 1, 1987, and diagnosed prior to 

July 1, 1986. Among them, 295 had consistent data on which we conduct our analysis. The 

information on infection time, the induction period, and the age at the time of transfusion for 

this subset were reported in Table 1 of Kalbfleisch and Lawless (1989). The times of 

infection and diagnosis were ascertained by reporting to the CDC.

Our primary interest centers on the relationship between the incubation period and the age at 

the time of transfusion. The period data can be viewed as being doubly truncated. Firstly, 

since HIV was unknown prior to 1982, any case of transfusion-related AIDS before this time 

would not have been properly classified and would have been unobserved, leading to left-

truncation. Secondly, the data were retrospectively ascertained for all transfusion-associated 

AIDS cases in which the diagnosis of AIDS occurred prior to July 1, 1986, while cases 

diagnosed after this time were not included, thus leading to right-truncation. For the i-th 

observation, the left-truncation variable Li was the duration (in month) from HIV infection 

to January 1, 1982; while the right-truncation variable Ri was defined as time from HIV 

infection to July 1, 1986 (the end of the diagnosis report). Thus the difference between Ri 

and Li is always 54 months (4.5 years). The response variable Yi is the incubation period 

duration and the covariate Xi is the age at the time of transfusion.

We applied the proposed method to estimate the regression parameter β in model (1). 

Minimizing the loss function Gn(β) in (4) resulted in βn = 0.73. For standard error 

estimation, we again applied the proposed random weight approach with 500 independent 

samples from the gamma distribution. The estimated standard error was 0.29, giving an 

approximate 95% confidence interval [0.16, 1.30]. The results showed that the age at 

transfusion had a significant positive effect on the incubation period.

For comparison purpose, we also calculated the “naive” estimate of β from the Mann-

Whitney type estimating equation (3) by ignoring the double truncation. The point estimate 

was 0.13. The standard error, also estimated by the random weighting approach, was 0.04, 

giving an approximate 95% confidence interval [0.05, 0.21]. The naive estimate seemed to 
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underestimate the covariate effect to some extent. The similar phenomenon was also found 

in Moreira and Alvarez (2016) in their analysis of this data set.

7 Discussion

This paper is concerned with linear regression analysis when the response variable is subject 

to double truncation. Truncated data can be found in many applications, including those 

from biomedical researches, economics and astronomy. Most statistical methods for dealing 

with truncated data are for observations with left or right truncation. The left (right) 

truncation is relatively easy to handle due to the simple form of re-distribution-to-left (right) 

algorithm and applicability of counting process-martingale formulation. However, for the 

doubly truncated data, fewer technical tools and results are available.

We propose a novel method to estimate the regression parameter in the linear regression 

model with doubly truncated responses. To eliminate the bias introduced by double 

truncation, we extend the Mann-Whitney type loss function for estimating regression 

parameters by symmetrization. The proposed estimator is obtained by minimizing the 

extended Mann-Whitney type loss function. The minimization can be done by standard 

software packages directly, or by an iterative algorithm with an L1-type minimization in 

each iteration. The proposed estimator is shown to be consistent and asymptotically normal 

under some regularity conditions. A simple random perturbation approach is used to get the 

variance estimator. We also provide a weighted estimation procedure for improving the 

estimation efficiency. Simulation studies show that the proposed approach works well for 

moderate sample sizes. The application to the quasar data gives new insights.

Under the conditionally independent truncation assumption and the condition that the 

covariates are not degenerate, the regression parameter β0 is identifiable. However, in order 

to completely identify the error distribution F, some more conditions are needed. Let FL and 

FR be the (conditional) distribution of L − β0
⊤X and R − β0

⊤X given X, respectively. If one 

assumes that for some values of X, the left endpoint of the support of F is between the left 

endpoints of the support of FL and FR and the right endpoint of the support of F is between 

the right endpoints of the support of FL and FR, then all F, FL, and FR are identifiable 

(Woodroofe, 1985). Under such conditions, in principle one can also estimate the truncation 

probability given covariates based on the observed data and the proposed estimator βn.

