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Abstract

Dietary assessment traditionally relies on self-reported data which are often inaccurate and may 

result in erroneous diet-disease risk associations. We illustrate how urinary metabolic phenotyping 

can be used as alternative approach for obtaining information on dietary patterns. We used two 

multi-pass 24-hr dietary recalls, obtained on two occasions on average three weeks apart, paired 

with two 24-hr urine collections from 1,848 U.S. individuals; 67 nutrients influenced the urinary 

metabotype measured with 1H-NMR spectroscopy characterized by 46 structurally identified 

metabolites. We investigated the stability of each metabolite over time and showed that the urinary 

metabolic profile is more stable within individuals than reported dietary patterns. The 46 

metabolites accurately predicted healthy and unhealthy dietary patterns in a free-living U.S. cohort 

and replicated in an independent U.K. cohort. We mapped these metabolites into a host-microbial 

metabolic network to identify key pathways and functions. These data can be used in future 

studies to evaluate how this set of diet-derived, stable, measurable bioanalytical markers are 

associated with disease risk. This knowledge may give new insights into biological pathways that 

characterize the shift from a healthy to unhealthy metabolic phenotype and hence give entry points 

for prevention and intervention strategies.

Diet is a key contributor to human health and disease, though it is notoriously difficult to 

measure accurately in population studies1–4, and new approaches are needed to understand 

the metabolic consequences of dietary intakes, eating patterns5–7 and their relation to disease 

risk. Omics technologies have facilitated understanding of individual and population health 

at the systems level8; specifically, metabolic phenotypes, readily measured from urine and 

blood, carry rich information on physiological phenotype, environmental exposures and 

disease risks9–11. We previously introduced the metabotype concept to describe metabolic 

consequences of genetic variation in animals12, but metabotypes (metabolic phenotypes) are 

also sensitive to lifestyle influences in humans including dietary composition9,13–18. Urine 

samples have higher concentrations of food-derived compounds and wider dynamic range 

compared to blood, which is under tight homeostatic regulation19, and controlled trials have 

shown that urinary metabolic profile provides an objective measure of dietary input17.

Our aim here was to obtain an objectively measured biochemical signature of the “dietary 

nutriome”20. We define the functional nutriome as “chemically-defined diet-derived 

Posma et al. Page 2

Nat Food. Author manuscript; available in PMC 2020 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



molecular species contributing to the human metabolic phenotype”; it may be the means by 

which diet affects disease risk as it influences the expressed phenotype of the individual. We 

make use of INTERMAP cohort21,22 data on 1,848 U.S. individuals providing high quality 

information on dietary intakes from four multi-pass interviewer administered 24-hr dietary 

recalls (giving data on 80 nutrients), paired with urinary excretion data from two timed 24-hr 

urine collections. The urinary metabolome was measured by proton Nuclear Magnetic 

Resonance (1H-NMR) spectroscopy which gives a broad agnostic chemical profile for each 

urine sample. We present our approach to identify metabolic features associated with 

nutrient intakes and show the stability over time of metabolites and dietary markers. We then 

use the identified metabolites to predict healthy and unhealthy dietary patterns in two 

independent populations, and show how metabolite-nutrient associations may in future be 

used to link such metabotypes to health outcomes (Figure 1).

RESULTS

Clustering of dietary nutrients and urinary metabolites

We found 46 urinary metabolites that covaried with at least one of 80 dietary nutrients; for 

67 of these nutrients we found associations with one or more metabolites for both first and 

second urine samples (Figure 2). The majority of signals were structurally identified using a 

comprehensive analytical identification strategy23, although for a few metabolites it was not 

possible to assign a definitive structure. Supplementary Table 1 shows for each nutrient all 

the associated metabolites with the sign of the association. Supplementary Table 2 gives a 

list of identified metabolites (linked to nutrients) with their chemical shift sets (Extended 

Data Figure 1) and an indication of strength of association between each metabolite-nutrient 

pair. Supplementary Figures 1–3 show correlation heatmaps between nutrients and the full 

600 MHz 1H-NMR spectra for the two urine collections.

The adjusted coefficient of commonality (ACC) distance was used as input for hierarchical 

clustering of the urinary metabolic signatures associated with nutrients (Supplementary 

Figure 4); based on the optimal modularity this resulted in 20 nutrient clusters 

(Supplementary Figure 5), nine of which were comprised of multiple nutrients. 

Supplementary Figure 6 shows the correspondence between partial correlations and the 

ACC.

From these analyses, dietary and urinary potassium showed the highest concordance with 

each other based on similarity of metabolic signatures, followed by magnesium, although 

dietary potassium and magnesium were more similar to each other than urinary and dietary 

potassium (Supplementary Figure 5) reflecting patterns observed in the correlation analysis 

(Supplementary Figure 4). Also, there was a modest similarity between dietary and urinary 

calcium, but no association between dietary and urinary sodium. Moreover, dietary sodium 

had little to no similarities with other nutrients unlike urinary sodium, reflecting the 

inaccurate estimation of sodium intake from dietary data24. Potassium and magnesium, both 

dietary and urinary, had metabolic signatures that were similar to those for fiber reflecting 

common dietary origins (e.g. vegetable intake).
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For cholesterol, the partial correlations and ACC gave rise to different clustering patterns. In 

the ACC analyses, cholesterol clustered with palmitoleic (monounsaturated fatty acid (MFA) 

16:1), oleic (MFA 18:1), palmitic (saturated FA (SFA) 16:0) and stearic (SFA 18:0) acid 

based on similarity of metabolic signatures (Supplementary Figure 5), reflective of higher 

excretions of metabolites related to meat intake (e.g. O-acetylcarnitine, carnitine) and lower 

excretions of metabolites related to vegetable intake (e.g. hippurate, S-methyl-cysteine-

sulfoxide); whereas in the correlation analysis (Supplementary Figure 4) cholesterol 

clustered with arachidonic acid (polyunsaturated FA (PFA) 20:4), amino acids, vitamins and 

minerals.

