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Abstract

Objectives: We aimed to compare the performance of different regression modelling approaches 

for the prediction of heterogeneous treatment effects.

Study Design and Setting: We simulated trial samples (n=3,600; 80% power for a treatment 

odds ratio of 0.8) from a superpopulation (N=1.000.000) with 12 binary risk predictors, both 

without and with 6 true treatment interactions. We assessed predictions of treatment benefit for 

four regression models: a “risk model” (with a constant effect of treatment assignment) and three 

“effect models” (including interactions of risk predictors with treatment assignment). Three novel 

performance measures were evaluated: calibration-for-benefit (i.e. observed versus predicted risk 

difference in treated versus untreated), discrimination-for-benefit, and prediction error-for-benefit.

Results: The risk-modeling approach was well-calibrated for benefit while effect models were 

consistently overfit, even with doubled sample sizes. Penalized regression reduced miscalibration 

of the effect models considerably. In terms of discrimination and prediction error, the risk-

modeling approach was superior in the absence of true treatment effect interactions, while 

penalized regression was optimal in the presence of true treatment interactions.

Conclusion: A risk-modeling approach yields models consistently well-calibrated for benefit. 

Effect-modeling may improve discrimination-for-benefit in the presence of true interactions, but is 

prone to overfitting. Hence, effect models – including only plausible interactions – should be fitted 

using penalized regression.
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BACKGROUND

The main goal of predictive analyses of heterogeneous treatment effects is to develop models 

that can be used to predict which of two or more treatments will be better for a particular 

individual [1]. In prior work, we discuss two broad approaches to regression-based 

predictive heterogeneity of treatment effects (HTE) analysis: 1) outcome risk modeling (or 

“risk modeling”) and 2) treatment effect modeling (or “effect modeling”) [2]. Risk modeling 

is performed “blinded” to treatment assignment, where the treatment effect is examined 

across risk strata; treatment effect interactions with candidate relative effect modifiers are 

not explored. This conservative approach is designed to produce honest estimates of 

treatment effects within groups that differ by their risk of the outcome of interest and 

therefore by their risk difference (i.e. treatment effect on the clinically important absolute 

scale). Because risk is a mathematical determinant of treatment effect, it can be used to 

identify risk groups who differ greatly in their degree of benefit (particularly on the 

clinically important absolute scale) [3, 4]. Treatment effect modeling, on the other hand, is a 

more “aggressive” data-driven approach that seeks to explore and/or include potential 

relative effect modifiers within a predictive model. This approach has the potential to better 

segregate those patients who benefit from those who do not. Particularly when treatment is 

associated with some treatment-related harm or burden, these approaches may be useful in 

targeting treatment to those most likely to benefit.

WHAT IS NEW?

Key findings

• The risk-modeling approach was well-calibrated for benefit in contrast with 

effect models which were consistently miscalibrated (“overfit”).

• Lasso regression considerably reduced, but did not nullify benefit 

miscalibration of the effect models.

• In terms of discrimination and prediction error, the risk-modeling approach 

was superior in the absence, while penalized regression was optimal in the 

presence of true treatment interactions, respectively.

What this adds to what was known

• Effect models overestimate the heterogeneity of treatment effects 

considerably, even for large sample sizes.

• Penalized regression prevents overfitting of risk, but still suffers from 

overfitting of benefit even when the events per variable are high.

What is the implication, and what should change now

• Effect models, including treatment interactions, may lead to treatment 

mistargeting.

• We recommend the risk-model approach for the analysis of heterogeneity of 

treatment effects.
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• Effect models should only be considered when treatment interactions are 

plausible, and should always be fitted with penalized regression.

We performed simulations to compare the various approaches to predictive HTE analysis, 

and to illustrate and quantify some of the problems with overfitting for models used to 

predict benefit that are not widely appreciated. For risk modeling, we sought to illustrate 

problems that arise when an endogenous model is developed on the control arm only. While 

this problem has been shown in previous simulations [5, 6], we sought to use data generated 

with a substantially different set of assumptions to test the robustness of prior observations, 

especially those indicating that modeling on the whole trial eliminated the bias induced by 

modeling only on the control arm.

