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Abstract

Latent growth models (LGMs) are an application of structural equation modeling and frequently 

used in developmental and clinical research to analyze change over time in longitudinal outcomes. 

Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge 

or may produce biased estimates in complex LGMs especially in studies with modest samples. 

Bayesian estimation is a logical alternative to ML for LGMs, but there is a lack of research 

providing guidance on when Bayesian estimation may be preferable to ML or vice versa. This 

study compared the performance of Bayesian versus ML estimators for LGMs by evaluating their 

accuracy via Monte Carlo (MC) simulations. For the MC study, longitudinal data sets were 

generated and estimated using LGM via both ML and Bayesian estimation with three different 

priors, and parameter recovery across the two estimators was evaluated to determine their relative 

performance. The findings suggest that ML estimation is a reasonable choice for most LGMs, 

unless it fails to converge, which can occur with limiting data situations (i.e., just a few time 

points, no covariate or outcome, modest sample sizes). When models do not converge using ML, 

we recommend Bayesian estimation with one caveat that the influence of the priors on estimation 

may have to be carefully examined, per recent recommendations on Bayesian modeling for 

applied researchers.
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Latent growth models (LGMs; McArdle, 1986; Meredith & Tisak, 1990) are a longitudinal 

analysis approach within structural equation modeling (SEM) and have been widely utilized 

in developmental and clinical research to model change over time in variables of interest, 
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including biological, behavioral, psychosocial, and health outcomes. Maximum likelihood 

(ML) estimation is the most commonly utilized approach for estimating LGMs in both 

methodological research as well as substantive applications (McArdle & Epstein, 1987; 

Willett & Sayer, 1994). Although ML generally performs well in many statistical models, 

when outcome variables are categorical and/or when there are many (e.g., more than 5 or 6) 

latent variables, the high number of data dimensions involved in estimation can make ML 

computationally cumbersome or even impossible (Kim et al., 2013; Muthén & Asparouhov, 

2012). In developmental and clinical research, latent variable models frequently incorporate 

binary or categorical outcome variables predicted by the latent growth factors. For example, 

participants in a smoking cessation study can be assessed for their rate of change in cigarette 

cravings post their quit, which can be used to predict whether the participant would be 

abstinent or relapsed at a later time (i.e., a binary outcome variable of latent growth factors). 

The inclusion of such an outcome variable is clinically meaningful, since it permits the study 

of mediational effects, such as growth factors that mediate the effect of a treatment (i.e., 

specified as a covariate of growth factors) on an outcome (e.g., abstinence vs. relapse) in a 

clinical trial. Using ML to estimate LGMs with categorical outcomes requires numerical 

integration,1 which can be computationally burdensome. Parameter estimation using 

Bayesian approaches is an alternative to ML estimation for LGMs that are computationally 

demanding (e.g., those with categorical outcomes) or that fail to converge. The Bayesian 

approaches have drawn increasing attention (Depaoli, 2013, 2014; Kaplan & Depaoli, 2012; 

Kim et al., 2013; Lee & Song, 2004; Muthén & Asparouhov, 2012) and are now available in 

open source programs, such as R (R Core Team, 2019) and WinBUGS (D. J. Lunn et al., 

2000), as well as commercial statistical software packages such as Mplus (Muthén & 

Muthén, 1998–2019) and Stata (StataCorp, 1985–2019).

The present article focuses on the estimation methods for LGM parameters and we use the 

phrases “ML estimation” and “Bayesian estimation” to describe the parameter estimation 

through ML-based versus Bayesian approaches. It is important to note that the Bayesian 

approach to statistical inference is philosophically different from frequentist statistical 

inference for which ML estimation is commonly used. Bayesian approaches are based on the 

principle of treating all unknowns (e.g., parameters) as random variables, and it uses the 

probability distribution of the possible values to quantify uncertainty (Gelman et al., 2004). 

