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Abstract

In this paper we integrated multiple types of predictor variables and three types of machine 

learners (neural network, random forest, and gradient boosting) into a geographically weighted 

ensemble model to estimate daily maximum 8-hr O3 with high resolution over both space (at 1 km 

× 1 km grid cells covering the contiguous United States) and time (daily estimates between 2000 

and 2016). We further quantify monthly model uncertainty for our 1 km × 1 km gridded domain. 

The results demonstrate high overall model performance, with an average cross-validated R2 

(coefficient of determination) against observations of 0.90, and of 0.86 for annual averages. 

Overall, model performance of the three machine learning algorithms was quite similar. The 

overall model performance from the ensemble model outperformed those from any single 

algorithm. The East North Central region of the United States had the highest R2, 0.93, and 
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performance was weakest for the western mountainous regions (R2 of 0.86) and New England (R2 

of 0.87). For the cross-validation by season, our model had the best performance during summer, 

with an R2 of 0.88. This study can be useful for the environmental health community to more 

accurately estimate the health impacts of O3 over space and time, especially in health studies at 

intra-urban scale.
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1. INTRODUCTION

Ground-level ozone (O3) primarily results from photochemical reactions involving nitrogen 

oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the presence of 

sunlight1. The spatial variation of O3 concentration is strongly linked to activity associated 

with land use and population. Emissions from motor vehicles, industrial sources, and electric 

generation are major sources of anthropogenic O3 precursors2,3. The formation of O3 also 

depends on natural sources, which include biogenic (e.g., isoprene from vegetation) and 

abiotic (biomass burning and geogenic sources) emissions4. NOx released from fertilized 

soils can also play an important role in the formation of O3
5. In urban areas, VOCs are often 

the limiting precursors for O3 formation. In contrast, in non-urban areas, O3 formation is 

often limited by NOx availability. The intra-urban variations of O3 levels are also linked to 

the geographic variation in sources of O3 precursors and oxidizing compounds6,7.

Besides the variation of O3 precursors, rates of O3 formation are also sensitive to 

meteorological conditions, such as the temperature and solar radiation. Previous studies have 

shown that variations in O3 trends are associated with differences in characteristic local 

weather patterns8,9. Low precipitation, high temperature, and low wind speed favor O3 

formation and build-up10,11. Relative humidity is negatively correlated with O3 because 

cloudy days with precipitation tend to have lower actinic flux than clear sky days and 

therefore less photochemical activity. In addition, dry atmospheric conditions can cause 

drought stress and suppress stomatal O3 uptake and contribute to the high warm season 

O3
12.
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Understanding the mechanisms related to O3 formation is crucial for emissions control and 

for implementing public health policies as well as for modeling ozone concentrations. A 

large number of studies have demonstrated that O3 is a major public health risk, affecting 

respiratory13–15, cardiovascular16–18, and nervous systems19,20, as well as mortality. For 

example, Anenberg et al. (2010) estimated that surface O3 is responsible for 0.7 ± 0.3 

million deaths worldwide due to respiratory disease annually. In the United States, Fann et 

al. (2012) estimated 47,000 O3-related deaths base solely on acute health effects. Other 

evidence suggests that O3 modifiesthe health impacts of other air pollutants, including 

PM2.5
23–25.

Modeling approaches to estimate O3 concentrations over space and time have been 

developed to improve exposure characterization for health studies. These O3 exposure 

models fall into several classes, including chemical transport model simulations, 

geostatistical interpolation approaches26–28, land use regression models29,30, source 

dispersion models31, models based on remote sensing technology32,33, ensemble-based 

forecast34, and, most recently, machine learning models35–38. These various modeling 

approaches have different strengths and limitations that result in varying levels of exposure 

misclassification. The great advantage of machine learning is that these models can represent 

any kind of nonlinear relationships in which the variables from different data sources have 

complex interactions. This advantage is important for air pollution characterization, 

especially to model O3 concentration, due to the complex nonlinear atmospheric 

mechanisms governing O3 formation and transport.

Recently, ensemble learning approaches that integrate different techniques (e.g., land use, 

geostatistical, remote sensing, and source dispersion models) as well as different machine 

learning algorithms have been applied to improve air pollution characterization39–42. 