We also sought to examine how risk modeling compared to several different effect modeling 

approaches, using both measures of calibration-for-benefit and discrimination-for-benefit—

where benefit is defined as the risk-difference. These simulations permitted us to explore 

how serious the problems of overfitting were when using “conventional” non-penalized 

maximum likelihood regression for effect modeling in settings that emulate the statistical 

power likely to be available to explore heterogeneous effects in large clinical trials. Finally, 

we also sought to examine the ability of penalized regression (i.e. Lasso and Ridge 

regression) to correct for the overfitting anticipated when “conventional” non-penalized 

maximum likelihood regression was used for effect modeling.

METHODS

Population

The population consists of 1 million patients equally divided into a control arm and a 

treatment arm. For each patient, 12 binary baseline characteristics are independently 

generated with a prevalence of 20% each. The outcomes in the control arm are generated 

with an average event rate of approximately 25% from a logistic regression model with 

associations between baseline characteristics and outcomes varying from an odds ratio of 1 

to 2 (table 1; “control arm”). The outcomes for patients in the treatment arm were first 

generated from the same logistic regression model (table 1; “treatment without true 

interactions”), but including a main treatment effect odds ratio of either 1 (“null”), 0.8 

(“moderate”; we considered this the “base case”), or 0.5 (“strong”), respectively. 

Alternatively, the outcomes for patients in the treatment arm were generated from a logistic 

regression model in which 6 of the 12 associations between baseline characteristics and 

outcomes differed from the control arm (table 1; “treatment arm with true interaction”), with 

relative odds ratios varying from 0.67 to 1.33. The prevalence of true interactions among all 

possible interactions (50%) is designed to emulate the “prior probability” for confirmatory 

subgroup analysis, while the prior probability for exploratory subgroup analysis would be 

considerably lower [7–9]. To analyze the sensitivity of the results to the use of continuous 

rather than binary baseline characteristics, we repeated the analysis with 12 normally 

distributed baseline characteristics. We chose the same mean (0.2) and variance (0.16) as for 

the binary baseline characteristics to obtain similar precision when estimating the effects of 

baseline characteristics and the effects of their interaction with treatment. To analyze the 
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sensitivity of the results to correlation between baseline characteristics, we repeated the 

analysis with 12 correlated normally distributed baseline characteristics (correlation 

coefficients of 0.5).

Clinical example

We illustrate the simulated population with the clinical example of choosing between 

treatment of patients with complex coronary artery disease with either Coronary Artery 

Bypass Graft surgery (CABG; “treatment”) or Percutaneous Coronary Intervention (PCI; 

“control”). Evidence suggests that, on average, treatment with CABG leads to lower 

mortality than treatment with PCI. Baseline characteristics that are associated with high 

mortality risk are high SYNTAX score (high anatomical disease complexity), high age, low 

creatinine clearance, low left ventricular ejection fraction, presence of unprotected left main 

coronary artery disease, peripheral vascular disease, female sex, COPD, and diabetes 

mellitus. The simulation scenario without true treatment interaction assumes that these 

baseline characteristics increase the odds of mortality equally after both treatments, e.g. 

COPD doubles the odds of mortality, regardless of treatment. The simulation scenario with 

true treatment interaction assumes that some of the associations between the baseline 

characteristics and the odds of mortality are different after treatment with CABG and 

treatment with PCI, e.g. COPD increases the odds of mortality after PCI with 50%, but 

triples the odds of mortality after CABG.

Samples

A simulation consists of 500 random samples of 3,600 patients (80% power to detect a 

treatment versus control odds ratio of 0.8) from the population. To study the impact of 

sample size we alternatively sampled 1,800 patients and 7,200 patients per sample, 

respectively.

Risk models

In each sample of patients, we fitted a risk model consisting of all of the 12 baseline 

characteristics. This model was fitted in the patients in the control arm only, as well as in the 

whole sample, blinded to treatment. For each of these risk models, the predicted risk was 

calculated for each patient in the sample and in the population. The sample and the 

population were stratified into quartiles of predicted risk (according to the sample-derived 

risk model) and the observed absolute treatment benefit (i.e. the event rate of control patients 

minus the event rate of treated patients) was determined in each risk quartile of the sample 

and of the population. To compare these approaches (control arm only versus whole trial), 

within-strata event rates in the population were used to represent “ground truth”. We 

assessed the ‘calibration for benefit’ of these approaches by examining the observed 

absolute treatment benefit (i.e. risk difference) in quartiles of predicted risk in in the sample 

versus that in the population. We present box plots describing the distribution of these values 

across the 500 samples.