We found a strong relationship (r=0.15, q=9.93×10−9) between urinary formate and urinary 

sodium (biomarker of salt intake), both of which are independently associated with 

adiposity25,26 as well as blood pressure9,27, indicating common pathways. Other nutrient-

metabolite relationships include previously reported links between dietary intake of alcohol 

with urinary ethylglucuronide (r=0.61, q=6.11×10−183) and ethanol (r=0.52, q=6.73×10−127) 

(Figure 2), both known alcohol biomarkers28,29. Alcohol intake was associated with acetate 

(r=0.16, q=2.52×10−10), consistent with the primary oxidative metabolism of ethanol to 

acetaldehyde (via aldehyde dehydrogenase), which in turn is produced from ethanol via 
alcohol dehydrogenase in the liver. The association of PFAs with urinary trimethylamine-N-

oxide (r=0.20, q=5.83×10−15) and dimethylamine (r=0.16, q=2.46×10−9) reflects dietary 

intake of fish30,31. We found strong direct correlations of dietary fructose, glucose and 

vitamin C with urinary biomarkers of citrus fruit consumption32–34 prolinebetaine (r=0.26 to 

r=0.50, q=2.08×10−26 to q=9.47×10−115) and 4-hydroxyprolinebetaine (r=0.23 to r=0.42, 

q=1.59×10−20 to q=8.61×10−76) as well as with 2-hydroxy-2-(4-methylcyclohex-3-en-1-

yl)propoxyglucuronide (r=0.18 to r=0.26, q=2.87×10−13 to q=1.46×10−28) (Figure 2). Citrus 

fruits naturally contain citric acid which explains the positive association between vitamin C 

and urinary citrate (r=0.41, q=3.00×10−75). The strong direct association between calcium 

and citrate (r=0.25, P=4.25×10−28, qinferred=6.20×10−26), after integration of the citrate and 

citrate-borate complex peaks, again indicates a functional link. There are also strong 

associations of dietary MFAs, SFAs and heme-bound iron with O-acetylcarnitine (r=0.19, 

q=2.43×10−13), carnitine (r=0.18, q=1.26×10−12) and N6,N6,N6-trimethyllysine (r=0.14, 

q=7.66×10−8), and PFAs with creatine (r=0.13, q=1.71×10−6), 1-methylhistidine (r=0.17, 

q=2.94×10−10), histidine (r=0.18, q=6.46×10−11) and N6,N6,N6-trimethyllysine (r=0.14, 

q=6.39×10−8). These reflect consumption of various types of meats, with the former group 

of metabolites associated with consumption of red meats and the latter with lean meats13,17.

Three-week stability of nutrient and metabolic clusters

We investigated stability (reproducibility) of individual nutrients and metabolites across 

average of the first and second, and the third and fourth, 24-hr dietary recalls and the two 24-

hr urine collections, respectively. Specifically, we calculated partial intraclass correlation 

(pICC), adjusted for age, sex and population sample, for each of the 67 nutrients (Figure 3A) 

and associated 46 urinary metabolites (Figure 3B); for the 67 nutrients, 25% (17/67) of 

pICCs were in the top quartile whereas for the metabolites 26/46 (56.5%) fell in the top 

quartile of pICCs (across the two sets of two 24-hr recalls and the two urine collections) 

(Figure 3C,D). This suggests that reproducibility of some nutrients obtained from dietary 
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records may be lower than some of their associated metabolites (Supplementary Note 1). 

Supplementary Table 3 shows the pICCs for each nutrient (including 13 without any 

associated metabolites) and each metabolite.

We further investigated reproducibility of the nutrients and metabolites over the 3-week 

period using paired analysis of ICCs across all 46 metabolites and 67 nutrients (Figure 3E). 

We found that overall the within-person ICC (transformed to Fisher Z-scores) of the 

metabolites was higher than for the nutrients (P=1.23×10−14). Additionally, we found that 

within-person ICC was significantly higher than between-person (P=8.94×10−303) indicating 

that individuals, irrespective of day-to-day dietary variation, are more similar to themselves 

than to others.

We then assessed for each individual the reproducibility of variables within each cluster over 

3 weeks (Figure 3F). When a 95% confidence interval (CI95) for a cluster includes zero it 

indicates a lack of stability over time. For example, the CI95 for cluster M4 (containing 

trimethylamine-N-oxide and dimethylamine), and cluster N4 (containing PFAs) both include 

zero. Nonetheless, the metabolites and nutrients from these clusters correlate within each 

data set (first and second 24-hr urine samples) (Figure 2), reflecting the fact that both 

clusters are associated with fish intake markers. Also, nutrients in cluster N9 (dietary 

glucose and fructose, likely from consumption of fruit/fruit juice based on correlations in 

Figure 2) were not stable across the 3-week period, whereas for the urinary cluster 

containing biomarkers of citrus fruit/juice consumption (cluster M5) the ICC was more 

precisely estimated and hence results were more reproducible.

Metabolic reaction networks enable deeper biological understanding of nutriome 
influences on metabolism

Urinary metabolites, including those associated with nutrients, indicate a variety of different 

interconnected metabolic processes that are consequences of host genetic variation, the 

microbiome and other environmental exposures. We made use of metabolic reaction 

networks to delineate correlations between metabolites in terms of their proximity (number 

of intermediate reactions) in the metabolic network35. Prior to metabolic network modelling 

we considered the bi-clustered heatmap (Figure 2) from which certain key features emerge, 

including correlated metabolites that are not in close biological proximity in the human 

metabolic reaction network (Supplementary Note 2).

Classical biochemical pathways are essentially a shorthand notation to describe a series of 

sequential and parallel chemical reactions that may occur in cells. However, it is not 

axiomatic that all these reactions are necessarily coupled in space or time in real living 

systems. The MetaboNetworks software35 provides a bioinformatic reconstruction of 

pathway relationships observed in a real system, but constrained by the formalism of 

classical (e.g. KEGG) representations. We used MetaboNetworks to build a metabolic 

reaction network (see Extended Data Figure 2 for the full connected network and 

Supplementary Table 4 for abbreviations) for these data. We visualize three pathways in 

more detail by detailing the enzymes (and coding genes) involved in different reactions. This 

information is based on known, published biochemical reaction data from public databases. 