Environmental scientists interested in the health effects of air pollution, including that of O3, 

have explored exposure models based on these ensemble approaches in order to minimize 

residual exposure measurement errors (i.e., misclassification error) and improve the 

accuracy of epidemiological studies. However, ensemble-based models of air pollution are 

still very limited in terms of the following criteria: i) spatial or temporal resolution, ii) set of 

predictor variables, iii) machine learning approaches, and iv) model uncertainty. For 

example, most studies focus only on small regions41,43, or annual averages; they also 

account for only a restricted number of predictors, including land use terms and remote 

sensing data44, or consider only one machine learning method42,45. Finally, most studies do 

not quantify the spatiotemporal variation in uncertainty in the predictions, which is 

important for assessing exposure measurement error. Several studies have addressed these 

limitations for some pollutants, including PM2.5
46 and NO2, but not yet for O3. Our research 

addresses these gaps by integrating multiple types of predictor variables (including 169 

variables representing land use, chemical transport simulations, weather, and remote sensing 

data) and three types of machine learners into an ensemble model to estimate daily 

maximum 8-hr O3 with high resolution over space (at 1 km × 1 km grid cells covering the 

contiguous United States) and time (daily estimates between 2000 and 2016). We further 

quantify the spatial and temporal pattern of model uncertainty by predicting monthly 

standard deviation of the difference between daily monitored and predicted O3 at 1 km × 1 

km grid cells.
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2. MATERIALS AND METHODS

2.1. Study design

This study was conducted in seven stages. First, we accessed multiple datasets that included 

daily maximum 8-hr O3 concentrations at sites across the U.S. and the predictor variables 

for O3, which included weather parameters, gridded output from chemical transport models, 

remote sensing observations, and land use variables. We obtained these data for the period 

between 2000 and 2016. The spatial area included the continental U.S (the 48 contiguous 

states and Washington D.C.). In the second stage, we applied GIS techniques to create a 

single data frame with O3 observations and predictor variables at O3 monitor locations and 

at 1 km2 grid cells over the U.S.. In the third stage, we applied one machine learning 

algorithm to fill in missing values in the predictor variables consolidated in the previous 

stage. For model training in the fourth stage, we applied three machine learning algorithms 

to estimate O3 concentration at observation site locations. In the fifth stage, we made daily 

(2000–2016) predictions of O3 concentration at 1 km2 spatial resolution over the U.S., using 

the same grid cells as consolidated in the second stage. We made three predictions, including 

one prediction for each one of the three machine learning models applied in the fourth stage. 

In the sixth stage, we employed an ensemble model to blend the O3 estimations from the 

previous stage, which resulted in the final prediction. Finally, in the seventh stage, we 

performed cross-validation on withheld monitors to estimate the model performance from 

each of three machine learners separately, and from the ensemble model. We estimated 

model uncertainty by predicting monthly standard deviation at 1 km2 grid cells based on the 

difference between model predictions and observations at site locations. Figure S1 shows the 

flowchart of our study design. In S2 we provide details on the first stage (data source). 

Details on stages 2–7 are provided below.

2.2. Consolidation of the dataset (second stage)

We used GIS techniques to consolidate all the data obtained, which includes 169 predictor 

variables, covering the contiguous U.S in 6,205 days (daily information during 2000–2016). 

In Table S1 we present the list of these predictors. Daily maximum 8-hr O3 concentration 

and predictors used for training were consolidated at O3 monitoring site locations and 

predictors were consolidated at the 1 km2 grid cells over the U.S. Our study area 

encompassed 11,196,911 grid cells with a spatial resolution of 1 km × 1 km. Due to the high 

spatiotemporal resolution defined in our study, the size of the 169 predictor variables 

consolidated at grid cells was computationally intensive. The data has about 20 TB of 

information.

2.3. Machine learning approaches

We used three machine learning models in this study, including neural network, random 

forest, and gradient boosting. All three models attempt to model the complex relationship 

between the dependent variable and predictor variables with different algorithms. The details 

of these machine learning models can be found in Bishop (2006). Briefly random forests and 

gradient boosting are methods that use regression trees. In a regression tree, one first finds 

the best predictor, and best break point for that predictor, such that dividing the data at that 

break point explains the most variation of the outcome available for such a division. The 