Treatment effect models

In each sample of patients we first fitted:
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1. A model consisting of all of the 12 baseline characteristics and the treatment, 

assuming a constant relative treatment effect. This approach is equivalent to a 

risk modeling approach, but with a constant relative effect imposed across risk 

groups; this was done in order to generate values for predicted benefit – 

predicted outcome with versus without treatment – so that the approach can be 

compared to the other effect modeling approaches below.

Then we fitted different treatment effect models in each sample of patients consisting of all 

of the 12 baseline characteristics and:

2. 2 pre-specified treatment interactions with baseline characteristics x10 and x12, 

corresponding to a parsimonious and non-data-driven approach including only of 

two “established” relative effect modifiers

3. treatment interactions with all 12 baseline characteristics.

4. treatment interactions with all 12 baseline characteristics, using backward 

selection based on AIC (p=0.157).

5. treatment interactions with all 12 baseline characteristics, using Lasso regression 

with minimum mean cross-validated error (referred to as Standard Lasso).

6. treatment interactions with all 12 baseline characteristics, using Ridge regression 

with minimum mean cross-validated error (referred to as Standard Ridge).

7. treatment interactions with all 12 baseline characteristics, using Lasso regression 

with maximum penalization such that the error is within one standard error of the 

minimum (Referred to as Strong Lasso).

8. treatment interactions with all 12 baseline characteristics, using Ridge regression 

with maximum penalization such that the error is within one standard error of the 

minimum (Referred to as Strong Ridge).

For each effect model that was fitted in each consecutive sample, the predicted absolute 

treatment benefit (i.e. predicted risk difference) in the population was calculated as the 

model’s outcome prediction conditional on assignment to the control arm minus the 

outcome prediction conditional on assignment to the treatment arm. The population was 

stratified into quartiles of predicted absolute treatment benefit. In each quartile of the 

population, we calculated the mean predicted absolute treatment benefit and the observed 

absolute treatment benefit, i.e. the event rate of control patients minus the event rate of 

treated patients.

Metrics of model performance

Calibration-for-benefit—A well calibrated sample-based model fit would have good 

agreement in the population between predicted and observed benefit in quartiles of predicted 

benefit. We assessed the calibration-for-benefit of each model fit by the difference between 

predicted absolute treatment benefit and observed absolute treatment benefit in quartiles of 

predicted absolute benefit of the population. We present box plots of the observed versus 

predicted treatment benefit in quartiles of predicted benefit for each model describing the 

distribution of these values across the 500 samples. Because calibration in the second and 

van Klaveren et al. Page 5

J Clin Epidemiol. Author manuscript; available in PMC 2020 October 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



third quartile of predicted benefit is always excellent, we numerically express calibration by 

the mean difference between the predicted treatment benefit and the observed treatment 

benefit in the 2 extreme predicted benefit quartiles (i.e. lowest and highest quartiles) of the 

population.

Discrimination-for-benefit—A well discriminating sample-based model fit would have a 

large difference between the observed benefit in the first and fourth predicted benefit quartile 

of the population. We assessed the discrimination of each model fit by the extreme quartile 

difference (EQD) of benefit in the population, i.e. the arithmetic difference between the 

observed absolute benefit in the fourth quartile and the observed absolute benefit in the first 

quartile of the population. A model that shows a higher EQD in the population is better able 

to discriminate patients for treatment benefit, i.e. to separate patients with low treatment 

benefit from those with high treatment benefit.

Prediction error-for-benefit—The simulation settings (table 1) allow the calculation of 

true individual treatment benefit for each individual patient in the population, which is 

unidentifiable in real world settings. We were thus able to assess the accuracy of each 

model’s benefit predictions by the root mean squared error (rMSE), i.e. the root of the mean 

of the square differences between predicted absolute benefit and true absolute benefit in the 

population.

RESULTS

Simulated population

The discriminative ability of the true risk model in the control arm of the population was 

moderate with an area under the receiver operating characteristic curve of 0.66. The event 

rates in the control arm were 14.7%, 21.2%, 28.9% and 43.3% in true risk quartiles 1–4 

respectively. With a main treatment effect odds ratio of 0.8 (the “base case”), these event 

rates were reduced by absolute treatment benefits of 2.4%, 3.3%, 4.2% and 5.1%, 

respectively. With a main treatment effect odds ratios of 0.5, these event rates were reduced 

by absolute treatment benefits of 6.8%, 9.2%, 12.0% and 15.4%, respectively.