In contrast, ML estimation is based on the frequentist principle that a true population value 

exists for each parameter, and that uncertainty is due to variability of samples around the 

true value. In Bayesian models, a prior distribution is specified for each of the model 

parameters, which reflects existing knowledge (or lack of knowledge) regarding the 

probability of the possible values. The ability to specify a prior distribution is seen as an 

advantage of a Bayesian approach because the uncertainty surrounding each parameter is 

taken into consideration. In terms of parameter estimation, Bayesian estimation using 

noninformative priors generally produces estimates that are similar to those obtained under 

ML estimation (Browne & Draper, 2006; Muthén & Asparouhov, 2012) because the amount 

of information introduced by noninformative priors is quite small, compared to the observed 

1.Categorical (dichotomous or ordinal) indicator variables in latent growth models also activate numerical integration in maximum 
likelihood. However, we do not take this case into account in the current study. Throughout the simulation study, the indicator 
variables for the growth factors are continuous with normal distributions.
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data. This will typically occur when parametric models with a modest number of parameters 

are fitted to data (Browne & Draper, 2006). Moreover, a carefully selected prior can 

facilitate estimation of an LGM that would not be possible under ML. In general, the more 

informative the priors are, the better the recovery of parameters. Especially in small samples 

(N ≤ 50), the specification of appropriate prior distributions becomes more important in 

Bayesian estimation (McNeish, 2016). Most of the existing methodological work on the 

effect of prior distributions for LGM parameters have been for small samples (McNeish, 

2016) or growth mixture models with a small mixture class (Depaoli, 2013, 2014). Another 

recent study focused on parameter recovery and bias for multilevel SEM under the 

conditions of diffuse, weakly informative, and informative priors (Depaoli & Clifton, 2015).

In the present study, we focus on LGMs with and without a binary outcome variable 

predicted by the latent growth factors to provide practical guidance for applied users in their 

analysis of LGMs. We focus mainly on noninformative priors because obtaining informative 

priors is often neither feasible nor desirable, especially for logistic models of binary 

outcomes (Depaoli & Clifton, 2015) and could potentially produce bias in the estimated 

parameters if they are wrong (e.g., Depaoli, 2014). However, we also study the impact of 

priors on parameter estimation for the purpose of comparative performance evaluation. 

Compared to years past when the intricate programming and expensive computation burden 

discouraged researchers from using the Bayesian approaches (Zhang et al., 2007), Bayesian 

model estimation is now accessible for applied users (Depaoli & van de Schoot, 2017) and 

may be useful for estimating models that are computationally demanding and/or in situations 

where ML estimation fails to converge.

The objective of the present study is to compare the relative performance of Bayesian versus 

ML estimation of LGMs by evaluating the accuracy of their estimates via Monte Carlo (MC) 

simulations. This study addresses an important gap in the literature by exploring and 

identifying the circumstances under which ML or Bayesian estimation may be preferred for 

LGMs, particularly when the growth factors are used to predict a binary outcome, a common 

scenario in developmental and clinical research. There is no study to date on the relative 

performance of Bayesian versus ML estimation in LGMs in the presence of a binary 

outcome variable. In this study, simulation factors and levels were generated to emulate 

various kinds of longitudinal data scenarios that are common in real studies, including 

number of measurement occasions, number of participants, presence of a covariate for the 

growth factors, and missing data. Further details are provided in the MC Simulation section.

Latent Growth Model

An LGM can be used to model repeated measures of a variable of interest as a function of 

time and one or more covariates. A path diagram depicting a linear LGM with four 

measurement occasions y1 to y4 (indicator variables), a covariate X, and an outcome U is 

provided in Figure 1. For example, the four measurements y1 to y4 may be the severity of 

alcohol-related problems at ages 18, 19, 20, and 21 for college students as assessed by the 

Alcohol Use Disorders Identification Test (AUDIT; Saunders et al., 1993). The change over 

time in alcohol problems can be examined generally using two latent growth factors with a 

latent intercept representing the average of alcohol problems at age 18 and a latent slope 
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representing the average yearly change in alcohol problems (i.e., a linear model). A 

covariate X could be gender or depressive symptoms at age 18, and an outcome U could be 

postcollege salary (continuous) or graduation from college within 4 years (binary).