Requia et al. Page 4

Environ Sci Technol. Author manuscript; available in PMC 2021 September 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



process is repeated producing a series of splits in the subsequent subsets of the data. In a 

random forest, many (generally over 100) bootstrap samples of the data are chosen, and 

separate trees are fit in each sample. The predictions from the many trees (the forest) are 

then averaged to generate the prediction, in order to improve the performance by handling 

overfitting, reducing variance and using parallel (independent) classifiers48. In gradient 

boosting, a tree with few splits is fit, and then another tree is fit to the residuals of the 

outcome. To allow more predictors to contribute, only part of the prediction of the second 

tree is added to the first, and the process is repeated. The key parameters in such approaches 

are the number of trees, the number of breaks in each tree, the fraction of the prediction of 

the next tree that is used (gradient boosting) the fraction of the covariates considered, etc. A 

neural network fits a model by taking the predictors as inputs into artificial neurons, that, 

like real neurons, fire when the weighted inputs reach a certain level. Their output goes into 

other layers of neurons, and ultimately, to a single prediction of output. Key parameters of 

such models are the number of layers and number of neurons. Importantly, given the large 

number of variables, all three methods use withheld monitoring sites as validation samples 

to avoid overfitting, and all three incorporate methods to give little or no weight to some 

variables. In the neural network, the weights given to input variables impacts on the hidden 

neurons can be near zero. In addition, we incorporated a lasso penalty into the neural 

network (lasso regularization to the neural network cost function) that can force variable 

weights to zero. Neural networks are able to model nonlinear relationship. It is very useful 

for modeling air pollution, which the underlying atmospheric dynamics are elusive, and 

variables have complex interactions41,49. In gradient boosting and random forests, the size of 

each tree is chosen by cross-validation (10% of the monitors were held out and used for 

validation, and this step was repeated 10 times), and the shorter the trees the fewer variables 

can contribute (This process is described in section 2.3.2, and illustrated in Table S2)…

Given the differences among the machine learning models, where the model performance of 

different algorithms seems to vary by location and concentration50, there is an interest in 

hybrid models instead of a single model, which the multiple approach would complement 

each other. The combination of the three machine learning models used in our study is 

described in section 2.4.

In our study, the random forest algorithm was applied to fill the missing values for predictors 

(Imputation process, third stage). For the model training (fourth stage) and predictions (fifth 

stage), we used the three machine learning algorithms. In the next sections, we describe 

these stages.

Finally, the analyses for the three machine algorithms were performed in R by using the 

H2O package. In S3 we provide the script used in the analyses.

2.3.1. Imputation (third stage)—Some of the predictors in our study (e.g., satellite 

measurements, weather variables and others) presented missing values at some locations and 

time. To predict O3 concentrations across the contiguous U.S. and the entire study period, 

we used random forest to fill in the missing values.
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The imputation was performed based on variables without missing values to predict each 

variable with missing values. For example, Aerosol Optical Depth (AOD) had more than 

50% missing values. When AOD data were available, we used a random forest to train the 

model considering the variables in tables S1, including CMAQ, GEOS-Chem, land-use 

types, and meteorological variables (these variables have no missing values) as predictors. 

Then, we predicted the AOD missing values. As in the main models, the predictors for the 

imputation model included land use terms averaged over different spatial grids (1 km, 10km, 

etc.). The random forest depends on a number of hyper-parameters which we chose as 

detailed below.

2.3.2. Model training (fourth stage)—After imputing missing values, we standardized 

the dataset. Considering a variable “X”, data standardization was based on the Xij – Xmean / 

Xstd, where Xij is the raw data of the variable “X” on day i in the site j; Xmean and Xstd are 

the mean and standard deviation of variable “X”, respectively.

Using the dataset resulting from the standardization process, we trained the three machine 

learning models on all input variables standardized at monitor data, with parameters of each 

models selected by a search process. The performance of our machine learning algorithms 

depends on hyper parameters, which are listed in Table S2. As noted above these are chosen 

using a grid search process and a held out set of validation monitors. For random forests and 

gradient boosting these parameters included the depth of the tree, the number of trees, the 

subsample of covariates fit to each tree, and the learning rate. For neural networks, the 

hyper-parameters included the number of hidden layers, number of neurons per layer, 

learning rate and number of iterations through the data, and lasso penalty (i.e., L1 

regularization). In Table S2 we show the parameters tuned for each machine learning model.

