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Abstract

Effect size can differ as a function of the elapsed time since treatment or as a function of other key 

covariates, such as sex or age. In evidence synthesis, a better understanding of the precise 

conditions under which treatment does work or does not work well has been highly valued. With 

increasingly accessible individual patient or participant data (IPD), more precise and informative 

inference can be within our reach. However, simultaneously combining multiple related 

parameters across heterogeneous studies is challenging because each parameter from each study 

has a specific interpretation within the context of the study and other covariates in the model. This 

paper proposes a novel mapping method to combine study-specific estimates of multiple related 

parameters across heterogeneous studies, which ensures valid inference at all inference levels by 

combining sample-dependent functions known as Confidence Distributions (CD). We describe the 

“CD-based mapping method” and provide a data application example for a multivariate random-

effects meta-analysis model. We estimated up to 13 study-specific regression parameters for each 

of 14 individual studies using IPD in the first step, and subsequently combined the study-specific 

vectors of parameters, yielding a full vector of hyperparameters in the second step of meta-

analysis. Sensitivity analysis indicated that the CD-based mapping method is robust to model 

misspecification. This novel approach to multi-parameter synthesis provides a reasonable 

methodological solution when combining complex evidence using IPD.
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1. INTRODUCTION

Meta-analysis is a well-established statistical procedure for quantitatively synthesizing 

evidence from independent studies [43]. In recent years, meta-analysis has increasingly been 

discussed as an important research method to strengthen statistical inference [25]. Compared 

to traditional, standard meta-analysis of aggregate data (AD), meta-analysis of individual 

patient or participant data (IPD) in a one-step or two-step approach [49] or in a one-step, 

simultaneous “integrative data analysis” (IDA) of IPD [8, 24] represents a major innovation, 

which can expand the scope of evidence synthesis and produce clinically most meaningful 

results. When IPD are available, the same model can be applied across all studies, ensuring 

that the combined data have the same interpretation. In addition, it is possible to address 

more complex research questions with more appropriate and sophisticated models. Overall, 

meta-analysis of IPD provides unparalleled flexibility for analysts. At the same time, it is 

challenging to combine IPD from heterogeneous trials because they differ in key study 

features, including designs, populations, measures, or settings [20, 53]. For example, with 

respect to different measures, a commonly used screening equipment in medical settings 

may not always be available in other locations. Furthermore, longitudinal clinical trials 

included in a meta-analysis typically differ in their study duration and follow-up frequency 

and period [32, 57]. It is also not uncommon that binary or categorical covariates may not 

have any variability either by design (e.g., a study of all women) or naturally in a data set 

[11, 33]. Any one of these situations can pose significant estimation challenges for an IPD 

meta-analysis because they essentially represent study-level missing data. Typically, IPD 

meta-analysis applications have included a subset of studies that have all covariates or used a 

simpler model with a fewer number of covariates, either of which essentially deletes 

partially available data (i.e., listwise deletion) and represents an important loss of 

information, precision, power, and generalizability.

We propose a new information combination method that combines confidence distributions, 

hereon called the “CD-based approach” [59]. A confidence distribution (CD) is a sample-

dependent distribution function that contains information about confidence intervals of a 

parameter of interest at all levels. It can be referred to as a confidence density if presented in 

a density function form [34]. This new method has been demonstrated as a powerful 

inference tool in connection with meta-analysis [6, 34, 60, 62]. The current study extends 

the CD-based approach to a multivariate random-effects meta-analysis model, which is 

based on more reasonable assumptions but computationally more challenging, compared 

with a multivariate fixed-effects meta-analysis model [34]. The current work, which 

explicitly accommodates heterogeneous designs and partial information, also provides a 

more general framework than the existing model [63] for random-effects meta-analysis 

models.

To implement the CD-based approach, we utilize a “two-step” IPD meta-analysis approach 

[54]. We proceed as follows. First, we identify an underlying “full” model for all studies 

included in a meta-analysis and conduct separate analyses for each study to obtain study-

specific parameter estimates. Second, we identify appropriate connections between the 

expectation of study-specific vectors of parameters and the hyperparameters of the full 

model via appropriately identified “mapping” matrices. We subsequently estimate all 
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hyperparameters of the full model in a multivariate random-effects meta-analysis model. 

Upon obtaining all hyperparameters, we can flexibly derive any relevant population-level 

inferences as needed (e.g., different treatment effect sizes for men vs. women).

The rest of this paper has four main sections. Section 2 discusses the data set that motivated 

the CD-based mapping method. Section 3 introduces the method in greater detail. Section 4 

presents the findings, including those from sensitivity analyses. We conclude this paper with 

discussion in Section 5.

2. MOTIVATING DATA

The current study was motivated by Project INTEGRATE [37]. Project INTEGRATE 

obtained de-identified, item-level IPD from 24 trials through a network of interested 

collaborators. All trials tested the efficacy of brief motivational interventions (BMIs) to 

reduce excessive alcohol use and prevent harm among college students. Typical BMIs are 

brief, and provide personalized feedback on alcohol use and alcohol-related problems, as 

well as general educational information on alcohol.