Risk models

When the risk model was fitted in the whole sample, the benefit in quartiles of predicted risk 

in the sample was well calibrated to the ‘true’ benefit in quartiles of predicted risk in the 

population (figure 1A). This was true regardless of the sample size (Figure A.1A), the 

treatment effect magnitude and whether the data was generated by a regression model with 

or without treatment interactions (Figures A.1A and A.2A). In contrast, when the risk model 

was fitted in only the control patients of the sample, the benefit in quartiles of predicted risk 

was more heterogeneous in the sample as compared to the population, i.e. the benefit in the 

first risk quartile was substantially lower in the sample than in the population while the 

benefit in the fourth risk quartile was substantially higher in the sample than in the 

population, reflecting differential fit (i.e. overfitting) of the model on the sample control arm 

compared to the treatment arm. For example, in the base case scenario (treatment odds ratio 

of 0.8; sample size 3,600; figure 1B), the median benefit in the highest risk fourth quartile 
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(6.5%) of the sample was 30% higher than the median benefit in this quartile (5.1%) of the 

population. Similarly, the median benefit in the lowest risk first quartile (1.7%) of the 

sample was 30% lower than the median benefit in this quartile (2.4%) of the population. 

Even where there was no treatment effect whatsoever (treatment odds ratio of 1; Figures 

A.1B and A.2B), modeling in the control arm induced a spurious risk-by-treatment effect 

interaction, which was more often statistically significant (in 9.6% of the samples) than 

expected under the null condition of no treatment effect interaction (5%). This effect 

attenuated but persisted even when the sample was very large (n=7,200; Figures A.1B and 

A.2B), with an event-per-variable (EPV) ratio of 81.

Treatment effect models

General—Using backward selection in the base case scenario (treatment odds ratio of 0.8; 

sample size 3,600), 90% of the true prognostic factors and 48% of the true interactions were 

kept in the model (true positive), while 29% of the null prognostic factors and 17% of the 

null interactions were kept in the model (false positive; table A.1). With Lasso regression 

95% of the true prognostic factor effects and 75% of the true interaction effects were kept in 

the model (true positive), while 55% of the null prognostic factor effects and 54% of the null 

interaction effects were kept in the model (false positive). As expected, for backward 

selection the true positive rate increased with sample size with a stable false positive rate. 

For Lasso regression, both the true and the false positive rate increased with sample size, but 

the effect sizes of the retained variables were shrunk.

Calibration-for-benefit—In the absence of true treatment interactions, the model with a 

constant relative treatment effect was well calibrated (figure 2A), while all the models that 

included treatment interactions overfitted treatment benefit (figure 2B, 2C and 2D; figure 

A.3). In the base case scenario (treatment odds ratio of 0.8; sample size 3,600), the mean 

difference between predicted and observed benefit (i.e. miscalibration), averaged over the 

two extreme predicted benefit quartiles, was 6.1% for the model with all interactions (3.8% 

after backward selection), but was reduced by 60% to 2.5% when that model was fitted with 

Lasso regression (figure A.3D). For the population generated from the “hard null” 

assumptions (no treatment effect, no interactions), the models spuriously identified groups 

with treatment-related harm and benefit. The mean difference between predicted and 

observed benefit, averaged over the two extreme predicted benefit quartiles, was even larger 

than in the base case scenario (6.4% for the model with all interactions, 4.4% after backward 

selection, and 3.0% with Lasso regression; figure A.4).

In the presence of true treatment interactions all models overfitted treatment benefit, but to a 

varying extent (figure 3; figure A.5). Overfitting increased with the number of modeled 

treatment interactions. In the base case scenario (treatment odds ratio of 0.8; sample size 

3,600), the mean difference between predicted and observed benefit, averaged over the two 

extreme predicted benefit quartiles, was only 0.9% for the model with a constant relative 

treatment effect and 4.4% for the model with all interactions. Backward selection only 

slightly reduced the overfitting (3.5% difference). In contrast, Lasso regression considerably 

reduced, but did not eliminate, the overfitting (1.5% difference), even for the larger sample 

size (Figures A.6–A.9). Additionally, even when just two “established” predictors were 
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forced into the model without any statistically driven model selection, overfitting for benefit 

prediction persisted (1.0% difference). Overfitting for the prediction of benefit was relatively 

much stronger than overfitting for outcome prediction (Figure A.10). Finally, overfitting for 

the prediction of benefit also persisted even though Lasso regression with minimum mean 

cross-validated error essentially eliminated miscalibration for outcome prediction (Figure 

A.11).