2.4. Predictions (fifth stage) and ensemble model (sixth stage)

After filling in missing values and interpolating data to 1 km grid cells, all predictor 

variables were available across the study area. Then, we used the trained models to predict 

daily maximum 8-hr O3 concentration at each 1 km × 1 km grid cell in the contiguous U.S. 

for 6,205 days (daily information during 2000–2016). The predictions for each grid cell 

were based on values of predictors in neighboring grid cells. For example, for some land use 

terms 10 km averages were used as well as 1km averages.: As result, we obtained individual 

predictions for each one of the three machine learners (fifth stage).

To combine the three predictions, we used an ensemble model based on a geographically 

weighted generalized additive model (GAM). We used a geographically weighted approach 

to account for the spatially heterogeneous relationship, and the possibility that some learners 

fit better in particular parts of the country. To capture a better spatial variation of weights 

given to the different learners across the country, we regressed the monitored values against 

thin plate splines of latitude, longitude, and the interaction of those splines with a spline for 

the predicted concentrations for each learner. This allows the contribution of each learner in 

the final O3 estimation to potentially depend on the O3 concentration (i.e., non-linear 

response) and to have more weight in particular regions of the country. The equation below 

describes the ensemble model:
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O3 = f1 Locationi, O3, nnij + f2 Locationi, O3, rfij + f3 Locationi, O3, gbij

where f1 denotes a thin plate spline for an interaction between location i and O3 estimation 

from neural network (nn) at location i and at day j; and O3, rfij and O3, gbij stand for the 

same, but from random forest (rf) and gradient boosting (gb) at location i and at day j, 
respectively.”

2.5. Cross-validation (seventh stage)

We performed individual 10-fold cross validation for each one of the three models applied in 

this study – neural network, random forest, and gradient boosting. Here, we first divided the 

monitoring sites into 10 splits, and then we trained the models with 90% of the data and 

predicted O3 concentration at the remaining 10% of the sites. The observations predictions 

at the excluded sample site were then compared. Finally, we assembled O3 predictions from 

all 10 splits and then calculated R2 (coefficient of determination), spatial R2, and temporal 

R2.

The cross-validation was also performed for different subsets of the dataset, which included 

a time-wise cross-validation (for the whole period), cross-validation by year, by region (9 

regions), by season (summer, fall, winter, and spring), and population density (quartiles 1–

4).

The temporal R2 was calculated by regressing (using GAM model) ΔO3 measured against 

ΔO3 predicted, where ΔO3 is the difference between O3 value at site i at time t and annual 

mean of O3 at site i. The spatial R2 was calculated by regressing the annual mean O3 at site i 
against the annual mean predicted O3 at site i.

Finally, we estimated model uncertainty by calculating monthly standard deviation of the 

difference between daily monitored and predicted O3 at 1 km × 1 km grid cells with 

monitors (sdO3ij, where i represents the sites, and j is the month). Note that we quantified 

uncertainty for the monthly mean to increase the number of data points in the standard 

deviation calculation. Then we regressed (using GAM) sdO3ij against the following 

predictors: elevation, surface reflectance, humidity, tree canopy, Normalized Difference 

Vegetation Index (NDVI) – an indicator of green vegetation, developed area coverage from 

the land used dataset, density of roads, year, month. We highlight that if there were more 

than one monitor in a grid cell we averaged them to get the grid cell measured and 

subtracted the grid cell prediction to get a single grid cell residual. For grid cells that have no 

monitors, we cannot directly estimate the error of prediction. We can approximate this, 

however, by treating some monitoring locations as if they did not have measurements, 

training the models on the remaining stations, making the predictions for the held out 

monitoring locations, and seeing what error we got. This was the 10-fold cross validation we 

did. We divided the monitors into 10 groups, and held out one successive group in turn, fit 

the models on the remaining 9 groups of monitors, and looked at the prediction error at the 

held out group.
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3. RESULTS AND DISCUSSION

Table 1 shows the cross-validated R2, RMSE (square root of the average value of the square 

of the residual), and slope from the ensemble model by year and for the entire period. For 

the individual models (neural network, random forest, and gradient boosting), we present 

only the cross-validated R2. As mentioned above, all R2 values were based on 10-fold cross-

validation. The R2 from the ensemble model varied by year from 0.889 to 0.920, with an 

average of 0.902, indicating good model performance. The Root Mean Square Error 

(RMSE) decreased significantly over the years. In 2000, the RMSE was 5.705 ppb; in 2016, 

it decreased to 3.579 ppb. The average RMSE was 4.550 ppb. Overall, model performance 

of the three machine learning algorithms was quite close. The overall model performance 

from the ensemble model outperformed that from any single algorithm.