2.1 Intervention and control groups

IPD for the current analysis come from 7,996 participants from 14 trials at baseline after 

excluding studies featuring a single intervention (i.e., no comparison group) or unique 

interventions, resulting in 10 stand-alone, personalized feedback intervention (“PF”) groups; 

eight in-person motivational intervention with personalized normative feedback profile (“MI 

+ PF”) groups; and 13 no-treatment control (“Control”) groups. Note that studies 13 and 14 

were originally independent trials but were subsequently collapsed (designated as study 

13/14), given their similarities in study design characteristics and small samples. In addition, 

no systematic differences existed across intervention groups at baseline for studies 13 and 

14. Tables 1 and 2, as well as Figure 1, provide an overview of all studies and descriptive 

statistics. With the exception of one study (study 1), all remaining 13 studies had a control 

group. Eleven of the 13 studies had an assessment-only control group, and the remaining 

two studies (studies 18 and 20) had a control group who received a single page information 

sheet containing very limited, generally-written information about alcohol use (e.g., alcohol 

has no nutritional value; space your drinks). Based on the quantitative content analysis of all 

intervention materials across groups, we determined that the exposure for the latter two 

groups was essentially the same as what other 11 control groups received [40, 45].

2.2 Measures

We focus on alcohol-related problems (e.g., neglecting responsibilities; friends and relatives 

avoiding you) as the outcome variable of the current analysis. Because this outcome variable 

was assessed differently across studies (i.e., slightly differently worded items, different 

referent time frames, and response options), they could not be directly pooled. Therefore, we 

previously utilized a 2-parameter logistic item response theory (2-PL IRT) model to derive 

latent trait scores (called theta [θ] scores) in a separate hierarchical, multi-unidimensional 

IRT analysis using the Markov chain Monte Carlo algorithms that we specifically developed 

and validated for Project INTEGRATE [23]. Latent trait scores from IRT models can be 
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interpreted with direct reference to item parameters, and are independent of which items that 

participants were tested on or who else was tested together [12]. IRT models are widely used 

in educational test settings to estimate latent trait (e.g., ability or severity) scores and 

increasingly utilized also for psychological and medical research [18]. The latent trait scores 

for one’s tendency to adopt protective behavioral strategies prior to, during, and after 

drinking to protect oneself from experiencing negative consequences from drinking [36], 

such as setting limits or alternating drinks, were estimated using a generalized partial credit 

IRT model [41] to accommodate polytomous responses [23, 37, 39]. The latent trait scores 

are estimated based on the assumption that the distribution follows a standard normal (i.e., 

an expected population mean of 0).

2.3 Motivating challenges

Example 1. Heterogeneity in study interventions. Figure 1 shows that there are up to three 

intervention arms in data. However, only three studies (studies 9, 13/14, and 21) have all 

three intervention groups, providing direct comparative evidence between three pairs of 

groups. The remaining 11 studies are two-arm trials, of which one did not have a control 

(study 1). The challenge that arises is how to draw valid inference regarding relative 

effectiveness of two competing interventions (i.e., “MI + PF” vs. “PF”) from the perspective 

of network meta-analysis [35], despite that we have (1) one missing treatment arm for 11 

studies and (2) one study (i.e., study 1) without a control group. The latter condition results 

in several unique study-specific parameters, which require a “blueprint” directing how they 

can be related to study-specific parameters of other studies, and to their corresponding 

hyperparameters of the full model.

Example 2. Heterogeneity in the assessment of covariates. Studies 9, 10.1, 11, and 22 

recruited exclusively first-year students. In these studies, study-specific parameters for first-

year student status (coded 1 = first-year; 0 = other) are not estimable and cannot be linked 

directly to their counterpart from other studies or to the corresponding full model 

hyperparameter because the intercept parameters from these four studies would indicate the 

mean outcome level for their first-year students, assuming all study-specific covariates in the 

model are held constant (e.g., constrained to zero) within studies. In contrast, study-specific 

intercept parameters from the remaining 10 studies would reflect the mean outcome level of 

the students in 2nd year and above (i.e., referent demographic group) when all other 

covariates are held constant within studies. Therefore, the interpretation of the study-specific 

intercept parameters differs between studies due to the study design difference. Ignoring the 

study design difference would mean that the combined hyperparameter estimate for the 

intercept would be biased and/or not interpretable.

If one were to drop this covariate, the four studies with all first-year students would be 

retained in the analysis. However, first-year college students have higher levels of alcohol-

related problems, compared with students in the second year and beyond. Due to their high 

risk status, the studies with only first-year students may have specific intervention content 

and different intervention effect sizes, compared with other studies that provide the same 

intervention for students across all years in college. If we exclude the studies that recruited 

exclusively first-year students, then resulting inferences would suffer from reduced power. 
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Therefore, either option-excluding the covariate or the studies-can result in non-negligible 

loss of information and biased inference in a typical meta-analysis. Clearly, there is a need to 

properly separate the effect of interest from potential confounding effects when 

simultaneously combining multiple related parameters from heterogeneous studies.

Example 3. Availability of follow-up assessments. Some studies had a single post-

intervention follow-up assessment, whereas others had at least two follow-up assessments 

within 12 months post intervention (see Table 1). Such between-study design differences can 

cause study-level missing data under certain full models. For example, if a true full model 

has a quadratic functional form, then it would require at least three data points over time to 

fit linear and quadratic terms in a longitudinal model. One may choose a simpler model that 

does not correctly reflect true change processes. Alternatively, one may limit the analysis to 

a subset of studies with a sufficient number of follow-up assessments. Neither option is 

optimal.

Note that the motivating challenges illustrated above do not represent a missing data 

problem within individual studies. However, when data from independently conducted 

studies are pooled in a meta-analysis, any between-study design heterogeneity, including 

differences in the number of treatment arms, comparison or control group, and lack of 

variability in covariates, can lead to a challenge in estimation and interpretation. In other 

words, study-specific parameters need to be made equivalent via “mapping” so that each 

study-specific parameter can be validly linked to the corresponding hyperparameter(s) of the 

full model. A multivariate CD-based approach provides a novel method, which incorporates 

mapping matrices in the estimation, for a multivariate fixed-effects or random-effects meta-

analysis model.