In addition to handling multiple covariates, another major advantage of the proposed loss 

function-based approach to estimation over the test score-based approach of Efron and 

Petrosian (1999) is that it can easily incorporate a penalty function, such as LASSO, to do 

variable selection. Note that when LASSO penalty is used, our iterative algorithm is 

preferable since in each iteration the optimization can still be formulated into an L1-

minimization problem, facilitating the computation. It is also of interest to investigate the 

possibility of extending the approach to doubly censored responses, such as those considered 

in Ren and Gu (1997).
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A: Appendix

A.1 Two lemmas

The first lemma is crucial for the intuition about the validity of the proposed loss function 

Gn(β) defined by (4).

Lemma 1.

Let Li(β), Ri(β) and ei(β), i = 1, …, n be defined in Section 3. Then the event

Lj − Y j ∨ Y i − Ri < ei(β) − ej(β) < Rj − Y j ∧ Y i − Li (12)

occurs if and only if Lj(β) < ei(β) < Rj(β) and Li(β) < ej(β) < Ri(β).

Proof: We first show “if”. From ei(β) < Rj(β), we have

ei(β) − ej(β) < Rj(β) − ej(β) = Rj − Y j . (13)

From Li(β) < ej(β), we have

ei(β) − ej(β) < ei(β) − Li(β) = Y i − Li . (14)

Thus, the second inequality in (12) holds. The first inequality can be shown similarly.

Next we show “only if”. This can be done by reversing the above argument. From (13), we 

obviously have ei(β) < Rj(β), while from (14), we get Li(β) < ej(β). Additionally, from (Lj − 

Yj) ∨ (Yi − Ri) < ei(β) − ej(β), we get ei(β) > Lj and ej(β) < Ri(β).

The second lemma shows that the choice of wij(β) = ψn β, ei(β) ∧ ej(β)  makes the weighted 

estimation function becomes the log-rank estimation function.

Lemma 2.

When wij(β) = ψn β, ei(β) ∧ ej(β) , where, ψn(b, t) = ∑i = 1
n I ei(b) ⩾ t −1

, Un, w(β)

becomes the log-rank estimating function for β.

Proof: When wij(β) = ψn β, ei(β) ∧ ej(β) , it can be seen that
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Un, w(β) = ∑
i = 1

n
∑

j = 1

n
∑

k = 1

n
I ek(β) ⩾ ei(β) ∧ ej(β)

−1
Xi − Xj sgn ei(β) − ej(β)

= − 2 ∑
i = 1

n
∑

j = 1

n
∑

k = 1

n
I ek(β) ⩾ ei(β)

−1
Xi − Xj I ej(β) ⩾ ei(β)

= − 2 ∑
i = 1

n ∑j = 1
n XiI ej(β) ⩾ ei(β)

∑k = 1
n I ek(β) ⩾ ei(β)

−
∑j = 1

n XjI ej(β) ⩾ ei(β)

∑k = 1
n I ek(β) ⩾ ei(β)

= − 2 ∑
i = 1

n
Xi −

∑j = 1
n XjI ej(β) ⩾ ei(β)

∑k = 1
n I ek(β) ⩾ ei(β)

.

This completes the proof.

A.2 Proof of Theorem 1

We first prove consistency. Let Ḡn = [n(n − 1)]−1Gn. Under the assumption that Zi’s are i.i.d. 

and condition A2, by Corollary 7 in Sherman (1994), we have that Ḡn(β) converges 

uniformly to Ḡ(β) for β over B. Since, by condition A3, Ḡ(β) has a unique minimizer β0, βn
must converge to β0 as Ḡ(β) is obviously continuous.

The proof of asymptotic normality follows closely the technical developments given in 

Sherman (1993) for the maximum rank correlation estimator which is also defined as the 

optimizer of a U-type objective function. In fact, the situation there is more complicated as it 

deals with a discontinuous objective function. An essential ingredient of Sherman’s 

approach is the quadratic approximation to the objective function.