SEM-type models like LGM typically consist of two parts: (1) the measurement model and 

(2) the structural model. The measurement part of our example LGM is

y = τy + Λyη + ε (1)

where y is a vector of observed AUDIT scores, τy is a vector representing the intercept 

parameters of the measurement model (set to zero in a growth model), Λy is a matrix of 

growth factor loadings, η is a vector of growth factors (intercept and slope), and e is a vector 

of normally distributed measurement errors. The structural part of our example LGM is

η = α + ΓX + ζ (2)

where α is a vector of intercept parameters of the structural model, Γ is a matrix of 

coefficients that allows covariates X to predict growth factors η, and ζ is a vector of 

residuals. Continuous or categorical outcomes can be easily incorporated into a model, 

forming linear (for continuous outcomes) or logistic (for categorical outcomes) regressions 

within SEM. In the case of adding a binary (0 vs. 1) outcome U that is predicted by the 

intercept and slope, as in Figure 1, the equation for the logistic regression is

ln p
1 − p = β0 + β1η0 + β2η1 (3)

where p is the probability of endorsing 1 (Pr[U = 1]), and η0 and η1 are intercept and slope, 

respectively. For a more thorough model specification and examples of LGM, see Bollen and 

Curran (2006) or Grimm et al. (2017).

Missing data are quite common in longitudinal data analysis. Situations include when a new 

test measure or procedure is introduced midway through a study and is administered to only 

a subset of the participants, when a participant drops out of a study, or when follow-up 

assessments are missing by study design. In analyzing typical longitudinal data, a missing at 

random (MAR) mechanism is a reasonable assumption (Enders, 2010, 2011). Of the 

aforementioned reasons for missing data, missing data due to participant dropout would be 

most common, although dropout rates differ across fields. In a meta-analysis of clinical trials 

of antipsychotic drugs, dropout rates ranged from 28% to 55% (Kemmler et al., 2005). In 

Project INTEGRATE, which combined data from brief alcohol interventions for college 

students, nonparticipation rates ranged from 2% to 25% at 3–4 month follow-up and 6% to 

54% at 6 month follow-up (Mun et al., 2015). Therefore, in the current study, we specified 

30% missing data across all simulation conditions.

ML and Bayesian Estimation

The objective of ML estimation is to identify the most plausible values for model parameters 

given observed data. With categorical outcomes, it is necessary to integrate over the density 

of factors multiplied by the conditional distribution of the categorical outcomes, given the 
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factors. ML-based estimation approximates this integration by using a weighted sum over a 

set of integration points (i.e., quadrature nodes) that represents values of the latent variable 

(Muthén & Muthén, 2005). This numerical integration makes ML computationally 

demanding, with the computational load increasing as the number of observations and/or the 

number of dimensions (factors) increase.

In contrast to ML estimation, which produces point estimates with accompanying standard 

errors (representing sampling uncertainty), the Bayesian approach assumes that parameters 

are random in nature and produces full probability distributions of possible values of the 

parameter estimates, as seen in equation (4),

p θ y = p θ, y
p y = p y θ p θ

p y (4)

where the posterior distribution p(θ|y) is the probability of the parameters θ given the 

observed data y, p(θ, y) is the joint probability of θ and y, p(y) is the probability of the 

observed data y, p(y|θ) is the probability of the data y given the unknown parameters θ, and 

p(θ) is the prior probability of the parameters θ. Equation 4 is commonly known as Bayes’ 

theorem.

With the posterior distribution in hand, summaries of the distribution can be obtained, such 

as means, standard deviations, and confidence/credible intervals. In a Bayesian analysis, null 

hypothesis significance testing can be conducted using summary statistics derived from the 

posterior distribution. The mean of the posterior distribution can be written as:

θEAP y = ∫
−∞

∞

θp θ y dθ (5)

and is referred to as the expected a posteriori (EAP) estimate.