3. METHODS

3.1 A mapping method with a CD-based meta-analysis approach

Consider k independent studies each with ni observations for i = 1, ⋯ , k. First, we formulate 

a full model as a generalized linear mixed model. We assume a random-intercept model with 

a total of p − 1 covariates across k studies:

g E yijt ∣ βdi, uij0 = β0i + β1ix1ijt + β2ix2ijt + β3ix3ijt + ⋯ + β(p − 1)ix(p − 1)ijt + uij0,

where g(·) is the link function, E(·) denotes expectation, and βi = (β0i, β1i, β2i, … , β(p−1)i)T 

represents a study-specific parameter vector. yijt indicates the outcome for participant j in 

study i at time t, and xdijt is value of the dth covariate for participant j in study i at time t, 
where βdi indicates the coefficient associated with the dth covariate for study i with d = 0, 

⋯ , p − 1. The term uij0 indicates a participant-specific random intercept effect. The link 

function is an identity link for a linear model with a continuous outcome. Other link 

functions can be specified depending on the distribution of outcomes [62].

The full model for the motivating example at the participant level is:
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E yijt ∣ βdi, uij0 = β0i + β1iManijt + β2iWhiteijt + β3iFirst‐yearijt + β4iPBSijt + β5iPFijt + β6i(MI + PF)ijt
+ β7iMonthijt + β8iMonthijt2 + β9i(PF × Month)ijt + β10i((MI + PF) × Month)ijt + β11i PF × Month2

ijt
+ β12i (MI + PF) × Month2

ijt + uij0,

where the terms Man, White, First-year, PF, and MI + PF are binary indicator variables; PBS 

and Month are continuous variables; and the rest of the terms are either interaction terms 

between the aforementioned ones and/or a quadratic form. Table 2 shows the descriptive 

statistics of all covariates.

Throughout Section 3, we denote bi as the study-specific estimates of the corresponding 

Level-1 parameters βi for study i, E(βi) as the expectation of the study-specific vector of 

parameters at Level 1 (with dimension pi, where pi ≤ p), and β as the full vector of 

hyperparameters at Level 2 (with dimension p), respectively. We assume that a study-

specific parameter vector βi follows a multivariate normal distribution with mean β and 

covariance matrix Σ for a multivariate random-effects meta-analysis model, an extension of 

its univariate counterpart [43]. As long as the the expectation of study-specific parameters 

has the same interpretation across studies, we can directly fit the full model (i.e., without any 

mapping) and obtain the full vector of hyperparameter estimates β and its covariance matrix 

Σ as follows:

 Level 1:bi ∣ βi, Si MVNpi βi, Si

 Level 2:βi ∣ β, Σ MVNpi(β, Σ),

where MVNpi stands for the multivariate normal distribution with dimension pi, Si is the 

observed covariance matrix for study i, and Σ is the unknown between-study covariance 

matrix that needs to be estimated. With a set of heterogeneous studies (study i = 1, 2, ⋯ , k) 

and covariate d = 1, 2, ⋯ , p − 1, we additionally identify and adopt an appropriate study-

specific mapping matrix Mi for study i where Mi is a pi × p matrix, and obtain the full model 

as follows:

 Level 1:bi ∣ βi, Si MVNpi βi, Si

 Level 2:βi ∣ β, Σ MVNpi Miβ, MiΣMiT .

We first obtain bi for study-specific parameters βi for study i in the first step. Next, we 

identify an appropriate mapping matrix Mi for study i and link all study-specific parameters 

to their corresponding hyperparameters of the full model in the second step. Let Mi be the 

mapping function for study i that links βi to β: E(βi) ≡ Mi (β). In a linear model, the 
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relationship E(βi) ≡ Mi (β) can typically be simplified to the following linear equation: E(βi) 

≡ Miβ, where Mi is a pi × p matrix.

3.2 Mapping matrix to connect study-specific parameters to hyperparameters

As an illustration, we show how to determine an appropriate mapping matrix connecting the 

study-specific parameter vector βi to the hyperparameter vector β. Let us assume that we 

have a model of a continuous response variable y with two continuous covariates x1 and x2:

E yij ∣ βi = β0i + β1ix1ij + β2ix2ij,

where subscripts i and j index study and participant, respectively. If study i has all the 

covariates required, then

Mi =
1 0 0
0 1 0
0 0 1

.

In this case, study-specific parameters can be linked to the population hyperparameter vector 

directly in a standard multivariate random-effects meta-analysis model [26, 28]. However, 

consider a situation where β2i cannot be estimated for study i because x2i was not assessed 

by design. If we can assume that x2 has an expected zero mean, then its average influence on 

the outcome would be zero, which can be reflected in the following mapping matrix:

Mi = 1 0 0
0 1 0 .

Consequently, the resulting reduced vector of estimable parameters in this situation for study 

i (Level-1 parameters) would be E(βi) = Miβ = (β0, β1)T.

If x2 is a binary variable with a constant value (e.g., x2i = 1) for study i, then β2i cannot be 

estimated because there is no variability for that covariate. In this situation, a proper 

mapping matrix is

Mi = 1 0 1
0 1 0

and

E βi = Miβ = β0 + β2, β1
T .

The first term on the right side of the equation above indicates that the expectation of the 

intercept parameter β0i cannot be directly linked to the corresponding hyperparameter β0 of 

the full model. Rather, the expectation of β0i, in the context of the full model, is linked to the 

sum of hyperparameters β0 and β2. In contrast, β1i can be linked directly to its 
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corresponding hyperparameter β1. Since no variability exists for x2 for study i, there is no 

β2i.