Following Sherman (1993), define τ(z, β) = Eξ(Zi, z; β). Let τ̇(z, β) and τ̈(z, β) be its first 

and second derivatives with respect to β. Then it can be seen from conditions A1 and A2 that 

we have

E τ̇ Zi, β 2 + τ̈ Zi, β < ∞

and there exists K(z) ≥ 0 such that EK(Zi) < ∞ and

τ̇(z, β) − τ̈ z, β0 ≤ K(z) β − β0 .

From these and conditions A1–A4, we can verify the four assumptions in Sherman (1993, 

Theorem 4) from which the asymptotic normality of βn follows.

A.3 Proof of Theorem 2

Because of scale invariance for β * to change in Wi, we may assume, without loss of 

generality, that E(Wi) = 1/2. Similarly to the proof of consistency of βn, we can argue in the 

same way that β * is consistent. Let
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Un*(β) = ∑
i = 1

n
∑

j = 1

n
W i + W j I Lj(β) < ei(β) < Rj(β), Li(β) < ej(β) < Ri(β) × Xi − Xj sgn

ei(β) − ej(β) .

It is clear that Un*(β) is the derivative of Gn*(β). Thus, by definition, Un* β * = 0. By the same 

argument as that of Jin et al. (2001), we can establish asymptotic linearity and therefore, up 

to an asymptotically negligible term,

0 = Un* β * ≈ Un* βn + n2A β * − βn ,

or

n β * − βn ≈ − n− 3
2A−1Un* βn .

Since Un βn = 0, we have

Un* βn = ∑
i = 1

n
∑
j = 1

n
W i − 1

2 + W j − 1
2 I

Lj βn < ei βn < Rj βn , Li βn < ej βn < Ri βn × Xi − Xj sgn
ei βn − ej βn .

(15)

Each summand on the right-hand side of (15) clearly has mean 0 conditional on data. 

Standard asymptotic normality for U-statistics can then be used to show that, conditional on 

the data, n3/2Un* βn  to a limiting normal distribution. Simple calculation shows that the 

conditional covariance matrix of n−3/2Un* βn  given data converges in probability to V. 

Hence Theorem 2 holds.

A.4 Proof of Theorem 3

To prove (i), we know that βn
w is the solution to the estimating equation Un,w(β) = 0. By the 

asymptotic linearity of Un,w, we have, ignoring an asymptotically negligible term,

0 = Un, w βn
w ≈ Un, w β0 + n2Aw βn

w − β0

or n βn
w − β0 ≈ − n3/2Aw

−1Un, w β0 . Since n−3/2Un,w(β0) converges to N(0, Vw) by the 

asymptotic normality of the U-statistics, we get the desired result.

To prove (ii), similarly to (A.5) of Jin et al. (2001), we can show that for each k, there exists 

a p × p matrix Dk such that
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n β (k)
w − β0 = − n− 3

2DkA−1Un β0 − n− 3
2 I − Dk Aw−1Un, w β0 + op(1) .

From this and the joint asymptotic normality of n−3/2Un(β0) and n−3/2Un,w(β0)), we 

conclude that n β (k)
w − β0  is asymptotically normal.
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Figure 1: 
Scatter plots of the estimates after 3 iterations against estimates after convergence. The error 

distribution was EV and the truncation interval was random. The top panel corresponds to n 
= 200, the middle panel corresponds to n = 300, and the bottom panel corresponds to under 

n = 400. The left ones are for β1 and the right ones are for β2.
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Figure 2: 
Results from the quasar data analysis. The curve of the loss function Gn(θ) against θ within 

the range from 1 to 4.
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Table 3.

Results from the quasar data: estimation for the model with linear and quadratic term.

Parameter EST SE p-value

θ1 7.6776 2.6396 0.0036

θ2 −3.3173 2.2408 0.1388

EST: estimate of the parameter; SE: estimated standard error; p-value: asymptotic p-value of the significance test for H0 : θj = 0 against Ha : θj ≠ 

0, j = 1, 2.
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