In the following simulation study, Bayesian estimation was conducted using the Gibbs 

sampling approach (Geman & Geman, 1984), a type of Markov chain Monte Carlo 

(MCMC) estimation, implemented in the Mplus software (Muthén & Muthén, 1998–2019). 

The convergence was assessed using the Gelman–Rubin convergence diagnostic (Gelman et 

al., 2004; Gelman & Rubin, 1992). Although a potential scale reduction (PSR) value of 1.1 

or less is widely considered as evidence of convergence (Gelman et al., 2004), we used 1.05 

as a more conservative convergence criterion for all parameters (Depaoli & van de Schoot, 

2017). We utilized noninformative priors, informative priors, and wrong priors, which we 

detail in the following section and in the Online Supplement.

The MC Simulation

We investigated the relative performance of two estimation methods for LGM: (a) ML via 

the expectation and maximization (Dempster, Laird, & Rubin, 1977) algorithm and (b) 

Bayesian estimation using EAP estimates with three different kinds of priors. The 

noninformative priors were applied to all simulation conditions, whereas informative priors 
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and wrong priors were applied to selected conditions. The procedures can be summarized as 

follows: (1) longitudinal data sets were generated according to each model setting; (2) for 

each generated data set, LGM was fit by the ML and Bayesian estimation methods; and (3) 

parameter recovery was evaluated and compared across the two estimation methods.

Study Design and Bayesian Prior Distributions

The sample sizes simulated in the present study were 100, 200, 500, 1,000, and 5,000. A 

sample size of 100 has been considered as a minimum in many simulation studies (e.g., Lee 

& Whittaker, 2018; Leite et al., 2012; Usami et al., 2017). The sample size condition of 

5,000 was considered for comparing the performances of the two estimation methods when 

ample data are present and the estimation should be stable. For each simulation condition, 

500 replications were generated.

Model specifications and data conditions were decided as follows. The first factor to 

consider was whether a binary outcome variable was included in the model as a dependent 

variable of growth factors, as illustrated in Figure 1. We evaluated two data conditions for 

the proportion of the binary variable (0 vs. 1): (a) 0: 60% vs. 1: 40% and (b) 0: 90% vs. 1: 

10%.2 The second factor considered was 3, 4, or 7 indicator variables, corresponding to the 

number of measurement occasions. The 3 and 4 indicator conditions can correspond to 

studies with a baseline assessment (0 months) and 2 or 3 follow-ups (e.g., 3 months, 6 

months, and 12 months), which are common longitudinal designs and frequently evaluated 

in simulation research. Past research in growth mixture models, an extension of LGM, has 

found an important relationship between the quality of estimation and the number of 

indicators. Thus, the seven-indicator condition was chosen to represent a large enough 

number of indicators to assure stable estimation. The third factor was the inclusion of a 

continuous covariate as a predictor of the growth factors in Figure 1. Not only is the 

inclusion of a covariate common for growth models, but also important for correct 

specification of growth models (Muthén, 2004). Throughout all the generated conditions, we 

assumed that 30% of all possible responses were missing across time. Since a typical 

missing data pattern in longitudinal analysis involves data becoming sparser over time, we 

generated the data to be approximately 10% missing at the first assessment and gradually 

becoming sparser over time with approximately 50% missing at the last assessment. This 

setting meets the MAR assumption because missing outcomes occur as a function of time.

Tables 1 and 2 provide parameter specifications, including growth factor means and 

variances,3 residual variances, and regression coefficients for selected conditions. All of the 

values were carefully selected based on previous LGM simulation research (e.g., Kim & 

Wilson, 2014; Lee & Whittaker, 2018; Leite et al. 2012; Liu et al., 2016; Usami et al., 2017). 