We show side-by-side various statistical relationships between metabolites in each pathway. 
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For example, the nicotinate (niacin/vitamin B3) pathway (Figure 4A) contains correlated 

metabolites NMNA and N-methylpyridinium (Figure 4B) and the downstream metabolites 

N-methylnicotinamide and N-methyl-2-pyridone-5-carboxamide (2PY) which are also 

correlated, although both pairs of metabolites did not correlate with each other 

(Supplementary Note 2). Whereas N-methylnicotinamide correlated only with urinary 

magnesium (r=0.12, q=7.89×10−6), 2PY correlated with urinary (r=0.15, q=2.96×10−9) and 

dietary magnesium (r=0.08, q=1.62×10−3) and also with a range of B-vitamins (r=0.11 to 

r=0.16, q=3.17×10−5 to q=3.28×10−10) and dietary amino acids (r=0.09 to r=0.14, 

q=4.44×10−4 to q=7.15×10−8).

Aside from 2PY, several compounds are correlated with dietary amino acids, including the 

urinary amino acids histidine (r=0.20, q=2.33×10−15), leucine (r=0.13, q=8.33×10−7), 

tyrosine (r=0.10, q=5.01×10−5) and valine (r=0.15, q=3.35×10−9), and derivatives 1-

methylhistidine (r=0.17, q=4.55×10−12) and 3-hydroxyisovalerate (r=0.12, q=2.92×10−6). 

However, this was not the case for urinary amino acids alanine, glutamine and isoleucine 

which did not correlate with dietary intake. For the first two of these amino acids this may 

reflect the fact that they are involved in multiple reactions, feeding into the tricarboxylic acid 

(TCA) cycle via transamination reactions to pyruvate and glutamate, respectively (see Figure 

4C). TCA cycle intermediates citrate and succinate correlate positively (Figure 4D). The 

host-gut microbial co-metabolites hippurate, 4-hydroxyhippurate and 3-hydroxymandelate 

are all closely connected to tyrosine/phenylalanine metabolism (Figure 4E) and are strongly 

intercorrelated, whereas PAG, also in the same pathway, did not correlate with the other 

three (Figure 4F).

Urinary metabolites as indicators of healthy and unhealthy dietary patterns

We classified people as having healthy or unhealthy diets for five different dietary scores 

calculated using the same underlying nutrient data as our models: Nutrient-Rich Foods 9.3 

(NRF)36, DASH-nutrient37 and three OMNIHEART (carbohydrate, MFA, protein)38 dietary 

scores. Each of the scores place different weights on various dietary components and hence 

are indicative of different dietary patterns. We used a multivariate regression model with 

Monte Carlo Cross-Validation39 to predict the top and bottom quartiles of each score using 

metabolites as predictors to illustrate the potential for use of urinary metabolites as objective 

markers of different dietary patterns.

The predictive model for NRF had 74–76% accuracy for the left-out samples in the U.S. data 

and area-under-the-receiver-operator-curve (AUROC) of 0.83–0.84 (Table 1). The other 

dietary scores were predicted with 71–72% (DASH), 71–72% (OMNIHEART-

carbohydrate), 73–74% (OMNIHEART-MFA) and 73% (OMNIHEART-protein) accuracy, 

with AUROCs ranging from 0.79–0.82. We then used each U.S. model to predict people 

with healthy or unhealthy diets in an independent U.K. sample. For this we achieved 

accuracies of 73–74% (NRF), 62–68% (DASH), 66–70% (OMNIHEART-carbohydrate), 

65–68% (OMNIHEART-MFA) and 65–68% (OMNIHEART-protein), with AUROCs of 

0.66–0.84 (Table 1).

We then tested whether models based on first urine collections, using metabolites as 

predictors, could predict the metabotype in the second urine collections among U.S. 
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participants. We found that the AUROC and classification accuracies for these models were 

similar to, or higher than, models where the U.S. dietary data were combined across the five 

dietary scores (AUROC: 0.81–0.89, accuracy: 72–81%) (Supplementary Table 5).

DISCUSSION

In this study of 1,848 people with high quality, repeated measurements of both diet and urine 

we measured a diverse set of urinary metabolites (the functional nutriome) with implications 

for understanding pathways leading from dietary intakes to disease. While poor diet is a 

major contributor to chronic disease40 it is extremely challenging to obtain accurate data on 

dietary patterns and intake. Traditional methods rely on self-reports which are prone to 

misreporting and bias, potentially resulting in erroneous associations between diet and 

disease risk1,3,4. Although there are a few biological markers of dietary intake, such as use 

of urinary potassium as proxy for fruit and vegetable intake41,42 and as an indicator of diet 

quality43, current dietary analysis is focussed on a limited set of nutrients which do not 

directly map to metabolic processes. In contrast, our urinary spectroscopic characterization 

objectively captures the end-products of metabolism and overcomes the problem of 

reporting bias in dietary records; it is readily scalable as it takes just five minutes to obtain 

an 1H-NMR spectrum containing hundreds of metabolites measured simultaneously.

We propose that the metabolome can be used as proxy measurement to understand 

functional relationships between nutrients and health outcomes (Figure 1, Supplementary 

Discussion). For example, sodium and calcium are well-known to relate to blood 

pressure27,44 and previous studies have reported associations of formate with blood 

pressure9 and citrate and formate with renal function26,45. Here we observed associations 

between urinary sodium and calcium with citrate and formate. Likewise, prolinebetaine has 

been reported to have an inverse relationship with blood pressure and obesity26,33 and used 

as biomarker for assessment of dietary citrus fruit intake18. Here we confirmed the structural 

elucication of 2-hydroxy-2-(4-methylcyclohex-3-en-1-yl)propoxyglucuronide, another 

marker of citrus fruit intake that has previously only been tentatively identified34, from 

NMR and mass spectrometric data. Host-gut microbial co-metabolites hippurate, 4-

hydroxyhippurate, 3-hydroxymandelate and PAG were previously reported in relation to 

blood pressure9 and obesity26 and they were associated here with different nutrients. We 

found that PAG did not cluster with the others which might relate to metabolic processes in 

different parts of the gut (proximal versus distal colon, Supplementary Discussion).