Tables S2–S4 show the cross-validated results by region, season, and population density, 

respectively. Model performance varied over the nine regions that we considered in this 

analysis (Table S3). The East North Central region had the highest R2 (0.928) and the West 

North Central region had the lowest RMSE (3.699) among the nine regions. Performance 

was weakest, but still excellent, for the mountainous regions (0.862) and New England 

(0.867). For the cross-validation by season, our model had the best performance during 

summer, with a R2 value equal to 0.885 (Table S4). For the cross-validation by population 

density, our results show relatively little variation, with the less populous locations (quartile 

1, Table S5) having an R2 equal to 0.888, while in areas with high population density 

(quartile 4, Table S3) the R2 was 0.911. The similar performance in more rural areas with 

fewer monitors is an important result. Overall, the ensemble model stratified by region and 

season outperformed the three single machine learning. Importantly, the slope of the 

relationship between O3 at held out monitors and predicted at those locations was essentially 

1, and the intercept very close to zero. This indicates that there is no bias in the predictions 

of the ensemble model.

We used GAM to regress daily predictions of O3 from each model against monitored O3 

(Figure S4). We applied a penalized spline function to assess the linearity of the association. 

The results from the ensemble model show that the relationship between predicted and 

monitored O3 values has a good agreement, except for the highest concentration (above 120 

ppb). Among the three learners, neural network presented the best relationship. The 

underprediction at high concentrations was worse for the random forest and then gradient 

boosting. Particularly on random forest, its key limitation is that the algorithm cannot predict 

very high pollution events outside the range encountered during training. In Figure 1, we 

show the density scatter plot of the annual O3 predictions of the ensemble model versus the 

measured values.

Figure S5 presents the density distribution of error estimates (difference between estimated 

and observed values) from cross validation for each model. There was a difference in the 

error density among the three learning algorithms, with the neural network having the 

narrowest distribution, the random forest having a slightly wider distribution, and the 

gradient boosting having the widest distribution. We can see the improvement with the 

Requia et al. Page 8

Environ Sci Technol. Author manuscript; available in PMC 2021 September 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



ensemble model in Figure S4, which shows higher density of monitors with errors closest to 

zero.

The relative contribution of predictor variables estimated by each machine learning 

algorithm is similar (Figure S6). The spatially weighted average of O3 measurements at 

nearby monitoring locations (inverse distance weighted O3 measurements at other locations) 

was the variable with the highest importance for the three models. Other variables identified 

as important by the three models are the O3 estimates from CMAQ, total column O3 from 

GEMS, spatiotemporally lagged O3 measurements (1-day lag), and some meteorological 

variables (Figure S6).

We calculated the daily nationwide averages by averaging daily predictions at all 1 km×1 km 

grid cells (Figure S7). Our results show a relatively consistent annual pattern of O3 

concentration from 2000 to 2005. Between 2005 and 2010, there was a cycle of decrease and 

increase of O3 levels. From 2010 to 2016, our results showed a decrease of O3 

concentrations, although the overall decrease was modest, at about 3ppb.

The spatial distribution of the predicted levels of the standard deviation of O3 prediction 

error (uncertainty model) is illustrated in Figure 2. Overall, the model performed moderately 

well in the east coast and central region (including Texas, Oklahoma, Arkansas, Louisiana, 

Alabama, and Missouri). A difference in spatial patterns of the uncertainty is evident during 

the summer and spring seasons. Our results also showed that the model performance 

improved over the years (lower standard deviation in 2016 than in 2000 – Figure 2). We 

suggest that the improvement of the data input quality over the years was an important factor 

to improve the model performance over the years. Regarding the substantial level of 

uncertainty in the Southeast (especially in 2000), compared to the West, we highlight that 

more O3 in the East is generated locally, while elsewhere there is more transport of O3 from 

elsewhere. As emissions decline, background ozone in the Southeast (and East) become 

more important. Therefore, according to Travis et al. (2016)51 and Lin et al. (2017)52, here 

are two potential theories about the large error in the Southeast/East: i) O3 produced locally 

has a nonlinear dependence with the predictors, which the model is unable to capture well. 

As emissions declined, local production also declined, and the model showed a better 

performance in 2008 and 2016; and, ii) GEOS-Chem has difficulty capturing O3 in the 

Southeast, and that difficulty may propagate into our model. The reason for this difficulty 

has to do with uncertainty in NOx emissions and in vertical mixing.