Table 3 shows two mapping matrices for two different studies from the motivating data 

example. Table 4 shows covariate availability by study for the entire motivating data. Most 

studies have reduced sets of covariates, requiring mapping matrices. Let us consider a few 

specific mapping cases in the current study. The first motivating challenge example in 

Section 2.3 can be illustrated in this specific case (i.e., Mapping Pattern 1 in Table 3). Study 

1 tested the efficacy of two BMIs (i.e., “MI + PF” and “PF”) without a no-treatment control 

group, whereas all other trials were two-arm or three-arm trials with a control group (see 

Figure 1).

In the context of a network meta-analysis [5, 29], the relative intervention benefit between 

two BMIs − “MI + PF” and “PF” − can be seen as follows: “MI + PF” vs. “PF” = ((MI + 

PF) − control) − (PF − control) = ((MI + PF) − PF). Therefore, the study-specific parameter 

of the relative intervention effect from study 1 can provide valuable information as long as 

its expectation can properly be aligned to match up with the hyperparameters for 

intervention effects.

To include data from study 1 in our meta-analysis and draw valid inference, we need to 

identify an appropriate mapping matrix to link E(βi) to β. A mapping matrix for study 1 can 

be identified as follows. First, change the diagonal 1s from a 13 × 13 identity matrix into 0s 

in the 6th, 10th, and 12th rows (numbered as covariates 5, 9, and 11 in Table 3). These three 

rows correspond to the three hyperparameters comparing PF with control (i.e., PF vs. 

control; [PF vs. control] × linear growth slope; and [PF vs. control] × quadratic growth 

slope, respectively). These rows are then removed. Second, change the first row to indicate 

that the intercept parameter from study 1 describes the study-specific average outcome 

response of PF, rather than control, in the context of the full model. Therefore, the 

expectation of the intercept parameter β0i from study 1 corresponds to the sum of 

hyperparameters β0 and β5 at Level 2 and contributes to their estimation for the full model. 

Third, change the 8th and 9th rows (covariates 7 and 8 in Table 3) to indicate that the linear 

and quadratic slope parameters from study 1 represents the slope parameters for PF. Finally, 

contrast “MI + PF” against “PF” when applicable. The study-specific vector of Level-1 

parameters for study 1 can be seen as

β0i, β1i, β2i, β3i, β4i, β6i, β7i, β8i, β10i, β12i
T ,

whose expectation can be linked to the full vector of hyperparameters β at Level 2 as 

follows:
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β0 + β5
β1
β2
β3
β4
−β5 + β6
β7 + β9
β8 + β11
−β9 + β10
−β11 + β12

.

To provide another motivating challenge example (Example 2 in Section 2.3 & Mapping 

Pattern 5 in Table 3), study 11 exclusively recruited first-year students, did not assess 

protective behavioral strategies at baseline, and tested the efficacy of PF against a control in 

a two-arm trial. Therefore, to map the expectation of estimable parameters from study 11 

into the full hyperparameter vector, the rows of an identify matrix corresponding to these 

variables should be modified (Table 3). The first row of the mapping matrix are modified to 

indicate that the expectation of the intercept parameter from study 11 is the average outcome 

of first-year students in the context of the full model. The row for PBS can be removed 

because the estimated PBS trait scores follows a standard normal distribution with an 

expected population mean of 0. We expect that the omission of this row for missing PBS 

does not influence the mean model part of the full model, although the variation surrounding 

the mean may influence the error part of the model. The resulting vector of study-specific 

parameters for study 11 and its expectation E(βi) can be linked to β as follows:

β0 + β3, β1, β2, β5, β7, β8, β9, β11
T .

A reduced model is analyzed separately and sequentially for each study. At this step, we 

save study-specific regression parameter estimates, bi and their covariance matrix, Si. For 

studies with partial information, one can obtain estimates of the pi length parameter vector βi 

for study i with pi ≤ p. All of the study-specific parameters are then linked to the full vector 

of hyperparameters β of the underlying full model via Mi.

3.3 Estimation of a multivariate random-effects meta-analysis model with mapping 
matrices

Once we obtain all study-specific parameter estimates and identify their appropriate 

mapping patterns to the full model, we need to estimate the full vector of hyperparameters, β 
≡ (β0, β1, β2, ⋯ , βp−1)T. We denote bi as the study-specific estimates of the corresponding 

parameters βi for study i.

To estimate the hyperparameter vector β, one needs to estimate the between-study 

covariance matrix Σ. In the current study, we used the restricted maximum likelihood 

(REML) method while using the estimates from the method of moments [3] for starting 
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values to achieve faster convergence. The estimation of Σ can be done by modifying the 

formula given by Jennrich and Schluchter [30] to incorporate mapping matrices:

ΣREML = arg max
Σ

− 1
2 ∑

i = 1

k
log Si + MiΣMiT − 1

2log ∑
i = 1

k
MiT Si + MiΣMiT

−1Mi

− 1
2 ∑

i = 1

k
bi − Miβ

T Si + MiΣMiT
−1 × bi − Miβ ,

where

β = ∑
i = 1

k
MiT Si + MiΣMiT

−1Mi
−1

× ∑
i = 1

k
MiT Si + MiΣMiT

−1MiMi
+bi

and Mi
+ is the Moore-Penrose generalized inverse of Mi. Once ΣREML is estimated, β can be 

estimated from a combined multivariate normal CD as follows.

First, to accommodate the multivariate nature of β (see [59] for the CD approach for 

univariate applications), we construct a multivariate normal CD function for β [55]. By 

definition, H (·) is a multivariate normal CD function for a p×1 vector β, if the projected 

distribution Hλ (·) on a p×1 vector λ, for any given λ ∈ ℜp, is a univariate normal CD for λT 

β.

