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ABSTRACT Here, we describe the genome of Shewanella chilikensis strain DC57, a
facultatively anaerobic bacterium isolated from corroded seal rings at a floating oil
production system in Australia. The genome of strain DC57 has a size of 4.91 Mbp
and harbors 4,178 predicted protein-encoding genes.

hewanella chilikensis is a facultatively anaerobic, Gram-negative, and rod-shaped

bacterium (1). Members of the genus Shewanella have been reported to be asso-
ciated with microbiologically influenced corrosion (2-6). Shewanella spp. have the
ability to use a variety of electron acceptors, including nitrate, thiosulphate, and iron
oxides (7), which indicates that these microorganisms can cause corrosion by different
mechanisms.

S. chilikensis strain DC57 was isolated from corroded seal rings at a floating oil
production system located in waters on the North West Shelf of Western Australia.
Corrosion products were collected and inoculated in anaerobic phenol red broth
medium (8). After positive growth in tubes incubated at 40°C, the culture was plated
onto phenol red agar and incubated in anaerobic jars with AnaeroGen sachets (Oxoid).
DC57 was purified using the streaking method until an axenic culture was obtained, as
determined by microscopy. Single colonies were transferred to phenol red broth
medium, and DNA was extracted using the DNeasy PowerSoil kit (Qiagen). Extracted
DNA was sequenced with a combination of sequencing platforms. For Illumina se-
quencing, the library was prepared with the Nextera XT DNA sample preparation kit,
and paired-end reads were generated on the MiSeq platform using the MiSeq reagent
kit v3-600, as recommended by the manufacturer (lllumina, San Diego, CA, USA). For
Nanopore sequencing, genomic DNA was prepared using the ligation sequencing kit
1D (SQK-LSK109) without any size selection. Sequencing was performed with the
MinlON Mk1B device and a SpotON flow cell R9.4, as recommended by the manufac-
turer (Oxford Nanopore Technologies, Oxford, UK). Base calling was performed using
Albacore v2.3.1. Quality filtering of the reads was performed with fastp v0.19.4 (9),
which resulted in 3,370,098 short reads (lllumina) with an average length of 245 bp, and
654,567 long reads (Nanopore) with an average length of 1,813 bp. A hybrid assembly
strategy using Unicycler v0.4.7 (10) was applied to perform a de novo genome recon-
struction, with overlap removal, circularization, and rotation. The assembly was vali-
dated with Bandage v0.8.1 (11). Default parameters were used for all software unless
otherwise specified.

The complete genome of DC57 comprises a single circular chromosome
(4,910,425 bp) with an overall GC content of 52.35% and 162-fold coverage. Annotation
was performed with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v4.10
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(12), which predicted 4,434 genes, including 104 tRNA genes, 25 rRNA genes, 4
noncoding RNA genes, 4,178 genes encoding proteins with predicted functions, and
123 genes encoding hypothetical proteins. Classification was performed by calculating
the average nucleotide identity (ANI) with the Python module for ANI analyses (pyANI)
v0.2.7 (13). This analysis revealed that DC57 is closely related to S. chilikensis strain JC5
(GenBank accession number NZ_NIJM00000000.1) with an ANI value of 98.86%.

The genome analysis revealed the presence of the metal reduction pathway (MTR),

two pathways for nitrate reduction (NAP and NAR), and genes for thiosulfate reduction
(phsA and glpE), which could be related to the corrosive potential of the strain.

Data availability. The genome sequence of Shewanella chilikensis strain DC57 was
submitted to GenBank under accession number CP045857. The raw reads were
deposited in the NCBI SRA database under accession numbers SRR11492373 and
SRR11492374.
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