Figure 3 shows the spatial distribution of ozone concentration (annual and seasonal) over the 

U.S. in three years, 2000, 2008, and 2016. Ozone levels varied significantly by season and 

regions. Overall, summer O3 concentration decreased in most regions between 2000 and 

2016, especially in Southeast. In contrast, annual O3 concentrations have increased in the 

Northeast which is driven by increases in the fall and winter. Fall and winter were the 

seasons with the lowest O3 concentration in most regions. In Figure S8, we illustrate the 

downscaled O3 levels in the four highest populated cities in the USA (New York, Los 

Angeles, Chicago, and Houston) plus the city of Boston. Notably O3 levels increased over 

time in New York, Chicago, and Boston, primarily by an increased geographic spread of the 

highest O3 concentrations.
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The three machine algorithms showed good performance in the explained concentration 

variance of O3, with a R2 values varying between 0.88 – 0.90 for the analysis stratified by 

year, 0.85 – 0.92 for the analysis stratified by region, and 0.84 – 0.88 for the analysis 

stratified by season. Overall, the ensemble model improved the performance of the three 

machine learning algorithms, especially when we look at the density distribution of error 

estimates, which is illustrated by Figure 5. The good performance of our models is explained 

by the range of predictors representing local source emissions and predictors of formation 

rate and quenching rate. Incorporating these predictors allowed us to define areas with 

certain types of pollution regimes based on emissions sources. The characterization of these 

areas improves the estimation of the spatial heterogeneity in pollution levels, while 

accounting for spatial autocorrelation (captured by the spatiotemporal terms) among 

observed values in neighboring areas. Taking that together in the models (emission sources + 

weather data + chemical transport and remote sensing data + land use and geographical data 

+ temporal terms + spatial autocorrelation), it is possible to minimize within-region 

variability and maximize between-regional variability prediction values.

Our results showed that the model performs better in the East North Central region, while 

we observed weakest performance in New England and the mountainous regions. This 

spatiotemporal pattern in model performance is similar that reported in previous studies 

(Hogrefe et al. 2018 and Di et al. 2017). Our model had relatively good performance in areas 

with high population density. Differences in performance for highly populated areas and less 

urban regions were also reported previously9. Regarding the temporal variation, model 

performance was best in the summer season, whereas performance was weakest in winter. 

We suggest that the performance limitations during winter could be related to more 

heterogeneity and lower O3 concentrations in winter and because almost 1/3 of the monitors 

across the U.S. do not operate in winter. The model performance issues for winter are in 

agreement with the previous study in the U.S. (for the period 2000–2012) based on a hybrid 

machine learning model using a neural network42. Di et al. 2017 reported the best 

performance for the fall season.

In addition to differences in performance over space and time, our three-machine learning 

models do not perform equally well at all concentration levels, especially for high 

concentration levels (Figure 1). The ensemble model minimized this limitation by 

combining the three base learners through a non-linear process and fit their contributions to 

vary over space and concentration. Di et al. (2019) found similar results in a recent ensemble 

modeling study for PM2.5.

As we mentioned before, an advantage of our machine learning algorithms is the possibility 

to rank the relative contribution of predictor variables. The variables classified as high 

importance can be used to create a more parsimonious model and provide insights on factors 

of importance for characterizing O3 concentrations. Our analyses suggested four main 

variables with high importance, including the spatially weighted average of O3 

measurements at nearby monitoring locations, CMAQ predictions, GEMS total column O3, 

and spatiotemporally lagged O3 measurements with 1-day lag. Some meteorological 

variables were also important. These variables, especially the variables representing the 

spatio-temporal terms, reflects the influence of the regional and temporal sources when 
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predicting local O3 concentrations with high spatio-temporal resolution. These predictors 

with high importance improved the ability of our model to minimize within-region 

variability and maximize between-regional variability of O3. This is consistent with the 

literature that have shown substantial contributions from spatiotemporal terms31,33,54 and 

meteorological variables3,9,12 when predicting ozone concentration.