Second, at the individual study level, assuming that Si and Σ are known,

Hi θi = Φpi Si + MiΣMiT
−1/2 θi − bi

is a corresponding multivariate CD function for study i, where θi = E(βi) = Miβ and Φu(·) is 

the cumulative distribution function for the standard multivariate normal distribution with u 
dimension, where u is any dimension. On the conditions that Mi is positive and semidefinite, 

and that all parameters can be linked via appropriate mapping matrices, a combined 

multivariate CD function for the population-level hyperparameter vector β has been shown 

as

H(c)(β) = Φp Σc−1/2 β − β(c) ,

assuming that Σ is known (see Yang et al. [62] for a formal definition). Here, in this 

definition, because Si and Σ are known β(c) = ∑i = 1
k W i

−1 ∑i = 1
k W iMi

+bi  and its 

covariance matrix Σc = ∑i = 1
k W i

−1
, where W i = Mi

T Si + MiΣMi
T −1Mi.

If we plug in the consistent estimator of the variance matrix Σ, then β can be directly 

estimated from the asymptotic combined multivariate normal CD. In other words, from H(c) 

(β):
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β(c) = ∑i = 1
k W i

−1 ∑i = 1
k W iMi

+bi

for the estimated mean vector and

Σc = ∑i = 1
k W i

−1

for its covariance matrix, where W i is defined as

W i = MiT Si + MiΣREMLMiT
−1Mi .

Therefore, β(c)
 and Σc are CD estimators of β and Σc, respectively. Note that we use the 

sample covariance estimators Si and ΣREML because the combined CD function H(c) (β) 

would be an asymptotic multivariate normal CD as long as these estimators are consistent. 

The CD-based approach yields estimates with several desirable properties (e.g., 

asymptotically efficient and robust against model misspecification). See the Appendix for 

more details.

Finally, upon obtaining all estimates of the full model, flexible inference can be made using 

the combined full model. For example, to interpret decaying intervention effects over time, 

one can compare estimated outcomes at a given time across intervention groups. To estimate 

outcomes at specific values of the covariates, the estimated hyperparameters β(c)
 from the 

full model can be used to construct the estimated full model. We can then use the full model 

to obtain model-based mean ŷ0 and its variance by plugging in a set of in-sample covariate 

values x0 using the following formula:

y0 = x0
Tβ(c)

and

var y0 = x0
TCov β(c) x0 .

4. DATA EXAMPLE

4.1 Underlying full model specification

Alcohol use trajectories among college students after various interventions typically show a 

sharp immediate decline, followed by a slow rebound to levels on par with or above the pre-

intervention level over time [2, 58] because alcohol use and alcohol-related problems tend to 

peak during ages 18–24. Therefore, we chose a quadratic growth model and tested it using 

IPD from several individual studies separately, which supported the appropriateness of the 

model. We visually examined all available data, tested unconditional growth models, 
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compared their fit indices (e.g., AIC, BIC), and examined growth coefficients and residual 

plots. To test intervention effects over time, we included interaction terms between time and 

intervention groups. We included gender, first-year student status, and race (white or 

otherwise) as demographic covariates. In addition, we conducted a separate analysis within 

individual studies to see if attrition at follow-ups could be explained by participant-level 

covariates. Based on this attrition analysis, we discovered that the tendency to use protective 

behavioral strategies prior to and while drinking, such as setting drinking limits, was related 

to greater chances for participants to drop out at follow-ups in some of the studies. We 

subsequently added this covariate to the full model.

All analyses were performed using R (version 3.4.4). The “nlme” R package [44] was used 

to fit a random-intercept growth model. We developed R codes to identify patterns of 

estimable covariates and to construct mapping matrices and used the “optimx” package [42] 

to obtain the REML estimates of the between-study covariance matrix.

4.2 Partial information and mapping matrices

Table 4 shows all 13 coefficients included in the current analysis and their availability by 

study. Some coefficients could not be estimated because (1) variables were not assessed by 

study design (e.g., PBS; studies 10.1, 11, 13/14, and 20); (2) the entire sample consisted of 

only first-year students (studies 9, 10.1, 11, and 22); (3) not all intervention groups were 

included in original studies (studies 1, 2, 8a, 8b, 8c, 10.1, 11, 12, 18, 20, and 22; see also 

Figure 1); and (4) only one follow-up assessment was available (i.e., only a linear slope term 

could be estimated; studies 2, 8a, 8b, 8c, 10.1, 20, and 22; see Table 1). A total of just three 

covariate coefficients were estimable across all studies (i.e., man vs. woman, white vs. non-

white, and a linear slope of time), and only one study (study 21) had the necessary data to 

estimate all coefficients. There were a total of 11 different mapping matrix patterns. With the 

exception of study 21, all other studies required mapping matrices with reduced dimensions.

4.3 Estimation and interpretation

The full vector of hyperparameter estimates β(c)
 (see Table 5) and its corresponding 

covariance matrix Cov β(c)
 were obtained by applying the estimation procedures described 

in Section 3. Table 6 shows that the correlation estimates of the regression coefficients 

derived in the current study were not boundary estimates (i.e., away from ±1), which usually 

suggests estimation difficulties in certain multivariate meta-analysis models [47]. The 

estimated full model for the data example at the participant level was:

E yijt = + 0.4449 + 0.0172 × Manijt + 0.0564 × Whiteijt + 0.0403 ×  First‐year ijt + −0.2825 × PBSijt
+ −0.0028 × PFijt + 0.0841 × (MI + PF)ijt + −0.0442 ×  Month ijt + 0.0041 ×  Month ijt2

+ 0.0006 × (PF ×  Month )ijt + −0.0311 × ((MI + PF) × Month)ijt + −0.0004 × PF × Month2
ijt

+ −0.0003 × (MI + PF) × Month2
ijt .