Models that were fitted with Lasso regression performed consistently better than models that 

were fitted with Ridge regression, especially in the absence of true treatment interaction 

(Figures A.7 and A.9). Furthermore, models that were fitted using penalized regression with 

minimum mean cross-validated error (“Standard Lasso”) consistently outperformed models 

that were fitted using penalized regression with maximum penalization, such that the error is 

within one standard error of the minimum (“Strong Lasso”). In the remainder of the results, 

we will therefore limit the presentation of penalized regression models to Lasso regression 

with minimum mean cross-validated error (“Standard Lasso”).

Discrimination-for-benefit—In the absence of true treatment interactions, the extreme 

quartile difference (EQD) of benefit in the population of the model with the constant relative 

treatment effect (2.7% in the base case scenario) was almost equal to the potential maximum 

as defined by the true model (figure 4). This means that we observe 2.7% more absolute 

treatment benefit in the 25% of patients with the highest compared to the 25% of patients 

with the lowest predicted benefit according to the model; this corresponds to more than a 

doubling of the effect size. Despite the fact that models with interaction terms misleadingly 

appeared to have substantially higher EQDs within the sample (indicating better 

discrimination for benefit), the population EQD decreased as the number of interactions in 

the model increased, indicating worse discrimination than risk modelling. Lasso regression 

moderately improved the population discrimination (0.8% EQD) compared to conventional 

maximum likelihood regression (0.6% EQD), but did not reach the potential maximum 

(2.7% EQD), even for the largest sample size (Figure A.12).

In the presence of true treatment interactions, the population EQD of the model with a 

constant relative treatment effect was lowest (1.7% in the base case scenario), representing 

poor benefit discrimination. In the presence of true treatment interactions, Lasso regression 

showed very similar discriminative ability compared to conventional maximum likelihood 

regression (population EQD of 8.6% versus 9.0% in the base case scenario) and somewhat 

better discriminative ability than backward selection (population EQD of 8.1%). The 

difference in population EQD between the model with a constant relative treatment effect 

and other models was limited when the sample size was low (1,800) and the treatment effect 

was large (OR 0.5; Figure A.12).

Prediction error-for-benefit—In the absence of true treatment interactions, the rMSE of 

the individual estimated treatment benefits versus the true individual treatment benefits 

increased with the number of modeled treatment interactions (figure 5). In the base case 

scenario (treatment odds ratio of 0.8; sample size 3,600), the rMSE was 0.013 for the model 

with a constant relative treatment effect and 0.053 for the model with all interactions. Lasso 

regression decreased the rMSE considerably to 0.029, but did not outperform the model with 
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two pre-specified treatment interactions (0.024), even in the largest sample size (Figure 

A.13).

In the presence of true treatment interactions, (unpenalized) models with interactions only 

outperformed the model with a constant relative treatment effect with large sample size 

(n=7,200; Figure A.14). For example, in the base case scenario (treatment odds ratio of 0.8; 

sample size 3,600), the rMSE was 0.053 for the model with a constant relative treatment 

effect and 0.052 for the model with all interactions (figure 5). Lasso regression decreased the 

rMSE considerably (0.043), but moderate sample size (n=3,600) was needed for Lasso to 

outperform the model without treatment interactions or with two pre-specified treatment 

interactions.

Sensitivity analyses—When continuous rather than binary baseline characteristics were 

simulated, the results were much the same (Figures A.15–A.18). When the baseline 

characteristics were correlated rather than independent, the results were also very similar in 

the absence of true treatment interactions (Figures A.19; A.21A; A.22.A). In the presence of 

true treatment interactions however, when baseline characteristics were correlated, the 

advantage of Lasso regression over a model with a constant relative treatment effect 

attenuated (Figures A.20; A.21B; A.22.B). Less diversity in the possible combinations of 

strongly correlated baseline characteristics clearly reduced the additional discriminative 

ability that can be achieved by treatment interactions with individual baseline characteristics.