As illustrated in Figure S7, daily nationwide averages of O3 decreased somewhat from 2000 

to 2016 in the U.S. We suggest that this temporal variation reflects a combination of 

emissions control3,55 and meteorological conditions3,56–58. The U.S. EPA trend report 

(https://gispub.epa.gov/air/trendsreport/2018/) indicates that the national average of the 

fourth highest daily maximum 8-hour O3 concentration at monitors decreased from about 82 

ppb in 2000 to about 69 ppb in 2016. In our analysis, we used a smoothed conditional means 

function and estimated that the national annual average daily maximum 8-hour ozone 

concentration decreased from about 42 ppb in 2000 to 39 ppb in 2016. The difference in 

trends for our annual metric and the fourth-highest-concentration metric in the EPA report 

are likely because the downward trends in summer O3 concentrations are dampened by the 

relatively flat or increasing trends in winter O3 concentrations in the annual average. Also, 

our estimates are for the entire U.S. on all days, including many areas and periods with low 

ozone concentrations and limited monitoring, whereas the EPA values are based on 

monitored locations concentrations alone. The downward temporal trend in O3 

concentrations observed in our analyses was also observed in previous study42.

The impact of meteorological conditions on O3 concentration is also illustrated by Figure 3, 

which shows that summer and spring were the seasons with the highest O3 levels. This is 

explained by the photochemical process related to O3 formation. Primarily, O3 is formed in 

the presence of sunlight through photochemical reactions involving NOx and VOCs1. 

Overall, low humidity, low precipitation, high temperature, and low wind speed favor O3 

formation10,11. Our results show that O3 concentration increased in numerous regions in the 

U.S. during the spring season over the study period (Figure 3). Previous studies have 

reported that the increases in O3 concentrations in the western U.S. in spring during our 

study period may be associated with increased transport of O3 from Asia associated with 

increased anthropogenic emissions in Asia (e.g., Lin et al., 2017; Cooper et al., 2012). We 

suggest that drier and hotter air between 2000 and 201656,59 may have also increased O3 

concentrations in the spring season. The increase in ozone in the Northeast region in the fall 

and winter seasons may reflect the influence of NOx emission controls. Previous studies 

have suggested that areas where O3 formation is NOx-limited in summer may become VOC-

limited in winter due to the lower photochemical activity and reduced biogenic VOC 

emissions in winter (Jacob et al., 1995; Martin et al, 2004; Simon et al., 2015). NOx 

emission reductions that have reduced the relatively high summertime O3 concentrations in 

the U.S. may therefore have led to some O3 increases in winter (Simon et al., 2015). Model 

simulations under conditions of reduced NOx emissions are consistent with the 

interpretation that NOx emission reductions could have increased O3 concentrations in 

winter and spring in some areas (e.g., Clifton et al., 2014; Simon et al., 2016).

Land use is another important factor linked to the spatial variation of O3 concentration. In 

urban areas, traffic emissions and industrial activity are major sources of O3 precursors and 
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conditions tend to be NOx-saturated. In non-urban areas, sources of O3 precursors include 

emissions from vegetation (emissions of isoprene from vegetation), biomass burning, 

geogenic sources4, and fertilized soils5 and conditions tend to be NOx-limited. Large spatial 

variability also exists in the effects of meteorological conditions on rates of O3 formation. In 

Figure 10, we downscaled O3 distribution in five major urban areas, including New York, 

Los Angeles, Chicago, Houston, and Boston. Intra-urban variations of O3 levels are evident 

in Figure 10 and are due in part to the spatial variation of emission sources, such as vehicle 

NOx emissions that can suppress O3 concentrations under NOx-saturated conditions6,7.

Our study has some limitations. First, some monitoring sites did not operate during the 

entire study period and the spatial distribution of O3 monitors in the continental U.S. is not 

homogeneous. The eastern United States and the western coast are the regions with most of 

the monitors. Consequently, the model performance varied over space and time, as shown in 

Tables 1 and 2. Second, the predictors used in our analyses have different spatial resolution, 

including resolution of 1, 10, and 32 km. To standardize the resolutions at 1 km, we 

interpolated the original data (when the resolution was different from 1 km). During this 

interpolation process, there is an residual error28,60. Third, another residual error is related to 

the leap to predict over the entire domain based on fitting at the limited monitoring 

locations. We applied this approach based on an assumption defined in our study design. By 

leaving out monitoring sites, fitting the model with the remaining sites, and comparing the 

predictions to the observed values, we approximate the prediction error at held out locations. 