Substantively, results indicated that there was a significant interaction between MI + PF and 

the linear slope of time. To interpret this interaction effect, we calculated model-implied 

outcome values for all groups based on the estimated full model. Namely, we used in-sample 
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covariate values (i.e., first-year, male, white students, a mean PBS score) and obtained 

model-implied means for alcohol-related problems and their estimated variances at various 

time points post intervention. The estimates were derived based on the estimated full model.

Figure 2 shows the expected mean levels for all three groups, which shows a reduction in 

alcohol-related problems at 6 months, followed by a rebound at 12 months (top). To 

demonstrate the flexibility of this approach, we plotted monthly estimates of alcohol-related 

problems up to 12 months post intervention (bottom), which shows the linear and quadratic 

growth functions for the following three groups: MI + PF, PF, and control. MI + PF showed 

the best post-intervention trajectory over time, showing a clearer intervention benefit, which 

was better maintained over time, compared with PF. We further probed this by comparing 

estimated alcohol-related problems for PF vs. control and for MI + PF vs. control every 

three months (top) and every month (bottom) for up to 12 months post intervention (Figure 

3). Figure 3 (bottom) shows that statistically significant group differences in alcohol-related 

problems emerged around 5–6 months post intervention (95% confidence intervals are below 

the dotted horizontal line).

4.4 Sensitivity analyses

To examine if the reported results were overly influenced by outlying studies, we conducted 

a sensitivity analysis by excluding one study at a time and repeating the analysis. Results 

indicated that while individual regression parameters changed in magnitude to some extent, 

the overall findings remained largely the same (not shown). In addition, we sequentially 

removed two different covariates from the analysis at two different steps of the analysis (i.e., 

when estimating Level-1 parameters in the first step and when estimating Level-2 

hyperparameters in the second step) and examined the impact of model misspecification on 

two key coefficients (i.e., PF × Linear Slope and (PF + MI) × Linear Slope).

Figure 4 shows the results when we removed PBS (top) and first-year student status (bottom) 

during the second step when hyperparameters were estimated. Figure 5 shows the results 

when we removed covariates during the first step of the analysis when each covariate was 

removed from the study-specific analysis (i.e., removed from both Level-1 and Level-2 

analyses). Results from both sensitivity analyses suggest that the estimated hyperparameters 

(shown in filled diamond symbols in Figures 4 and 5) were fairly robust to model 

misspecification, and that an omitted covariate made little impact on the final estimates, 

regardless of whether it was a continuous or binary covariate. We also inspected other 

estimated coefficients and concluded that the derived hyperparameter estimates could be 

trusted.

5. DISCUSSION

The current study extended the CD-based mapping method to a multivariate random-effects 

meta-analysis model from the multi-parameter synthesis perspective [1, 16, 17]. We showed 

that data from heterogeneous trials can be validly accommodated by utilizing the CD 

concept [59, 60]. The two-step CD-based mapping method differs from the existing methods 

in the sense that it is aimed at combining the entire full model, which is subsequently used to 

derive model-based estimates for flexible inference. Broadly speaking, the two-step CD-
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based mapping method shares some features in common with Bayesian and meta-analytic 

structural equation modeling (MASEM) [4] approaches in the sense that the CD-based 

method does not focus on deriving isolated point estimates. Rather, the CD-based mapping 

method utilizes all available evidence that exist within studies to link to, and estimate, the 

underlying full model. This method makes fewer assumptions and can be broadly applicable, 

providing a more general synthesis framework (Table 7).

In the present study, the combined full model had 13 hyperparameter estimates across 11 

different estimable patterns of coefficients for 14 trials. To accommodate missing or 

inestimable covariates and covariates with different meanings across studies, we identified 

appropriate connections between the expectation of the study-specific parameters and the 

full model hyperparameters and subsequently, derived the joint distribution of 

hyperparameters using the multivariate CD-based approach to meta-analysis. This new 

method may provide the field with a methodological alternative to consider, in connection 

with methods of aggregating published prediction models [9, 10], dealing with systematic 

missing data [13, 31, 46, 52], exploring subgroups that may respond differently to an 

intervention [14, 50], and combining multiple parameter estimates from either AD or IPD 

[4, 17].

Multivariate meta-analysis, despite its well established rationale and premise, has resulted in 

a rather small improvement in the statistical properties of individual estimates [26, 56]. In 

typical multivariate meta-analysis applications, the dimension of combined coefficients has 

been rather limited, which may help explain the small gain thus far in the literature. The 

method illustrated in the current paper allows us to make more specific inference based on 

the full model, which may be helpful for the development of personalized treatment 

approaches using clinical trial data (i.e., the Precision Medicine Initiative [7]).

In addition, the CD-based mapping method for multivariate meta-analysis explicitly 

accommodates between-study differences. Consequently, the derived estimates are not 

confounded with between-study differences. This CD-based method may be helpful when 

estimating treatment effects for subgroups in data situations where no within-study estimates 

exist for some of the studies included in a meta-analysis. Riley et al. [48] explored a 

multivariate meta-analysis extension application, in which different treatment effects were 

examined separately for each subgroup. However, this approach, as Riley et al. discussed, 

can result in a confounded treatment effect estimate when one cannot reasonably assume 

that within-study and between-study covariate interactions are the same. Riley et al. 

discussed the advantages (e.g., power) and disadvantages (e.g., ecological inference bias and 

study-level confounding) of combining within-study estimates with between-study estimates 

of the approach. The method we illustrated in the current study may offer a more favorable 

solution for this challenge.