The time variable (i.e., slope factor loadings of the indicators) for all models (see Tables 3–

5) took on values of 0, 1, and 2 for three-indicator models and values of 0, 1, 2, and 3 for 

four-indicator models, and 0, 1, 2, 3, 4, 5, and 6 for seven-indicator models. In other words, 

2.A breakdown of 90% versus 10% or 80% versus 20% is quite common in clinical studies, such as long-term abstinence versus 
relapse in a smoking cessation study (Kim & Kim, 2012), pass or fail on a bar exam (Kim et al., 2013), or a suicide attempt in suicide-
related research (Jobes et al., 2017).
3.When a covariate is added to the model, they are intercepts and residual variances instead of means and variances, respectively.
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we assumed that observations occurred at equidistant time intervals with a constant linear 

rate of change over time in the LGMs.

The informative prior distributions specified for the parameters estimated in the models can 

be seen in the Online Supplement. Briefly, the parameters to be estimated in LGMs in the 

presence of both a binary outcome and a covariate are: (1) growth factor means, (2) their 

variances and (3) covariance, (4) regression coefficients regressing growth factors on the 

covariate, (5) residual variances of indicator variables, and (6) logistic regression 

coefficients linking growth factors to the binary outcome along with (7) the threshold 

estimate for the binary outcome variable. The prior distributions used for (1), (4), (6), and 

(7) were normal distributions; the priors for (2) and (5) utilized inverse gamma distributions; 

and the prior for (3) utilized the uniform distribution (Gelman, 2006; D. Lunn et al., 2012; 

van Erp et al., 2018). The mean hyperparameter for each prior was fixed at the 

corresponding parameter value, and the variance hyperparameter was fixed at 5% of the 

location parameter value.

For the noninformative priors, the same prior distributions as the informative priors 

described above were used with the exception of setting very large variances (i.e., 

noninformative; default in Mplus). In addition, the inverse Wishart distribution was used for 

the covariance structure of growth factors, instead of the inverse gamma and uniform 

distribution for the informative prior. For the wrong priors, the mean hyperparameter was 

increased by 3 and the variance hyperparameter was fixed at 50% of the location parameter 

value (Depaoli, 2014).

Data analysis

Data sets were generated according to the population model attributes and LGMs were fit to 

the data using the two estimation methods. The parameter recovery from the two estimation 

methods was examined across all conditions using three indices: mean bias (MB), averaged 

absolute bias (AAB; Kim et al., 2013), and root mean square error (RMSE). The MB of a 

parameter was calculated by assessing individual parameter recovery as follows:

MB = θk − θk (6)

where θk is the kth parameter value, and θ  is the averaged parameter estimate across all 

replications for the kth parameter. Due to the use of different estimation methods and 

different priors (in the case of Bayesian estimation), we also assessed the Cohen’s d effect 

size to provide a scaled estimate of bias for each parameter as follows:

d = θk − θk
s

(7)

where s is the standard deviation of all estimates for the kth parameter across replications. 

The AAB of a model was calculated by summing absolute values and dividing the sum by 

the number of estimated parameters within the model, which assesses overall discrepancy 

between true parameters and estimates:
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AAB = 1
p ∑

k = 1

p
θk − θk (8)

where p is the number of parameters estimated. The AAB of the present study is different 

from the MB in that AAB was calculated over all estimated parameters for a model. Using 

the same notations, the RMSE of a model was calculated as:

RMSE =
∑k = 1

p θk − θk
2

p
(9)

In a typical MC simulation study, the RMSE is calculated to assess the variability of a single 

parameter estimate across replications. In this study, it was calculated over multiple 

parameters using averaged estimates across 500 replications to assess the overall accuracy of 

parameter estimates of a model.

The MB, AAB, and RMSE should be close to zero if the averaged parameter estimates are 

close to the true parameter values. Cohen’s d should be much less than .8, which is 

considered to indicate a large effect size (Cohen, 1988). In the context of the present study, 

values greater than .8 correspond with a large discrepancy between the true parameter and 

the estimate (Depaoli, 2013) and suggest poor parameter recovery. Because there is no 

single “gold standard” index, we examined all four indices together to compare the relative 

performance of the ML and Bayesian estimation methods. The use of multiple indices in a 

complementary manner also helps to avoid idiosyncratic results based on a single index.