We have previously demonstrated the potential for assessing diet using urinary metabotyping 

in a dietary intervention study17. We show here in observational data that 46 metabolites can 

differentiate between people with healthy and unhealthy dietary patterns measured by five 

different dietary scoring systems that focus on nutrients, and nutrient-rich foods (rather than 

food (group)-based scores). Our findings suggest that the urinary metabolic profile has 

utility as an objective measure to classify people according to their adherence with healthy 

dietary patterns in free-living populations.

The two most stable metabolites over the 3-week period in our data were urinary pantothenic 

acid and NMNA. The former is present in many foods mostly as a coenzyme-A adduct or as 
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component of phosphopantetheine. NMNA concentrations in blood have previously been 

found to be highly stable in individuals over a year-long period46. Other metabolites, notably 

dimethylamine and trimethylamine-N-oxide (as well as the associated PFAs) were not stable 

over the 3-week period. This may be explained by the fact that consumption of fish tends to 

vary quite markedly in individuals as it is not a staple of most people’s diets47.

Strengths and limitations.

The design of the INTERMAP study in U.S. and U.K. is cross-sectional, but with a short-

term (3-week) follow-up for replication. We included 24-hr recall data for the day of, and the 

day before, the 24-hr urine collection and therefore may have underestimated excretion of 

nutrient-related metabolites occurring over a longer timescale. While 24-hr urine samples 

have the advantage over other methods (e.g. spot or overnight samples) in that they capture 

metabolic process information over an entire day, their collection is less practicable. 

Nonetheless, there are promising data to suggest that less burdersome methods may also be 

reflective of daily nutrient intakes17,48,49, including kinetic studies on timed excretions of 

specific metabolites33,50. 1H-NMR spectroscopy, while less sensitive than mass 

spectrometry, is exceptionally reproducible for measuring complex mixtures of metabolites 

in biofluids51–53 and detects abundant metabolites with high dynamic ranges that relate to a 

variety of metabolic pathways54. While we reproduced our findings (including adjustment 

for BMI and physical activity, see Supplementary Discussion and Supplementary Figure 7) 

and assessed metabolite stability, these data cannot be used to define a dietary score based 

on urine measurements alone due to the cross-sectional design. Any such endeavour should 

be validated in a controlled clinical trial (see Supplementary Discussion).

We recommend that our approach based on urinary spectroscopic data should be used 

alongside conventional dietary measurements to add functional information and reflect both 

short- and long-term dietary exposures. A standalone data visualization software program 

(NutriomeXplorer) allows deep exploration of the associations between nutrients and 

metabolites and is supplied as a readily accessible resource for further direct interrogation of 

our data beyond the associations reported here (Supplementary Figures 8–15). This work 

may lead to testing new biomarkers or biomarker profiles for intake of nutrients and to 

define functional nutritional phenotypes. We are currently at an early stage of this process 

and what is now needed is long-term follow-up studies to identify patterns of metabolites 

(metabotypes) that relate to chronic disease. In turn that knowledge may translate into new 

understanding of the biological pathways that characterize the transition from a healthy to 

unhealthy metabolic phenotype and hence give entry points for prevention and early 

intervention.

METHODS

INTERMAP study.

The international study of macro- and micronutrients and blood pressure (INTERMAP) was 

established to investigate dietary and other factors associated with blood pressure21. As well 

as eight blood pressure measurements, data obtained include four multi-pass 24-hr dietary 

recalls22, measurements of height and weight, questionnaire information on medical history, 
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medication use and lifestyle, and two timed 24-hr urine collections for each of 4,680 men 

and women aged 40–59 from 17 field centers in four countries (Japan, People’s Republic of 

China, United Kingdom and United States of America).

Here we analyse data from the eight population samples from the U.S.A., comprising 2,195 

participants. A total of 2,164 U.S. participants had complete dietary data as well as 1H-NMR 

data from the two 24-hr urine samples (Extended Data Figure 3). The first and third dietary 

recalls relate to the 24-hr period preceeding the two urine collections, while the second and 

fourth dietary recalls relate to the same 24-hr windows as the urine collections, obtained on 

average three weeks apart. We used the dietary recall data averaged over the first and second 

and the third and fourth 24-hr recalls to capture urinary excretions occurring within 24–48 

hours of intake.

NMR spectroscopy.

High resolution 600 MHz 1H-NMR spectroscopy of urine samples from the 2,164 U.S. 

participants with complete data were obtained using a previously published protocol55. Free 

Induction Decays were Fourier transformed, referenced to an internal standard 

(Trimethylsilyl propionate, TSP), baseline corrected, and phase corrected using in-house 

software implemented in Matlab (R2014a, The Mathworks, Natick, MA, USA). Spectral 

regions containing water and urea (δ 4.5 to δ 6.4), TSP (δ −0.2 to δ 0.2), δ 0.2 to δ 0.5, δ 
−4.5 to δ −0.2 and δ 9.5 to δ 15.5 were removed; the remaining variables were binned using 

bin widths of 0.001 ppm resulting in 7,100 spectral variables and normalized using 

probabilistic quotient normalization56 to account for differences in dilution.

Metabolic outliers were excluded from the data set based on the Hotelling’s T2 statistic on 

the scores of Principal Component Analysis. The metabolic outliers (n = 132) were defined 

as participants whose scores, for either urine collection, mapped outside the Hotelling’s T2 

ellipse with 95% confidence intervals (CI95)9. This left data on 2,032 U.S. individuals 

(Extended Data Figure 3). Extended Data Figure 1 shows a representative 1H-NMR 

spectrum of human urine with specific identified peaks labelled.

Subset Optimization by Reference Matching57 (STORM) and in-house databases were used 

to identify unknown signals. Confirmation of unknown signals was performed using a 

combination of a standard 1D 1H-NMR pulse sequence with water peak pre-saturation 

(noesypresat), 2D J-Resolved (JRES), 2D 1H-13C Hetero-nuclear Single Quantum 

Coherence (HSQC), 1H-1H Total Correlation Spectroscopy (TOCSY) and mass 

spectrometry experiments23. All NMR experiments were acquired using an AVANCE III 

Bruker spectrometer, operating at 600.29 MHz for 1H and equipped with a 5 mm, TCI, Z-

gradient CryoProbe.

Inclusion criteria.