DISCUSSION

This simulation exercise illustrates the serious overfitting that can arise when developing 

models to predict heterogeneous treatment effects in randomized samples. We have shown 

that overfitting of treatment effect heterogeneity can significantly overestimate (and 

underestimate) the treatment benefit for a substantial proportion of patients, potentially 

leading to suboptimal treatment decisions. The magnitude of the miscalibration of predicted 

benefit when treatment interaction terms are incorporated into a prediction model is 

relatively much larger than the miscalibration typically observed when stratifying a trial by 

predicted outcome risk, and potentially much more clinically influential. Standard heuristics 

used to avoid overfitting models to predict outcome risk (e.g. 10 or 20 outcomes for each 

variable or interaction term considered [10, 11]) are grossly inadequate to avoid this 

overfitting. Overfitting for predicted benefit persisted despite approaches that are usually 

effective for eliminating overfitting for outcome risk (such as penalized regression and a 

parsimonious non-data-driven approach including only two “established” effect modifiers), 

and even with large sample sizes.

In the absence of true treatment interactions, a prediction model without treatment 

interactions – i.e. a risk modelling approach – has superior predictive performance, even for 

large sample size. Our simulations also confirm a prior study showing that, with a risk 

modelling approach, modelling on the control arm only induces serious overfitting that can 

be completely eliminated by modelling on the whole population, blinded to treatment [6]. 

Even in the absence of any treatment effect and with an event-per-variable (EPV) ratio over 

80, modeling in the control arm induced a spurious risk-by-treatment effect interaction. To 

van Klaveren et al. Page 9

J Clin Epidemiol. Author manuscript; available in PMC 2020 October 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



understand this phenomenon, one can imagine a model fitted only to the noise of the control 

arm. Using this model, the treatment arm would appear to have a uniform ‘average’ risk, 

while the control arm would seem well stratified. In such a scenario, high risk patients 

would erroneously be expected to benefit and low risk patients would erroneously be 

expected to be harmed by a totally ineffective treatment.

When true interactions are present, risk modeling still provides well-calibrated predictions, 

although it does not discriminate as well as models including interaction terms. Of the effect 

modeling approaches compared, Lasso regression proved to be the optimal approach to 

minimize overfitting of treatment benefit. Interestingly, some overfitting for the prediction of 

benefit persisted even though Lasso regression leads to excellent calibration of predicted 

outcome risk in both trial arms, underscoring the importance of using metrics for benefit 

prediction rather than relying on conventional prediction metrics when validating models 

that predict benefit.

Intuitively, benefit prediction is more sensitive to miscalibration than risk prediction, 

because relatively small discrepancies in observed versus predicted outcome rates in the 

control and treatment arms can add up to large discrepancies in absolute treatment effects 

(Figures A.10 and A.11). In addition, because the scale of absolute risk difference is 

generally much smaller than the scale of outcome risk, the error will be comparatively large 

(i.e. magnified). Further, differences in treatment effects can be extremely consequential for 

clinical decision making. This can be illustrated most dramatically by the effect models that 

were developed in samples from the population simulated with the “hard null” assumption 

(of no treatment effect). With 12 null treatment interactions, statistically significant HTE 

was found 87% (1-(1–0.157^12)) of the time, an issue that cannot be corrected with even 

larger sample sizes. Inclusion of more candidate predictors with their potential treatment 

interactions – for example in a case study of high-dimensional data – would have increased 

the number of false positive treatment interactions and would presumably have increased the 

degree of overfitting when predicting benefit. For these reasons, effect modeling should be 

applied cautiously, particularly in the absence of a well-established overall treatment effect.

Previously published treatment effect models to support decision making in reperfusion 

therapy for both coronary artery disease and for acute stroke were developed with 

conventional maximum likelihood estimation [12–14]. This simulation shows that the 

treatment benefit predictions from these models are likely to be overfit, even when the 

treatment interactions are clinically and biologically plausible. Assessment of treatment 

benefit calibration in new settings is required to better understand the validity of these 

models. Recalibration using penalized regression techniques may improve the ability of 

these models to predict treatment benefit [15, 16]; this was well-demonstrated in a re-

analysis of the SPRINT trial comparing conventional regression to elastic net regularization 

(an amalgam of Ridge and Lasso) [17]. When tested on a separate but related clinical trial, 

predictions of benefit generated with conventional regression were virtually useless but those 

generated with elastic net regularization validated substantially better. Nevertheless, the best 

approach to penalization is a subject for future research.
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In our simulations, models that were fitted with Lasso regression performed consistently 

better than models that were fitted with Ridge regression, although both were significantly 

overfit for benefit across most of the simulated scenarios. We hypothesize that Lasso more 

stringently penalizes null treatment interaction effects. More research is required to better 

understand the differences between using Lasso or Ridge regression for models that predict 

treatment benefit, and also to compare these to other (regression- and non-regression-based) 

approaches used for data-driven benefit prediction [18, 19]. Since penalization reduced the 

overfitting of benefit predictions, one might anticipate that stronger penalties would further 

improve benefit predictions. However, models that were fitted using penalized regression 

with maximum penalization, such that the error is within one standard error of the minimum, 

performed substantially worse than models that were fitted using penalized regression with 

minimum mean cross-validated error. The more stringent penalization of these methods 

seem to overly shrink the average treatment effect, resulting in poor calibration even in the 

middle quartiles of predicted benefit.

