Table 1 –
Year | Ensemble model | Neural Network | Random Forest | Gradient Boosting | |||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (ppb) | Intercept | Slope | Spatial R2 | Temporal R2 | R2 | R2 | R2 | |
2000 | 0.889 | 5.705 | 0.088 | 0.991 | 0.848 | 0.905 | 0.889 | 0.887 | 0.889 |
2001 | 0.892 | 5.517 | 0.254 | 0.992 | 0.845 | 0.911 | 0.889 | 0.889 | 0.892 |
2002 | 0.908 | 5.375 | 0.338 | 0.984 | 0.863 | 0.924 | 0.904 | 0.906 | 0.907 |
2003 | 0.897 | 5.244 | 0.126 | 0.988 | 0.837 | 0.917 | 0.894 | 0.895 | 0.896 |
2004 | 0.889 | 4.986 | 0.543 | 0.982 | 0.812 | 0.912 | 0.886 | 0.886 | 0.888 |
2005 | 0.901 | 5.090 | 0.228 | 0.991 | 0.845 | 0.921 | 0.898 | 0.898 | 0.900 |
2006 | 0.898 | 4.873 | 0.357 | 0.992 | 0.839 | 0.918 | 0.895 | 0.896 | 0.898 |
2007 | 0.903 | 4.731 | 0.284 | 0.998 | 0.889 | 0.916 | 0.902 | 0.900 | 0.902 |
2008 | 0.904 | 4.447 | 0.317 | 0.990 | 0.886 | 0.916 | 0.902 | 0.901 | 0.903 |
2009 | 0.899 | 4.196 | 0.032 | 0.996 | 0.862 | 0.915 | 0.897 | 0.897 | 0.899 |
2010 | 0.891 | 4.399 | 0.090 | 0.990 | 0.863 | 0.908 | 0.889 | 0.888 | 0.890 |
2011 | 0.902 | 4.296 | 0.009 | 0.997 | 0.847 | 0.921 | 0.901 | 0.899 | 0.902 |
2012 | 0.920 | 4.003 | 0.339 | 0.990 | 0.883 | 0.933 | 0.919 | 0.916 | 0.919 |
2013 | 0.907 | 3.787 | 1.049 | 0.973 | 0.879 | 0.921 | 0.904 | 0.904 | 0.907 |
2014 | 0.913 | 3.585 | 0.259 | 0.991 | 0.888 | 0.922 | 0.913 | 0.909 | 0.912 |
2015 | 0.919 | 3.538 | 0.447 | 1.005 | 0.894 | 0.926 | 0.914 | 0.915 | 0.918 |
2016 | 0.906 | 3.579 | 0.187 | 0.989 | 0.897 | 0.934 | 0.901 | 0.904 | 0.907 |
Overall (2000–2016) | 0.905 | 4.668 | 0.654 | 0.985 | 0.862 | 0.916 | 0.904 | 0.896 | 0.900 |
Note: The slope and intercept were obtained from the linear regression model, which we regressed predicted O3 against monitored O3.