In order to assess the dietary data quality and identify under- and over-reporters, two 

commonly used methods58 were combined. The first method was to calculate the ratio 

between the expected protein intake based on urinary urea excretion and the protein intake 

calculated from dietary records, and the second was to calculate the ratio between the 

expected energy intake (based on gender, weight and physical activity) and the energy intake 
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calculated from dietary records. For the first method (urea), the fraction of nitrogen in urea 

was calculated using the monoisotopic mass of each atom and multiplied by the excretion of 

urea (g/day) which yields the excretion of urea-nitrogen. Next, the total non-urea nitrogen 

was calculated59 by multiplying the weight (in kg) by 0.031. The sum of the urea-nitrogen 

and non-urea-nitrogen was divided by 0.1786, the estimated fraction of nitrogen in crude 

protein60. For the second method (energy), the expected energy intake was calculated using 

the Goldberg equation61, which utilizes Schofield’s equation62 to calculate the basal 

metabolic rate for men and women separately. A value of 1.3 was used for the physical 

activity level, which corresponds to the majority of the participants having seated work61. 

The ratios between the reported and estimated protein intake and the reported and estimated 

energy intakes were mapped as a multivariate distribution and the participants (n=184) that 

mapped outside the CI95 were excluded from data analysis (Extended Data Figure 3). This 

left a total of 1,848 U.S. individuals for the data analysis (Supplementary Table 6).

Nutrients.

For each of the 1,848 U.S. included participants, intake data for 76 nutrients as well as 

measurements of four urinary cations (sodium, potassium, calcium and magnesium – as 

proxy for dietary intakes) were reported relative to energy intake (g or mg or μg per 

1000kcal), as a percentage of total energy intake (%) or in mmol/24-hr excretion, as 

appropriate. The nutrients were ordered in the data analysis based on sources of energy 

(mono-unsaturated fatty acids (MFAs), poly-unsaturated fatty acids (PFAs), saturated fatty 

acids (SFAs), trans-fatty acids (TFAs), alcohol, fibre, sugars and starch), dietary amino 

acids, and other compounds essential for metabolism (cholesterol, vitamins and related 

compounds, minerals and urinary measurements of four cations). The average (± s.d.) and 

median dietary intakes and urinary excretions of these variables for the U.S. INTERMAP 

population (n = 1,848) are tabulated in Supplementary Table 7.

We assessed the overall nutrient quality of the diet using five different dietary scoring 

systems. First, we used the Nutrient-Rich Foods 9.3 (NRF) index score36 to define groups of 

participants with different dietary patterns. The NRF 9.3 index score is highly correlated 

with the Healthy Eating Index, a measure of diet quality score established by the US Dietary 

Guidelines63. To calculate NRF 9.3 for total diet, we summed the percentage of daily values 

for nine nutrients to encourage (protein, dietary fibre, vitamins A, C and E, calcium, iron, 

potassium, and magnesium) and subtracted the sum of the percentage of maximum 

recommended values for three nutrients to limit (saturated fat, added sugar, and sodium) per 

100 kcal. A high NRF 9.3 index indicates a high-nutrient quality per 100 kcal of the dietary 

pattern. Second, we calculated a commonly used DASH score based on nutrients37. Last, we 

used three different scores from the Optimal Macro-Nutrient Intake Trial for Heart Health 

(OMNIHEART) that place greater importance on carbohydrates, MFAs or protein in the 

score relative to DASH38.

Statistical analyses.

Partial correlation between the intake of each of 80 nutrients and each of the 7,100 1H-NMR 

variables was performed, adjusted for age, gender and population sample, for two 24-hr 

recalls (second and fourth) and each urine sample separately. Q-values were calculated using 
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the Storey-Tibshirani False Discovery Rate64 (ST-FDR). To avoid false positive findings, we 

assessed a spectral variable to be significant if 1) the q-value was below 1%, 2) both adjacent 

spectral variables were also significant based on the q-value and 3) the sign of the partial 

correlation of the two adjacent variables was the same as for the sentinel variable26. For the 

purpose of reproducibility, we only report here associations that were found in both urine 

samples. Specifically, we noted all spectral variables that corresponded to the same 

metabolite and for each variable selected the least significant correlation across the two urine 

samples (to avoid reporting possible inflated values of a single variable). Then for each 

nutrient-metabolite association we chose the variable with the most significant correlation 

(often the top of a peak, which has the highest signal-to-noise, and a peak with the least 

overlap with peaks from other metabolites). This spectral variable was used for analyses 

going forward and to visualize the results as in Figure 2. The strength of association of a 

spectral variable is visualized using the Skyline projection (Si = −
βi
βi

log10qi), which is 

similar to a Manhattan plot, but with incorporation of the sign of the association. Here, βi is 

the regression coefficient of the ith variable and qi is its corresponding q-value.

Additional models include further adjustments for BMI and physical activity (defined as the 

number of hours of moderate-hard physical activity per day), in addition to age, sex and 

population sample; the variable significance was determined in the same manner as for the 

initial analyses.

As noted above, most associations of urinary metabolites with nutrients have the highest 

correlations at the peak apex – which is expected due to the highest signal-to-noise at the 

apex. However, whereas the association of urinary calcium and, to a lesser extent, urinary 

sodium with citrate was direct at the peak apex (r=0.32, q=5.42×10−41), it was inverse (r=

−0.33, q=1.11×10−44) on either side of the average position of the citrate peaks. The position 

of citrate peaks (see Extended Data Figure 1) varies depending on pH of the sample, but 

chemical shift variation (lower pH: higher frequency shift; higher pH: lower frequency shift) 

of citrate is not associated with calcium excretion (P=0.16). Boric acid was added to urine 

collection jars as bacteriostatic agent during sample collection, and borate forms complexes 

with diols such as citrate. The citrate-borate complex has chemical shifts similar to citrate52, 

therefore curve fitting was applied to the citrate and citrate-borate peaks to get a measure of 

the total urinary citrate. The citrate-borate complex, like citrate itself, is an effective 

chelating agent for calcium and other divalent cations. We obtained the P-value for the 

partial correlation between total urinary citrate and urinary calcium (and urinary sodium), 

ranked this alongside the P-value/q-value pairs from the initial analyses on the 7,100 1H-

NMR variables, and inferred a q-value from linear interpolation across the closest P-value 

and its two neighbours among the the 7,100 1H-NMR variables.