Simulation Results

For the Bayesian estimation in the present study, each and every generated replication 

converged based on the criterion of a PSR value of 1.05 or less. In the simulation, 300,000 

iterations were performed for each run of the MCMC algorithm. We used the last half of the 

iterations to calculate posterior means (i.e., EAP estimates), with the initial 150,000 samples 

considered as a burn-in phase (i.e., samples from the iterations prior to stabilization in 

MCMC sampling) and discarded. The MB, AAB, RMSE, and Cohen’s d indices were 

calculated based on the post burn-in iterations.

Tables 3, 4, and 5 provide the AABs and RMSEs under various simulation conditions 

showing the relative performance of ML and Bayesian estimation with noninformative 

priors. Tables 3 and 4 present the results with a binary outcome U, whereas Table 5 presents 

the results without a binary outcome. The difference between Tables 3 and 4 is the inclusion 

of a continuous covariate X. The results in Tables 3 and 4 indicate that overall, ML 

performed better than Bayesian estimation with noninformative priors regardless of whether 

a covariate or a binary outcome was included or not, except under some specific simulation 

conditions. For example, the Bayesian method showed better performance for the conditions 

of a 90/10% binary outcome, three indicators, and the sample size of 100. There were 

additional notable findings. First, the inclusion of a continuous covariate tended to improve 
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the quality of estimation, irrespective of whether a binary outcome was included or not. Not 

only was a covariate important in specifying LGM, but the overall quality of ML and 

Bayesian estimation also improved. Second, the performance of the estimators improved 

with more indicators and in large samples, which is expected. It has been shown that the 

number of indicators and the sample size are crucial for accurate estimation of growth 

models (Kim, 2012). Third, the ML method encountered non-convergence whereas the 

Bayesian method did not. Tables 3, 4, and 5 report non-convergence rates (NCRs) in ML, 

which were higher in models with a binary outcome with unbalanced proportions (0: 90%, 

1: 10% vs. 0: 60%, 1: 40%; see Tables 3 and 4) and in models without any covariate or 

binary outcome (see Table 5). Lastly, there was a mixed effect of having a binary outcome in 

the model on estimation: The parameter recovery from the converged models was better 

without a binary outcome (Table 5), but NCRs were also high without a binary outcome (see 

Table 5 vs. Tables 3 and 4). That is, the inclusion of a binary outcome helped the models to 

converge on one hand, but introduced some bias in estimation on the other hand.

To take a closer look at the recovery for each of the parameters, Tables 1 and 2 provide the 

MB estimates of model parameters from two models selected from the models presented in 

Tables 4 and 5. Tables 1 and 2 present the impact of choosing informative and wrong priors 

on Bayesian estimates. Also, the simulation conditions where Cohen’s d values exceeded .8 

are shown in bold. Table 1 shows the results across sample size conditions with 30% missing 

data, a covariate, four indicators, and a binary outcome (0: 90%, 1: 10%). Table 2 shows the 

results from models without a binary outcome.

The results in Tables 1 and 2 were overall quite similar. First, ML and Bayesian estimates 

with informative priors were overall good and generally performed better than Bayesian 

estimates with noninformative (i.e., default) or wrong priors. The performance of ML and 

Bayesian estimates with informative priors was quite similar. However, Bayesian estimates 

with informative priors were better than ML for parameter estimates corresponding to 

models with a binary outcome where sample sizes were modest (i.e., N = 100 and N = 200; 

see the bottom row block). Second, Bayesian estimation with noninformative priors (i.e., 

Mplus default priors) showed comparable results to ML and Bayesian estimation with 

informative priors in terms of growth factor means that are most important in LGMs and 

regression coefficients related with a covariate. However, for the estimation of growth factor 

variances and residual variances, ML and Bayesian estimates with informative priors 

consistently performed better than Bayesian estimates with Mplus default noninformative 

priors, and the difference was especially significant with modest sample size conditions N = 