This relies on the assumption that the monitoring network has sites at enough locations with 

different characteristics to include the range of characteristics observed in the sites without 

monitoring. The monitoring network includes urban, suburban, and rural locations across the 

U.S. including both regulatory sites as well as CASTNET sites. This includes 2,279 

monitoring locations during the period. Their land use characteristics and climate are 

predictor variables in the model, so we believe this is a reasonable assumption. Note that this 

limitation was imposed by the current monitoring network, and additional O3 monitoring for 

sparsely covered areas and periods (e.g., winter) would help improve models in the future. 

Fourth, missing predictor values occurred at some sites and days, especially the predictors 

based on satellite remote sensing (e.g., AOD had more than 50% missing values, in Table S6 

we present the list of variables sorted by percentage of missing values). We performed an 

imputation process using random forest to fill in the missing values. This process generates 

residual error as well, which can be interpreted based on the R2 of the imputation model. We 

estimated the R2 after comparing variables values before and after imputation at monitoring 

sites. The average R2 was 0.88.

In this study we applied an ensemble learning approach to estimate high spatiotemporal 

resolution of O3 across the continental U.S. The results indicate a high overall model 

performance, with an average R2 of 0.902. We have also estimated model uncertainty in the 

O3 prediction, which will allow futures studies to take into account exposure measurement 

error. Taken together, the results presented here can be useful for the environmental health 

community to more accurately estimate the health impacts of O3 over space and time, 

especially in health studies at intra-urban scale.
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Figure 1 –. 
Density scatter plot of the annual predicted O3 levels versus measured levels for the 

ensemble model.

Note 1: We regressed annual averaged predicted O3 from ensemble model against annual 

averaged monitored O3 using a GAM model with spline on the monitored O3. Blue color 

represents 95% confidence interval.

Note 2: “n_neighbors” represents the density of points (O3 sites) of the scatter plot.
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Figure 2 –. 
Spatial distribution of the standard deviation of the prediction error (SD) of O3 by season.

Note: The seasons were defined as follows: summer (July – September), fall (October – 

December), winter (January – March), and spring (April – June).
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Figure 3 –. 
Spatial distribution of the predicted levels of O3 by the ensemble model.

Note: The seasons were defined as follows: summer (July – September), fall (October – 

December), winter (January – March), and spring (April – June).
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Table 1 –

Cross-validation results by year

Year

Ensemble model Neural 
Network

Random 
Forest

Gradient 
Boosting

R2 RMSE 
(ppb) Intercept Slope Spatial R2 Temporal R2 R2 R2 R2

2000 0.889 5.705 0.088 0.991 0.848 0.905 0.889 0.887 0.889

2001 0.892 5.517 0.254 0.992 0.845 0.911 0.889 0.889 0.892

2002 0.908 5.375 0.338 0.984 0.863 0.924 0.904 0.906 0.907

2003 0.897 5.244 0.126 0.988 0.837 0.917 0.894 0.895 0.896

2004 0.889 4.986 0.543 0.982 0.812 0.912 0.886 0.886 0.888

2005 0.901 5.090 0.228 0.991 0.845 0.921 0.898 0.898 0.900

2006 0.898 4.873 0.357 0.992 0.839 0.918 0.895 0.896 0.898

2007 0.903 4.731 0.284 0.998 0.889 0.916 0.902 0.900 0.902

2008 0.904 4.447 0.317 0.990 0.886 0.916 0.902 0.901 0.903

2009 0.899 4.196 0.032 0.996 0.862 0.915 0.897 0.897 0.899

2010 0.891 4.399 0.090 0.990 0.863 0.908 0.889 0.888 0.890

2011 0.902 4.296 0.009 0.997 0.847 0.921 0.901 0.899 0.902

2012 0.920 4.003 0.339 0.990 0.883 0.933 0.919 0.916 0.919

2013 0.907 3.787 1.049 0.973 0.879 0.921 0.904 0.904 0.907

2014 0.913 3.585 0.259 0.991 0.888 0.922 0.913 0.909 0.912

2015 0.919 3.538 0.447 1.005 0.894 0.926 0.914 0.915 0.918

2016 0.906 3.579 0.187 0.989 0.897 0.934 0.901 0.904 0.907

Overall 
(2000–
2016)

0.905 4.668 0.654 0.985 0.862 0.916 0.904 0.896 0.900

Note: The slope and intercept were obtained from the linear regression model, which we regressed predicted O3 against monitored O3.
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