To assess the reproducibility of nutrients and metabolites over time both intra-class 

correlations (ICCs) and partial ICCs (adjusted for age, sex and population sample) were 

calculated. ICCs were calculated as r = V M − MV
V M + p − 1 MV  , where p is the number of repeated 

measurements (in this study p=2: two dietary recalls and two urine collections), VM the 

variance of mean across repeated measurements multiplied by p–1, and MV the mean of the 
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variance across repeated measurements multiplied by p–1. The P-value is calculated using 

the F-value for the ICC (calculated as the ratio between VM and MV) with degrees of 

freedom df1 = n − 1 and df2 = n p − 1  . The partial ICC (pICC) was calculated using the 

above equation where the data (X , n samples and p=2 columns) were adjusted for covariates 

age, sex and population sample before calculating VM and MV. First, X and the covariate 

matrix (C ) were first mean-centered (X and C ) followed by adjusting the data in column j

of X using Xj = Xj − C CTC
−1

CTXj + 1
n ∑i = 1

n Xij (X is mapped back to the original mean 

in case the means of the original data were different).

We used a Monte-Carlo Cross-Validated (MCCV) Projections to Latent Structures (PLS) 

model39 to predict healthy and unhealthy dietary patterns in participants using the urinary 

metabolites as predictors. Specifically, we built two sets of models for each of the five 

dietary scores. First, we grouped the first and second urine collections for the U.S. data and 

calculated 1,000 models. In each model the data (both urine samples) of 20% of participants 

was put aside (test set) and a (training) model build on the remaining 80% of the data. The 

different test sets were then predicted using the different training models to obtain measure 

of how well the model can predict unknown (left out) data. These models were then also 

applied to the INTERMAP U.K. population data as external validation set. Second, we built 

a model on the first urine collection only and predicted the second urine collection of the 

U.S. participants to determine how well individual urinary metabolite profiles (46 

metabolites) of the first urine collections could predict the second time-point for each 

individual. The metabolite data used as input for the MCCV-PLS model was auto-scaled (the 

data for each metabolite was centered around the mean and then divided by the standard 

deviation) and for each model the optimal number of components was optimized using 

double-cross validation.

Metabolic reaction network.

The MetaboNetworks software35 provides a bioinformatic reconstruction of the pathway 

relationship observed in a real system, but constrained by the formalism of classical (e.g. 

Kyoto Encyclopedia of Genes and Genomes65 (KEGG)) representation. We used 

MetaboNetworks to build a custom metabolic reaction network database that includes 

reactions occurring in the human supra-organism with inclusion of those from different 

microbial species that are present in the gastrointestinal tract. For the INTERMAP study no 

microbiome data are available, therefore we included 3,204 bacterial species from the phyla 

actinobacteria, bacteroidetes, cyanobacteria, firmicutes, fusobacteria, proteobacteria, 

tenericutes and verrucobacteria, 105 fungal species from the phyla ascomycetes and 

basidomycetes, and 35 archaeal species from the phyla euryarchaeota and thaumarchaeota. 

These phyla make up 99% of the colonies commonly found in the human gut from 

bacteria66,67, fungi68 and archaea68,69. The constructed database considers that two 

metabolites are associated with each other if a biochemical reaction entry in KEGG indicates 

that they are a main reactant pair and the reaction is either mediated by an enzyme linked to 

Homo sapiens genes, an enzyme linked to a microbial gene (from a total of 3,344 species) or 

it is part of a spontaneous process. The network consists of boxes (with text or without) that 

are the metabolites (nodes) and each line (edge) connecting two nodes signifies a 
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biochemical reaction where one metabolite is the substrate and the other the product (or vice 
versa). The network is superimposed onto a coloured map where the background shading 

indicates different pathways, based on closest affinity classification26. Metabolites found 

associated with one or more nutrients are visualized as a grey node. Compounds that connect 

these metabolites via the shortest paths in the database are represented either as white boxes 

with abbreviations/names (>2 associated reactions) or a white square (intermediate 

metabolite, 2 reactions). Supplementary Table 4 lists the abbreviations and full/common 

names for all named metabolites in the network.

From the global metabolic reaction network, we extracted subgraphs that represent specific 

parts of metabolism. These subgraphs are further annotated to either display the Homo 
sapiens genes and enzymes associated with reactions or to indicate the reactions that occur 

due to the microbiota and list how many species in the database have the enzymes to mediate 

each reaction.

Assessment of similarity.

Originating in plant science, the Jaccard index, originally termed “coefficient de 
communauté”70, can be used to investigate the similarity between two sets, say A and B. It is 

defined as the intersection of A and B divided by the union of A and B 

(J A, B = A ∩ B
A ∪ B ∀A ≠ 0,   B ≠ 0 ). Therefore, the Jaccard index always lies between 0 

(completely dissimilar) and 1 (identical). The Jaccard distance is defined as 1 – J and can be 

used as input for e.g. Hierarchical Cluster Analysis (HCA). The Jaccard index is not useful 

for our purposes, because in human biology there is not merely a presence or absence of 

metabolites in a biological system, but some may be significantly associated with an 

outcome with a direction of association (direct, inverse). Therefore, we propose a new metric 

which penalizes converse features, the Adjusted Coefficient of Commonality (ACC), to 

assess the similarity between metabolic profiles of nutrients (ACC A, B = A ∩ B − A ∩ B−
A ∪ B  ). 

In essence the ACC simply is the similarity minus the dissimilarity of “charged binary sets” 

(see Supplementary Materials). We propose to use this version as we are not only looking at 

statistical significance, but also at the sign of the association. Metabolites can be associated 

with nutrients in three ways: −1 (inverse and significant), 0 (not significant) or +1 (positive 

and significant). The ACC distance (d = 1 − ACC ) was used as clustering distance for HCA 

to identify clusters of nutrients based on their metabolic profile. The mathematical proof of 

the validity of the ACC distance, and a visual description (Supplementary Figure 16), are 

given in the Supplementary Materials.