100 and N = 200. Third, Bayesian estimation with wrong priors showed consistently poor 

parameter recovery across all sample size conditions. The variance estimates and logistic 

regression coefficients were not accurately recovered in any condition. However, for growth 

factor means and regression coefficients which are important in LGMs, parameter estimates 

were overall quite acceptable and became as good as ML and Bayesian estimates with 

informative priors with increased sample sizes (see the first and third row blocks in Tables 1 

and 2). Lastly, the overall estimation quality with a binary outcome (Table 1) was not very 

different from that without a binary outcome (Table 2). The difference in performance 

among the estimation options became negligible as sample size increased except for 

Bayesian estimates with wrong priors.
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Conclusion and Discussion

The present study focused on the relative parameter estimation performance of ML versus 

Bayesian estimation with different types of priors for various LGMs under different data 

conditions. LGMs are frequently applied in developmental and clinical research to model 

longitudinal outcomes and can be used to assess whether change over time in a variable can 

predict, or be predicted by, another variable. For example, whether smoking cessation 

treatment improves quality of life over time can be examined in an LGM with smoking 

cessation as a covariate predicting the rate of growth in quality of life, and subsequently, the 

growth factors may predict the abstinence from smoking. Traditional ML methods for 

estimating LGMs may fail in small to modest samples or when evaluating whether 

longitudinal trajectories (i.e., latent growth factors) predict a binary outcome. Bayesian 

estimation is increasingly seen as a logical alternative, especially in modest samples or 

limiting data conditions. However, there is a need for empirical evidence on their relative 

performance under various data situations, to guide applied researchers in their decisions. 

Therefore, we conducted a simulation study to examine whether there would be an 

advantage of Bayesian estimation over ML estimation under specific data circumstances and 

modeling scenarios.

The present simulation study produced several important findings. First, Bayesian estimation 

with diffuse priors converged consistently, whereas NCRs were high in ML especially in 

modest sample size conditions (Ns = 100, 200) with other limiting conditions (i.e., no 

covariate or outcome, three indicators). Second, of the converged models, ML and Bayesian 

approaches with three types of priors rather accurately estimated critical LGM parameters, 

such as growth factor means and regression coefficients, while Bayesian estimation with 

informative priors yielded slightly better recoveries than the others when sample sizes were 

modest. However, uncertainty parameters (variances) were poorly recovered by Bayesian 

estimation with wrong priors regardless of sample size. Third, when a binary outcome 

variable was included in an LGM, the estimation quality of the model deteriorated (see 

Tables 3 and 4 vs. Table 5). Especially in the modest sample size conditions (Ns = 100, 200), 

the parameter recovery of the logistic regression coefficients surrounding the outcome 

variable was poor.

Based on the simulation findings, we have some recommendations to applied researchers. In 

LGMs with or without a binary distal outcome, ML estimation is a reasonable choice 

regardless of modeling conditions. The ML approach performed well when compared to the 

Bayesian approach with three different types of priors under most simulated data conditions, 

although Bayesian estimation with informative priors was better for estimating the logistic 

regression coefficients when sample sizes were modest. When ML estimation fails to 

converge in challenging data conditions, we suggest using Bayesian estimation as an 

alternative to ML, such as small or modest sample sizes or small numbers of measurement 

occasions. In typical simulation studies, non-convergence may be overlooked because non-

converged data sets are omitted when determining parameter recovery. However, non-

convergence is a serious problem in applied research because a researcher has only one data 

set from which to base their inference. If ML fails to converge for some reason, Bayesian 

estimation with noninformative priors, which is accessible via Mplus, may be used as an 
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alternative to ML. Lastly, researchers are cautioned that when the sample size is modest 

(e.g., N = 100 or 200), neither ML nor Bayesian estimation satisfactorily recovered some of 

the LGM parameters. With a modest sample size (e.g., ≤ 200), Bayesian estimation may still 

be a viable alternative if one has correct informative priors as shown in our simulations. 

However, informative priors may not always be readily available, or the correct selection of 

priors can be difficult for applied researchers. The prior specification that we used for 

informative priors may provide a good starting point for similar LGMs. More studies 

providing guidance on informative priors for Bayesian estimation may be helpful.