When true interactions are present in the data, discrimination improved with models 

incorporating interaction terms (i.e. an effect modeling approach always provided superior 

discrimination to a risk modeling approach). However, the effect modeling approaches were 

consistently overfit. The trade-off in terms of clinical decision making between the improved 

discrimination and worse calibration resulting from the more aggressive effect modeling 

approaches will depend on the specific decisional context of each case. More research is 

needed to determine those circumstances where the trade-offs are likely to favor these more 

aggressive approaches. Because these effect modeling approaches can mislead investigators 

into falsely “discovering” subgroup treatment effects even when no treatment effects exist, 

and even in large simulated databases, we recommend caution in applying these approaches, 

pending future research. These approaches might be applied in situations in which there is 

sufficient randomized data to permit fully external model validation, and in situations with a 

priori evidence for important treatment interactions.

Benefit prediction approaches are useful in targeting treatment to those patients most likely 

to benefit, especially when treatment is associated with some treatment-related harm or 

burden. When we added a constant treatment-related harm – i.e. we added outcomes with a 

2.5% event rate in the treatment arm regardless of the risk factors – most of the findings 

were very similar (data not shown). The additive harm induced some interaction with risk on 

the relative scale, which the risk modeling approach unsurprisingly could not pick up. 

However, this led to a slight underfitting of the treatment effect heterogeneity by the risk 

modeling approach, in contrast with the general finding of overfitting the treatment effect 

heterogeneity by the effect modeling approaches.

As with all simulations, we were limited in covering the entire relevant space of risk and 

effect modelling in these simulated clinical trials. We attempted to emulate common 

scenarios. However, the benefits of the risk modelling approach (compared to a conventional 

one-sized-fits-all approach) may be limited since the risk-heterogeneity within these 

simulated trials is relatively modest (c-index = 0.66). We have found extreme quartile risk 

ratios substantially larger in a recent empirical evaluation [20]. We also note that several 

aspects of the simulated trial population make it a relatively favourable setting for effect 
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modelling, including the fact that 50% of tested interactions include ‘true’ effects, some true 

effects were known a priori, and there were abundant outcomes. Nevertheless, our results 

consistently indicated problematic and resilient overfitting when an effect modelling 

approach was attempted. Risk modelling, on the other hand, when performed on the whole 

trial population, yielded well calibrated treatment effects within risk strata, even in the 

presence of treatment interaction terms that were excluded from the model. We expressed 

calibration-for-benefit and discrimination-for-benefit of each modelling approach in terms of 

quartiles of predicted benefit. A more detailed stratification – e.g. into octiles or deciles of 

predicted benefit – would have emphasized the degree of overfitting through more extreme 

miscalibration in the lowest and highest strata of predicted benefit. Although calibration-for-

benefit and discrimination-for-benefit can also be expressed on a continuous scale, e.g. with 

a c-statistic and an E-statistic [21, 22], the quartile-based presentation has the advantage of 

being illustrative for the actual use of these models in clinical practice. Future research could 

enable more individualized approaches to implementing predictive models in clinical 

practice.

In conclusion, predicting heterogeneous treatment effects has substantial challenges beyond 

prediction of outcome risk. A risk-modeling approach yields models consistently well-

calibrated for benefit. Effect-modeling may improve discrimination-for-benefit in the 

presence of true interactions, but are prone to serious overfitting; they should only be 

considered when important treatment interactions are highly likely. Even under these 

circumstances, penalized approaches should be favored and external validation remains very 

important.
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Figure 1. Risk modeling on only the control patients led to an exaggeration of the treatment 
effect heterogeneity across predicted risk quartiles
In the base case simulation scenario without true interaction, the risk model was fitted in 

either the whole sample or in the control patients of the sample. When the model fitted on 

the whole sample was used for stratification in risk quartiles (panel A), the observed benefit 

in the sample (brown bars) is an unbiased estimate of the observed benefit in the population 