The CI95 of the ACC was estimated by resampling the data. First, one charged set is sampled 

with replacement 1,000 times while the second charged set is kept constant. This same 

procedure is applied vice versa by keeping constant the first charged set and resampling the 

second. The resampling was performed using bootstrapping where the probability of 

associations (−1, 0 ,1) was weighted to reflect the observed proportion of these associations 

in the data.
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Assessment of optimal number of clusters.

We have used the modularity71,72 to determine the optimal number of clusters based on the 

HCA dendrogram using average linkage. The modularity is a trade-off between the number 

of links within a cluster and the number of links from this cluster to other clusters. The 

optimal modularity is the one that maximizes the difference between the two terms73. The 

modularity is defined as ∑k = 1
n ak

ng
−

∑∀g ∈ CkDg
2ng

2
 , where Mn is the modularity for n 

clusters, n is the number of clusters, ak is the number of links in cluster k, g is a vertex, ng is 

the number of vertices in the network, Ck is cluster k and Dg is the degree of vertex g. This 

definition of the modularity depends on a threshold for whether there is a link between two 

vertices or not. When Dg is replaced with the sum of all links of vertex g, and ak is replaced 

by the sum of all links in cluster k, we do not need a threshold as the weight of a link 

determines the overall strength. The (weighted) modularity was compared against 1,000 

random networks of the same degree distribution74 using a resampling scheme of the data 

distribution, and the optimal modularity was defined as the maximum value for the 

modularity that was also higher than all random alternatives, as random networks have non-

zero values for the modularity71.

NutriomeXplorer.

The NutriomeXplorer can be obtained from different public repositories (Figshare: https://

doi.org/10.35092/yhjc.12181938; Box: https://imperialcollegelondon.box.com/s/

f1in5lsnoh1hej5b8bvqr14tt7uoaq2v) for Windows (35.4MB executable), Mac (37.0MB app) 

and Linux (42.7MB executable). It was tested on Windows 7, Windows 10 and MacOS 

Mojave (10.14.5) desktop systems. The basic layout of the NutriomeXplorer is an alternative 

visualization of the heatmap representation in Figure 2, where all associations are shown as 

a bipartite graph (Supplementary Figure 17). The NutriomeXplorer features a toolbar with 

buttons for each metabolic and nutrient cluster that were identified from Figure 2, two 

dropdown menus with each individual urinary metabolite and nutrient, and a reset button to 

return to the bipartite graph. Selecting a cluster or individual variable (urinary metabolite or 

nutrient) brings up a hierarchical tripartite graph for that variable (some examples are given 

in Supplementary Figures 8–15). The question mark button brings up a help screen that 

explains the hierarchical tripartite graph and its interpretation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the bidirectional metabolic modelling approach.
The metabotype, influenced by both the host genome and the microbiome, can be used as an 

objective measure to investigate the inter-relationship between diet and health against a 

background of age, sex and genetic susceptibility. Key: I, direct associations between self-

reported dietary records and health outcomes; II, nutrient analysis based on objectively 

measured biomarkers (urinary metabotype) rather than relying only on subjective 

information such as food frequency questionaires; III, metabolic signatures of health 

outcomes; IV, proposed bidirectional metabolic modelling approach using the urinary 
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excretory metabolome (containing host and microbial genome information) as a vehicle to 

relate nutrient intakes from multiple multi-pass 24-hr dietary recalls to health outcomes.
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Figure 2. Biclustered heatmap of partial correlations between nutrient intakes and urinary 
metabolites.
Nutrient intakes (y-axis) from 24-hr dietary recall data were correlated with urine samples 

from the same 24-hr period. Correlations for a given identified metabolite (x-axis) are shown 

only if they were significant in both the first and second urine samples in the U.S. 

INTERMAP cohort (n=1,848), adjusted for age, gender and population sample. The least 

significant correlation across the two samples is given, and P-values were adjusted for 

multiple testing using the False Discovery Rate (FDR) controlled at 1%. All nutrients with 

any association with a 1H-NMR spectral variable (at FDR<0.01) are included here (see 
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Supplementary Figure 1). (See also Supplementary Table 1 which lists all nutrients 

associated with each identified metabolite and Supplementary Table 2 which lists all 

identified metabolites associated with each nutrient; additionally, these data can be 

interactively visualized using the NutriomeXplorer software). The nutrients are clustered 

based on the similarity of their metabolic signatures and urinary metabolites are clustered 

based on their auto-correlations. The optimal number of clusters for each was assessed using 

the maximal modularity of the clustering that is higher than the modularity of 1,000 

randomly rewired networks. Horizontal and vertical black lines in the heatmap indicate the 

clusters from the hierarchical clustering with the clusters labelled in colour. Key: M1–9 – 

metabolite clusters 1–9; N1–9 – nutrient clusters 1–9. Abbreviations: ACC – adjusted 

coefficient of commonality; 1H-NMR – proton Nuclear Magnetic Resonance spectroscopy; 

MFA – monounsaturated fatty acid; LC – long-chain; PFA – polyunsaturated fatty acid; SFA 

– saturated fatty acid; TFA – trans-fatty acid; Vit – vitamin. Chemical elements are 

abbreviated by their element symbol and amino acids by their 3-letter abbreviations.
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Figure 3. (Partial) intra-class correlations (ICCs) across all data.
(A) Partial ICCs (and 95% confidence intervals, CI95) for the nutrients ordered based on the 

clustering from Figure 2. The horizontal line indicates the 75th percentile of partial ICCs of 

the 7,100 variables from the 1H-NMR data. (B) Partial ICCs (and CI95) for the urinary 

metabolites ordered based on the clustering from Figure 2. (C, D) Cumulative distribution 

function (CDF) of partial ICCs of the 7,100 variables from the 1H-NMR data for 

comparison, with the grey dotted line indicating the 75th percentile. (E) Distribution of ICCs 

(z-scores by means of the Fisher transformation) of the nutrient and urinary data of each 
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participant (n=1,848). ICCs of urinary data are significantly higher than ICCs from nutrients 

(t=7.78, P=1.23×10−14). (F) Population-wide ICCs of clusters from Figure 2 represented as 

z-scores showing the median ICC z-score and CI95 of each cluster. Variables in clusters with 

confidence intervals that include 0 are not considered reproducible across the two 

measurements, 3 weeks apart, in the population (n=1,848). Key: M1–9 –metabolite clusters 

1–9; N1–9 – nutrient clusters 1–9.
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Figure 4. Subgraphs from three metabolic pathways alongside partial correlations between 
metabolites.
The subgraphs were extracted from the multicompartmental metabolic reaction network 

(Extended Data Figure 2). Grey nodes indicate metabolites associated with one or more of 

the nutrients and white nodes are intermediate metabolites. (A, B) Vitamin B3 metabolism. 