Table 7 shows a summarized list of the premises, assumptions, and challenges of the CD-

based approach to multivariate meta-analysis. It is flexible and not computationally 

intensive. Most of the assumptions involved in this CD-based approach are assumed for the 

existing meta-analysis methods. For example, we assume that the designated full model is a 

true model for all studies. For a meta-analysis of clinical trials, a true full model is 
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reasonable to assume. We also assume that the pattern of omitted covariates at the study 

level meets the MAR assumption, which may be quite reasonable for randomized clinical 

trials [48]. Other assumptions, such as common scales, can be explicitly checked and 

analyzed when item-level IPD (as opposed to scale-level IPD) are available. In addition, as 

long as mapping matrices can be identified, this CD-based approach can be used more 

generally without any restrictions on the distributions of outcome variables or the types of 

coefficients being combined for a full model. In the current study, we simultaneously 

combined three different types of related coefficients: the relative intervention benefits 

(network), informative covariates (regression), and repeated follow-up outcome data 

(longitudinal).

There are challenges and caveats of the CD-based approach. First, the implementation of 

this approach using IPD requires considerable time and efforts by a research team with a 

wide range of complementary expertise and skills. In particular, the necessary identification 

of an appropriate full model and subsequent mapping matrices can be difficult especially 

when data dimensions (covariates × study) increase. For randomized controlled trials, the 

identification of an appropriate full model is more straightforward than observational 

studies. Nonetheless, it would be beneficial to include domain experts to help identify 

important factors that may affect outcomes so that full models can be reasonably identified. 

Despite the best effort, however, if a full model is incorrect or if mapping matrices are 

incorrect, how robust the method is to model misspecification remains to be more 

thoroughly studied.

Second, the studies included in a meta-analysis should be sufficiently similar in terms of 

their methodological and clinical characteristics to justify that data can be combined. 

Although this assumption is generally required for meta-analysis, it may not be reasonable 

or desirable in some data applications, depending on its goals. If a comprehensively 

inclusive meta-analysis is the goal, then creating a subgroup of studies sharing the same full 

model within the subgroup and developing multiple full models to accommodate other 

subgroups of studies may be needed.

Third, not all constructs can be directly observed or may share the same interpretation across 

studies. For example, a death is directly observable and has the same meaning regardless of 

study membership. Mental health outcomes and correlates, however, are not directly 

observable but derived, and measured in a number of different ways. In the case of 

depression, there are more than 280 different depression scales with little item overlap 

across scales [15]. If there is sufficient overlap in items across studies, items may be linked 

across studies via shared items and a commensurate metric may be established [38, 23].

Fourth, when the number of studies is small or when individual studies have small samples, 

it may be necessary to accommodate uncertainty surrounding covariance estimators Si and 

ΣREML. In future meta-analysis studies, this uncertainty may be reflected, for example, by 

inflating confidence intervals for the REML method [27]. Finally, our previous measurement 

work to make IPD comparable across studies involved an additional set of assumptions and 

constraints, which need to be considered when developing appropriate mapping matrices.
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Substantively, we found the positive effect of the MI + PF intervention on alcohol-related 

problems, which is consistent with the previously reported findings [21], despite using a 

different methodological approach to IPD meta-analysis. Huh et al. estimated a Bayesian 

three-level model in a “one-step” meta-analysis of IPD [19] (see also Huh et al. [22]). In 

addition, Huh et al. used a different full model, which specified alcohol-related problem 

scores at baseline as a covariate. Intervention effects were estimated within studies using 

posterior distributions. Consequently, studies without their own control group were excluded 

in the analysis.

Based on the comparison of the one-step approach with the current two-step CD-based 

approach, albeit indirectly, we reach two conclusions. First, the convergent findings from the 

two studies increase our confidence in the substantive conclusion that MI + PF has an 

advantage over PF in terms of reducing alcohol-related problems for college students. 

Second, the two-step CD-based mapping method approach to IPD multivariate meta-analysis 

may be better suited to build a “scalable” evidence base, compared to the one-step approach. 

The term “scalable” applies not only to the number of studies but also to the number of 

informative covariates that can be examined in a meta-analysis. Instead of imputing study-

level missing data, the CD-based approach utilizes information from all available data across 

studies to provide inference. Given that with increasing data dimensions, between-study 

heterogeneity increases, it is critical that missing or inestimable data are appropriately 

handled in IPD meta-analysis. A recent study [51] discussed that accurate imputations of 

study-level missing data across 19 depression trials were not obtained, which is a critical 

step needed for conducting one-step IPD meta-analysis or IDA. This has been a major 

barrier to harmonizing and synthesizing IPD across studies. The CD-based method that we 

showcased in the present study may be an important new tool for the field of complex 

research synthesis.

In conclusion, to provide answers to complex questions from available large-scale data, it is 

critical to account for between-study differences and accommodate study-level missing data. 

The CD-based method is a promising new approach aimed at promoting large-scale, 

complex evidence synthesis of IPD for multivariate meta-analysis models.
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APPENDIX

Proof of the claims in Section 3.3. First, let us assume that Σ is known. At the individual 

study level, bi Npi θi, Si + MiΣMi
T , where bi is a point estimator of θi = E(βi) = Miβ. By 

Singh et al. [55], Hi θi = Φpi Si + MiΣMi
T −1/2 θi − bi  is a corresponding multivariate CD 

function for θi, for i = 1, … , k.

Following Xie et al. [60] and Yang et al. [61], we know that combining normal CDs of 

individual studies can be achieved by a linear combination of normal CDs with weight Wi. 

In particular, when Σ is known, we have

β(c) = ∑i = 1
k Wi

−1 ∑i = 1
k WiMi

+bi .