Although the present study sheds some light on the relative performance of ML and 

Bayesian for LGMs, there are several limitations that could be addressed in future studies. 

First, our LGMs used continuous indicator variables for the growth factors. Thus, it would 

be valuable to evaluate the respective performance of ML versus Bayesian estimation in the 

presence of categorical indicator variables. Second, the Mplus default priors implemented as 

noninformative priors in the present study may not necessarily be regarded as appropriate 

noninformative priors in the wider Bayesian literature (Depaoli, 2013). For example, Mplus 

uses a uniform prior distribution for some of the variance parameters by default, which may 

be improper (van Erp et al., 2018). Nevertheless, we used Mplus default priors for Bayesian 

estimation because of its accessibility and usability, particularly for applied researchers. 

Finally, it would be valuable to examine whether Bayesian estimation produces reliable 

results compared to ML under more challenging data conditions, such as heavily skewed or 

low base rate data.

The ML approach has many desirable properties if the data assumption of multivariate 

normality holds. However, it can be computationally cumbersome or impossible to use ML 

in some models, especially with limiting data conditions such as categorical outcomes or 

small sample sizes. The present simulation findings indicate that Bayesian estimation using 

informative or noninformative priors in LGM can be a complimentary option to ML in 

applied data analysis, given the frequent instances of non-convergence and potentially poor 

performance, compared with Bayesian estimation. The empirical evidence provided from the 

current simulation study clarifies situations regarding when and why Bayesian estimation 

may be considered as a viable alternative to ML. The use of Bayesian statistics in applied 

research is on the rise (Depaoli & van de Schoot, 2017). The insights from the current study 

may help to generate more robust and reliable inferences about Bayesian analysis for clinical 

and developmental research that utilizes LGMs and its extensions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A linear latent growth model. y1 to y4 are four continuous indicator variables for measuring 

the intercept and slope. The covariate X and the binary outcome U are manifest (i.e., directly 

measured) variables in the model.
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Table 5.

Estimator performance results with no binary outcome.

Covariate Indicators Sample size

ML EAP

NCR (%) AAB RMSE AAB RMSE

No 3 100 35.2 .015 .016 .055 .058

200 12.8 .006 .007 .034 .034

500 1.6 .003 .003 .014 .014

1,000 0 .003 .003 .006 .006

5,000 0 .002 .002 .003 .003

4 100 5.6 .008 .009 .050 .063

200 0.4 .002 .002 .024 .030

500 0 .003 .003 .008 .009

1,000 0 .002 .002 .005 .005

5,000 0 .001 .001 .001 .001

7 100 0.8 .004 .005 .044 .056

200 0.2 .002 .003 .021 .026

500 0 .002 .002 .008 .011

1,000 0 .001 .002 .005 .007

5,000 0 .001 .001 .001 .001

Yes 3 100 38.4 .006 .008 .052 .066

200 15.2 .003 .004 .028 .034

500 1.6 .004 .004 .010 .013

1,000 0.2 .003 .004 .009 .011

5,000 0 .001 .001 .001 .002

4 100 5 .010 .013 .042 .059

200 0.4 .006 .007 .020 .028

500 0 .001 .002 .008 .010

1,000 0 .001 .001 .004 .006

5,000 0 .000 .001 .001 .002

7 100 1.2 .004 .007 .037 .055

200 0.2 .002 .003 .017 .026

500 0 .002 .002 .007 .009

1,000 0 .001 .002 .004 .005

5,000 0 .001 .001 .001 .002

Note. ML = maximum likelihood via EM algorithm; EM: expectation and maximization; EAP = Bayesian with diffuse priors (posterior means); 
NCR = non-convergence rate of the ML estimation; AAB: averaged absolute bias; RMSE: root mean square error. The AAB and RMSE estimates 
are from the converged models. Each and every generated replication of the Bayesian estimation converged based on the potential scale reduction 
criterion of 1.05 or less.
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