

Assembly of Bacterial Genomes from the Metagenomes of Three Lichen Species

🐵 Wisnu Adi Wicaksono,ª 🗅 Tomislav Cernava,ª Martin Grube,^b Gabriele Bergª

^aInstitute of Environmental Biotechnology, Graz University of Technology, Graz, Austria ^bInstitute of Biology, University of Graz, Graz, Austria

ABSTRACT Bacteria have recently emerged as important constituents of lichen holobionts. Here, 29 bacterial metagenome-assembled genome (MAG) sequences were reconstructed from lichen metagenomes and taxonomically classified in four phyla. These results provide a pivotal resource for further exploration of the ecological roles played by bacterial symbionts in lichen holobionts.

Lichenized fungi are known as symbiotic associations of a mycobiont (fungus) and a photobiont (green alga and/or cyanobacterium). Recently, evidence was found for the presence of bacterial communities that play important roles in this symbiotic system (1–4). Surprisingly little is known about the genomes of dominant but so far uncultured bacteria in these miniature ecosystems. Here, we present bacterial metagenome-assembled genomes (MAGs) that were reconstructed from three lichen metagenome samples, i.e., *Lobaria pulmonaria* (L.) Hoffm., *Cladonia furcata* (Huds.) Schrad., and *Peltigera polydactylon* (Neck.) Hoffm. (3, 5). The selected lichens represent variants of symbiotic associations of the mycobiont with one or two types of photobionts. The lung lichen *L. pulmonaria* includes a green alga (*Dictyochloropsis reticulata*) and a cyanobacterium (*Nostoc* sp.) (7). In contrast, the genus *Cladonia* includes only a green alga (*Asterochloris* sp.) (8).

Lichen samples were obtained from three locations in Austria (3, 5). Metagenomic DNA was extracted using the MO BIO PowerSoil DNA isolation kit. The metagenomic DNA was sequenced by GATC Biotech (Konstanz, Germany) after libraries were prepared with the Illumina TruSeq DNA library kit. The Illumina HiSeq 2000 (*L. pulmonaria*) and HiSeq 2500 (*C. furcata* and *P. polydactylon*) instruments were used for paired-end 100- or 150-bp sequencing, resulting in >35 million reads per metagenome. Community-level assessments of bacterial functioning using these metagenome data sets were reported elsewhere (3, 5).

Default parameters were used for all software unless otherwise noted. Illumina adaptor removal and initial filtering of low-quality reads (Phred scores of <20) were performed using Trimmomatic v0.39 and VSEARCH v2.14.2 (9, 10). Metagenome data sets were then *de novo* assembled using metaSPAdes v3.14.0 (11). Totals of 103,819, 135,511, and 68,049 contigs with a length of >1 kb were generated from the *Cladonia, Lobaria*, and *Peltigera* metagenome data sets, respectively. The generated contigs were binned using MaxBin2 v2.2.7, MetaBAT2 v2.12.1, and CONCOCT v1.1.0 (12–14) and were further dereplicated and aggregated into MAGs using DAS Tool v1.1.1 (15). The completeness and the percentage of contaminations in the MAGs were estimated using CheckM v1.0.13 (16). The quality of the MAGs was classified according to the Minimum Information about a Metagenome-Assembled Genome (MIMAG) standards (17). The Bin Annotation Tool v4.6 was used to obtain the taxonomic classification for each MAG (18).

Twenty-nine MAGs with contamination of <10% were recovered. Among them, 7,

Citation Wicaksono WA, Cernava T, Grube M, Berg G. 2020. Assembly of bacterial genomes from the metagenomes of three lichen species. Microbiol Resour Announc 9:e00622-20. https://doi.org/10.1128/MRA.00622-20.

Editor Frank J. Stewart, Georgia Institute of Technology

Copyright © 2020 Wicaksono et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Wisnu Adi Wicaksono, wisnu.wicaksono@tugraz.at.