(C, D) Metabolic energy from amino acids alanine and glutamine to the tricarboxylic acid 

(TCA) cycle. (E, F) Gut microbial metabolites and 2-furoylglycine. (A, C, E) Lines indicate 

reactions; those mediated by Homo sapiens enzymes are indicated by the enzyme codes and 

gene names in purple boxes, while gut microbial reactions are shown with green lines 

(reactions that are only microbial are shown with green numbers indicating the number of 

microbial species with the gene/enzyme to mediate the reaction). (B, D, F) Circular graphs 

where the lines indicate correlations between urinary metabolites and the colour (red: 

positive, blue: inverse) and thickness of the line indicate the magnitude of the correlation. 

Abbreviations: 2PY – N-methyl-2-pyridone-5-carboxamide, Ac – acetate, Gln – glutamine, 

Glu – glutamate, NMe – N-methyl, NMNA – N-methylnicotinate, NMND – N-

methylnicotinamide, OH – hydroxy, Succ – succinyl, PAG – phenylacetylglutamine, Ph – 

phenyl, Tyr – tyrosine.
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Table 1.
Model statistics for classification of healthy and unhealthy dietary patterns in the U.K. 
population using the U.S. data.

The top and bottom quartiles of the Nutrient-Rich Foods 9.3 (NRF) index, DASH-nutrient, OMNIHEART-

protein, OMNIHEART-carbohydrate and OMNIHEART-MFA scores for the U.S. population were used to 

define healthy and unhealthy dietary patterns in this population. The same cut-offs for the U.S. population 

were applied to the U.K. population. The 46 metabolites identified here were used to classify the dietary 

patterns in the U.S. data, from both urine collections combined, using a Monte-Carlo Cross-Validated 

(MCCV) Projections to Latent Structures model. Across the 1,000 MCCV models the U.S. data were used to 

classify diet patterns for each individual when they were not part of the training data set (based on an 80:20 

split) to obtain unbiased estimates. The full U.S. model was used to classify the U.K. population. The cut-offs 

for top and bottom fifths of the U.S. population were used to split the U.K. data prior to data analysis.

Training model Test set Validation set

Data U.S. model combined U.S. 1st urine U.S. 2nd urine U.K. 1st urine U.K. 2nd urine

Nutrient Rich Food index

Top quarter (n) a 924 462 462 81 81

Bottom quarter (n) a 924 462 462 110 110

R2
Y 

b 0.43

Q2
Y 

b 0.37 0.39

AUROC 
b 0.83 0.84 0.84 0.83

TPR 
b 0.75 0.77 0.79 0.81

TNR 
b 0.74 0.75 0.68 0.69

Accuracy 
b 74.4% 75.9% 72.8% 74.3%

DASH-nutrient score

Top quarter (n) a 942 471 471 179 179

Bottom quarter (n) a 1448 724 724 100 100

R2
Y 

b 0.29

Q2
Y 

b 0.26 0.25

AUROC 
b 0.81 0.80 0.66 0.70

TPR 
b 0.77 0.73 0.64 0.68

TNR 
b 0.69 0.70 0.59 0.67

Accuracy 
b 72.1% 71.4% 62.0% 67.7%

OMNIHEART-carbohydrate score
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Training model Test set Validation set

Data U.S. model combined U.S. 1st urine U.S. 2nd urine U.K. 1st urine U.K. 2nd urine

Top quarter (n) a 1026 513 513 164 164

Bottom quarter (n) a 938 469 469 75 75

R2
Y 

b 0.33

Q2
Y 

b 0.29 0.29

AUROC 
b 0.79 0.81 0.72 0.75

TPR 
b 0.73 0.74 0.66 0.69

TNR 
b 0.69 0.70 0.64 0.73

Accuracy 
b 71.3% 72.4% 65.7% 70.3%

OMNIHEART-MFA score

Top quarter (n) a 942 471 471 177 177

Bottom quarter (n) a 1308 654 654 99 99

R2
Y 

b 0.32

Q2
Y 

b 0.28 0.29

AUROC 
b 0.82 0.82 0.69 0.74

TPR 
b 0.76 0.76 0.65 0.67

TNR 
b 0.70 0.72 0.64 0.70

Accuracy 
b 72.9% 74.1% 64.5% 68.1%

OMNIHEART-protein score

Top quarter (n) a 1078 539 539 190 190

Bottom quarter (n) a 1112 556 556 73 73

R2
Y 

b 0.32

Q2
Y 

b 0.27 0.28

AUROC 
b 0.81 0.81 0.71 0.74

TPR 
b 0.75 0.74 0.66 0.67

TNR 
b 0.71 0.73 0.64 0.71

Accuracy 
b 73.2% 73.2% 65.4% 68.1%

a
The cut-offs for the bottom and top quartiles for the U.S. population were: 28.35 and 46.76 (for NRF), 1.0 and 3.0 (DASH-nutrient), 0.5 and 3.0 

(OMNIHEART-carbohydrate), 1.0 and 3.0 (OMNIHEART-MFA), 0.5 and 2.5 (OMNIHEART-protein), respectively.

b
R2Y: goodness of fit (training data); Q2Y: goodness of prediction (test set data); AUROC: area-under-receiver-operator-curve; TPR: true positive 

rate, defined as the number of participants correctly predicted as having a healthy dietary pattern based on their urinary metabolites divided by the 
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total number of participants with a dietary score in the top quarter; TNR: true negative rate, defined as the number of participants correctly 
predicted as having an unhealthy dietary pattern based on their urinary metabolites divided by the total number of participants with a dietary score 
in the bottom quarter; accuracy is calculated as number of participants correctly predicted as having healthy or unhealthy dietary patterns divided 
by the total number of participants.
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