(white bars). In contrast, when the model fitted on the control patients was used for 

stratification in risk quartiles (panel B), the observed benefit in the sample is too 

heterogeneous across risk quartiles compared to the observed benefit in the population.
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Figure 2. Effect modeling approaches were seriously overfit and were prone to treatment 
mistargeting in the absence of true treatment interaction
Benefit predictions were based on different models fitted in the samples: a model without 

treatment interactions (panel A), a model with all treatment interactions (panel B), a model 

with all treatment interactions using backward selection based on AIC (panel C), and a 

model with all treatment interactions fitted with Lasso regression (panel D). The agreement 

between predicted (brown bars) and observed (white bars) benefit in predicted benefit 

quartiles of the population was better for the risk modeling approach (A) compared to the 

effect modeling approaches (B-D). Moreover, the risk modeling approach (A) resulted in 

more heterogeneity of observed benefit, i.e. is better able to distinguish between patients 

with low and patients with high benefit.
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Figure 3. Effect modeling approaches were better able to separate patients with differential 
benefit in the presence of true treatment interaction, but required penalized regression to 
prevent overfitting
Benefit predictions were based on different models fitted in the samples: a model without 

treatment interactions (panel A), a model with all treatment interactions (panel B), a model 

with all treatment interactions using backward selection based on AIC (panel C), and a 

model with all treatment interactions fitted with Lasso regression (panel D). The agreement 

between predicted benefit (brown bars) and observed benefit (white bars) in predicted 

benefit quartiles of the population is better for both the risk modeling approach (A) and the 
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Lasso regression approach (D) compared to the unpenalized effect modeling approaches (B-

C). However, the Lasso regression approach (D) resulted in more heterogeneity of observed 

benefit than the risk modeling approach (A), i.e. is better able to distinguish between 

patients with low and patients with high benefit.
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Figure 4. The risk modeling approach (Constant relative treatment effect) discriminated best in 
the absence of true interactions, but left considerable treatment benefit heterogeneity undetected 
in the presence of true interactions
Extreme quartile difference (EQD) represents the difference between the observed benefit in 

the fourth quartile and the observed benefit in the first quartile of the population in base case 

simulation scenarios without true interactions (panel A) and with true interactions (panel B). 

The maximum achievable EQD of the true model is represented by the dashed horizontal 

lines. In the presence of true interactions (B), penalized regression approaches (Standard 

Lasso and Standard Ridge) discriminated similarly to unpenalized regression (All 

interactions).
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Figure 5. The risk modeling approach (Constant relative treatment effect) had minimal 
prediction error in the absence of true interactions, but was outperformed by penalized 
regression approaches (Standard Lasso or Ridge) in the presence of true interactions
The root mean squared error (rMSE) represents the root of the mean of the square 

differences between predicted benefit and true benefit in the population for base case 

simulation scenarios without true interaction (panel A), and with true interaction (panel B).
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Table 1.
Population (N=1.000.000) characteristics x1 – x12; outcomes are simulated from a logistic 

regression model with parameters bi and binti

For each patient, 12 binary baseline characteristics were independently generated with a prevalence of 20% 

each. The outcomes of the 500.000 patients in the control arm (average event rate of 25%) are generated from 

a logistic regression model with associations between baseline characteristics and outcomes according to 

column 3 (“control arm”). The outcomes for patients in the treatment were first generated from the same 

logistic regression model (column 4; “treatment arm without true interaction”), but including a main treatment 

effect odds ratio of either 1 (“null”), 0.8 (“moderate”), or 0.5 (“strong”), respectively. Alternatively the 

outcomes for patients in the treatment arm were generated from a different logistic regression model (column 

6; “treatment arm with interaction”).

Control arm Treatment arm without interactions Treatment arm with interactions

Variable ORC ORTR ORTR / ORC ORTR ORTR / ORC

x1 1 1 1 1 1

x2 1 1 1 1 1

x3 1 1 1 1 1

x4 1.2 1.2 1 1.4 1.17

x5 1.2 1.2 1 1.2 1

x6 1.2 1.2 1 1 0.83

x7 1.5 1.5 1 2 1.33

x8 1.5 1.5 1 1.5 1

x9 1.5 1.5 1 1 0.67

x10 2 2 1 2.5 1.25

x11 2 2 1 2 1

x12 2 2 1 1.5 0.75
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