Received 12 June 2020 Accepted 22 August 2020 Published 17 September 2020

		Completeness	Contamination	Genome	GC content	MIMAG	GenBank
MAG alias	laxonomic classification	(%)	(%)	size (bp)	(%)	classification	accession no.
Lichen_MAGs_cladonia1	Caulobacter sp. strain S45	95.2	2.5	3,258,825	68.8	High	CAHJWH00000000
Lichen_MAGs_cladonia2	Sphingomonas	96.9	0.4	3,049,150	66.2	High	CAHJWJ00000000
Lichen_MAGs_cladonia3	Sphingomonadaceae	70.6	0.4	2,507,990	68.6	Medium	CAHJWP00000000
Lichen_MAGs_cladonia4	Burkholderiaceae	86.0	2.1	5,800,883	60.4	Medium	CAHJWQ00000000
Lichen_MAGs_cladonia5	Rhodospirillales	72.9	4.7	4,389,355	65.7	Medium	CAHJWS00000000
Lichen_MAGs_cladonia6	Acetobacteraceae	70.4	6.3	4,076,907	68.1	Medium	CAHJXI01000000
Lichen_MAGs_cladonia7	Acidobacteriaceae	97.2	6.2	4,643,711	57.8	Medium	CAHJWN00000000
Lichen_MAGs_lobaria1	Acidobacteriaceae	98.9	3.6	3,786,442	61.3	High	CAHJWL01000000
Lichen_MAGs_lobaria2	Myxococcales	90.8	3.1	5,830,418	63.7	High	CAHJWM01000000
Lichen_MAGs_lobaria3	Sphingobacteriaceae	97.0	3.0	3,839,488	39.2	High	CAHJWG01000000
Lichen_MAGs_lobaria4	Acidobacteriaceae	96.2	1.7	3,656,062	60.4	High	CAHJWI01000000
Lichen_MAGs_lobaria5	Verrucomicrobia	91.3	2.0	4,381,859	63.2	High	CAHJWO01000000
Lichen_MAGs_lobaria6	Chitinophagaceae	97.4	2.6	4,287,644	35.8	High	CAHJWK01000000
Lichen_MAGs_lobaria7	Terrabacteria group	52.4	0.2	2,887,644	62.1	Medium	CAHJWR01000000
Lichen_MAGs_lobaria8	Rhizobiales	76.7	0.9	3,213,075	68.9	Medium	CAHJXE01000000
Lichen_MAGs_lobaria9	Sphingobacteriaceae	87.1	1.1	4,667,688	42.1	Medium	CAHJXH01000000
Lichen_MAGs_lobaria10	Sphingomonas	77.7	2.4	2,792,940	68.1	Medium	CAHJXA01000000
Lichen_MAGs_lobaria11	Betaproteobacteria	87.8	2.2	3,713,330	68.9	Medium	CAHJXF00000000
Lichen_MAGs_lobaria12	Sphingomonas	66.5	2.1	2,627,184	69.0	Medium	CAHJWX01000000
Lichen_MAGs_lobaria13	Sphingomonas	77.5	1.3	2,846,736	68.8	Medium	CAHJWW01000000
Lichen_MAGs_lobaria14	Rhodospirillales	80.7	1.2	3,128,862	67.0	Medium	CAHJWU01000000
Lichen_MAGs_lobaria15	Sphingomonadaceae	82.1	0.0	2,472,747	69.6	Medium	CAHJWT01000000
Lichen_MAGs_lobaria16	Deltaproteobacteria	26.9	1.5	880,962	69.6	Low	CAHJWZ00000000
Lichen_MAGs_lobaria17	"Candidatus Parcubacteria"	40.0	1.1	492,776	48.0	Low	CAHJXB00000000
Lichen_MAGs_peltigera1	Burkholderiales	83.8	5.5	4,417,129	63.3	Medium	CAHJWV01000000
Lichen_MAGs_peltigera2	Rhodospirillales	63.7	1.0	3,333,202	69.5	Medium	CAHJXG01000000
Lichen_MAGs_peltigera3	Sphingomonadaceae	54.1	0.9	1,837,053	68.5	Medium	CAHJXC01000000
Lichen MAGs peltigera4	Sphinaomonas	83.7	1.1	2.414.019	67.0	Medium	CAHJXD01000000