Since β(c) Np β, Σc , the combined CD function for the regression parameter of interest β is 

H(c)(β) = Φp Σc
−1/2 β − β (c)

. When Σ is not known, we then replace it with a consistent 

estimator (as k → ∞). This leads to the following asymptotic combined CD: 

H(c)(β) = Φp Σc
−1/2 β − β(c)

 as described in Section 3.3.
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Figure 1. 
A diagram of the evidence network (numbers in parenthesis indicate studies).
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Figure 2. 
Model-based mean estimates for three different groups using the estimated full model shown 

in Table 5. The top figure shows estimates at baseline, and 6- and 12-month follow-ups. The 

bottom figure shows monthly estimates for 12 months post intervention. Theta score = latent 

trait severity score for alcohol-related problems. PF = stand-alone personalized feedback 

intervention; MI + PF = in-person motivational intervention with personalized normative 

feedback profile. Values for covariates were set for White, first-year, male students with a 

mean PBS score at baseline. Vertical dotted lines indicate 95% confidence intervals.
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Figure 3. 
Model-based mean difference estimates of the two intervention groups, compared to control, 

in alcohol-related problems at baseline and every three months (top), and at baseline and 

each subsequent month post intervention (bottom). Theta score = latent trait severity score 

for alcohol-related problems. PF = stand-alone personalized feedback intervention; MI + PF 

= in-person motivational intervention with personalized normative feedback profile. Vertical 

dotted lines indicate 95% confidence intervals. A horizontal dashed line at zero indicates no 

group difference.
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Figure 4. 
Results from sensitivity analyses where each covariate from each study was treated as 

systematically missing in the second step. The effects of the exclusion of a continuous 

covariate (PBS at baseline; top) and a binary covariate (first-year student status; bottom) on 

the combined estimates of PF × Linear Slope (left) and (MI + PF) × Linear Slope (right) are 

shown, respectively. Filled diamond symbols indicate the combined estimates from all 14 

studies as reported in Table 5. The estimates from sensitivity analyses are shown in filled 

squares.

Jiao et al. Page 24

Stat Interface. Author manuscript; available in PMC 2020 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Results from sensitivity analyses where a covariate from each study was sequentially 

removed throughout the entire analysis. The effects of the exclusion of a continuous 

covariate (PBS at baseline; top) and a binary covariate (first-year student status; bottom) on 

the combined estimates of PF × Linear Slope (left) and (MI + PF) × Linear Slope (right) are 

shown, respectively. Filled diamond symbols indicate the combined estimates from all 14 

studies as reported in Table 5. The estimates from sensitivity analyses are shown in filled 

squares.
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Table 1.

Baseline and follow-up assessment schedule by study

Time in months (0 = baseline)

Study 0 1 2 3 4 5 6 7 8 9 10 11 12

1 X X X

2 X X X

8a X X

8b X X

8c X X

9 X X X

10.1 X X

11 X X X

12 X X X X

13/14 X X X X

18 X X X

20 X X

21 X X X X

22 X X

Notes. “X” indicates that baseline or follow-up outcome data exist at that time.
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Table 2.

Means, standard deviations in parentheses, and percentages of the variables by study

Variable

Study Man White First-year PBS AlcProb

1 60% 73% 62% 1.06(0.79) 0.21(0.72)

2 71% 69% 63% 1.01(0.84) −0.60(0.72)

8a 33% 87% 50% 0.55(0.85) −0.08(0.97)

8b 41% 62% 47% 0.57(0.89) −0.11(1.00)

8c 38% 83% 36% 0.46(0.91) 0.02(0.94)

9 38% 73% 100% 0.42(0.77) 0.75(0.71)

10.1 46% 84% 100% - 1.03(0.76)

11 59% 64% 100% - −0.82(0.95)

12 47% 93% 3% −0.46(0.92) 0.39(0.60)

13/14 38% 95% 26% - 1.08(0.51)

18 25% 89% 33% 0.49(0.88) −0.17(0.96)

20 52% 84% 78% - 0.62(0.83)

21 36% 85% 42% 0.36(0.92) 0.89(0.77)

22 43% 87% 100% 0.38(0.89) −0.18(0.90)

Notes. Man (coded 1; 0 = woman), White (coded 1; non-White = 0), First-year (coded 1; 0 = non first-year). PBS = Estimated latent trait (θ) scores 
at baseline for utilizing protective behavioral strategies. AlcProb = Estimated latent trait scores at baseline for alcohol-related problems. “−” 
indicate that the variable was not assessed. The presented descriptive statistics were obtained from the entire study sample.
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Table 5.

Combined parameter estimates from the multivariate random-effects meta-analysis

Covariate Estimate p value

0. Intercept 0.4449 0.0051

1. Man (=1 vs. woman=0) 0.0172 0.7184

2. White (=1 vs. nonwhite=0) 0.0564 0.1309

3. First-year (=1 vs. other=0) 0.0403 0.1928

4. PBS at Baseline −0.2825 0.0000

5. PF (=1 vs. control=0) −0.0028 0.9223

6. MI + PF (=1 vs. control=0) 0.0841 0.1270

7. LS −0.0442 0.0178

8. QS 0.0041 0.0276

9. LS × PF 0.0006 0.8729

10. LS × (MI + PF) −0.0311 0.0006

11. QS × PF −0.0004 0.5774

12. QS × (MI + PF) −0.0003 0.8314

Notes. PBS = Estimated latent trait (θ) scores for utilizing protective behavioral strategies; PF = stand-alone personalized feedback intervention; 
MI + PF = in-person motivational intervention with personalized normative feedback profile; LS = Linear slope (time in month); and QS = 
Quadratic slope (months squared).
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