1.7

1,671,302 65.3

Low

CAHJWY01000000

17, and 5 MAGs originated from the *Cladonia*, *Lobaria*, and *Peltigera* metagenomes, respectively. The MAGs were assigned to *Proteobacteria* (20 MAGs), *Acidobacteria* (3 MAGs), *Bacteroidetes* (3 MAGs), and *Verrumicrobia* (1 MAG) (Table 1). One MAG each was classified in the candidate phylum *"Candidatus* Parcubacteria" and the superphylum *Terrabacteria*. We recovered 8 high-quality, 18 medium-quality, and 3 low-quality draft MAGs. The estimated completeness of the MAGs ranged from 26.9 to 98.9%, and genome sizes ranged from 492,776 to 5,800,883 bp. To the best of our knowledge, our data present the first MAGs recovered from lichen metagenomes. They provide an extended basis for further exploration of the symbiotic function of lichen-associated bacteria that will be conducted in follow-up studies.

27.5

Data availability. This shotgun metagenome project with three lichen metagenomes has been deposited in the European Nucleotide Archive (ENA) database under the study number PRJEB38505 and accession numbers ERR4179389 to ERR4179391 for the data sets. The MAG sequences are accessible under the accession numbers provided in Table 1.

ACKNOWLEDGMENT

Lichen_MAGs_peltigera5 Comamonadaceae

This work was supported by a grant from the Austrian Science Fund (FWF) to G.B. and M.G. (FWF project 1882).

REFERENCES

- Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314. https://doi.org/10.1128/AEM.02257-10.
- Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G. 2017. Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:82. https://doi.org/10 .1186/s40168-017-0303-5.
- 3. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner

U, Becher D, Riedel K, Sensen CW, Berg G. 2015. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424. https://doi.org/10.1038/ismej.2014.138.

 Cernava T, Aschenbrenner IA, Soh J, Sensen CW, Grube M, Berg G. 2019. Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME J 13:547–556. https://doi.org/10 .1038/s41396-018-0286-7.

- Cernava T, Vasfiu Q, Erlacher A, Aschenbrenner IA, Francesconi K, Grube M, Berg G. 2018. Adaptions of lichen microbiota functioning under persistent exposure to arsenic contamination. Front Microbiol 9:2959. https://doi.org/10.3389/fmicb.2018.02959.
- Cornejo C, Scheidegger C. 2013. New morphological aspects of cephalodium formation in the lichen *Lobaria pulmonaria* (Lecanorales, Ascomycota). Lichenologist 45:77–87. https://doi.org/10.1017/S0024282912000631.
- Jüriado I, Kaasalainen U, Jylhä M, Rikkinen J. 2019. Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus *Peltigera* (Ascomycota) in Estonia (northeastern Europe). Fungal Ecol 39:45–54. https://doi.org/10.1016/j.funeco.2018 .11.005.
- Yahr R, Vilgalys R, Depriest PT. 2004. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378. https://doi.org/10.1111/j.1365-294X.2004.02350.x.
- 9. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10 .1093/bioinformatics/btu170.
- Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi .org/10.7717/peerj.2584.
- Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. https://doi.org/10.1101/gr.213959.116.
- Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. https://doi.org/10.1038/nmeth.3103.
- 13. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome re-

construction from metagenome assemblies. PeerJ 7:e7359. https://doi .org/10.7717/peerj.7359.

- Wu Y-W, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. https://doi.org/10.1093/bioinformatics/btv638.
- Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF. 2018. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843. https://doi .org/10.1038/s41564-018-0171-1.
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114.
- Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T. 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731. https:// doi.org/10.1038/nbt.3893.
- von Meijenfeldt FB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. 2019. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol 20:217. https://doi.org/10 .1186/s13059-019-1817-x.