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Abstract
Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and
functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of
imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data,
more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic
patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology,
with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally
treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding
normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional
linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading
towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the
potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction
and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and
critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge
about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in
patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow
from disease diagnosis, treatment planning, delivery and patient follow-up.

Keywords Artificial intelligence · Big data · Magnetic resonance imaging · Computed tomography · Stereotactic body
radiation therapy

Introduction

With the introduction of radiomics, both oncologic radiol-
ogy and radiation oncology have gained a highly promis-
ing tool for more sophisticated quantitative tumour analy-
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sis. Current research, especially in oncology, increasingly
focuses on the integration of quantitative, multiparamet-
ric and functional imaging data. In this fast-growing field
of research, radiomics may allow for an all-encompassing
analysis of quantitative imaging data, far beyond the qual-
itative evaluation of visible tissue changes. Through use of
multiparametric, quantitative imaging data, a more tailored
and tumour-specific diagnostic work-up and individualized
treatment concepts may be applied for oncologic patients
in the future.

The scope of current research in this innovative field is
to identify and critically discuss possible application forms
of radiomics, which is why this review tries to summa-
rize current knowledge about interdisciplinary integration
of radiomics in oncologic patients. This review specifically
focusses on investigations on radiotherapy in patients with
liver cancer, including the (radio)-oncologic workflow from
disease diagnosis, treatment planning, delivery and patient
follow-up.
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Radiomics includes not only the commonly known quan-
titative data features derived from the pixel grey-level his-
togram, i.e. mean, maximum, minimum and median pa-
rameters, but also the analysis of imaging data based on
computerized mathematical and statistical feature extrac-
tion, describing further quantitative characteristics of the
segmented regions with regard to tissue heterogeneity, com-
pacity etc. [1]. Radiomic analysis of quantitative imaging
parameters may further characterize both tumour and nor-
mal tissue and even predict tumour response and toxicity
by incorporating these data into statistical or advanced ma-
chine learning models [2–5].

There are already some promising data about radiomics
clarifying mammographic findings suspicious for cancer [6]
or predicting mutational status in glioblastomas [7]. Addi-
tionally, there are still few but promising data regarding
the use of radiomics in oncologic liver imaging [8]. Mor-
phological and functional characterization of liver tumours
with and without contrast-enhanced sequences is the state
of the art in oncologic liver imaging. Recent radiomics stud-
ies demonstrated for the first time the predictive value for
different liver tumours, such as the grade of hepatocellular
carcinoma (HCC) or the differential diagnosis of other pri-
mary or secondary liver tumours and benign liver lesions
[9–13]. Table 1 summarizes these studies.

The present review article aims at summarizing the work
which has been done in the field of radiomics in liver imag-

Table 1 Radiomics for predictive use

Author Aims Imaging
modality

Number
(training and
validation sets,
where available)

Conclusion

Lewis et al.
[9]

To distinguish hepatocellular carcinoma (HCC)
from other primary liver cancers (intrahepatic
cholangiocarcinoma [ICC] and combined HC-
C-ICC) through volumetric quantitative apparent
diffusion coefficient (ADC) histogram parameters
and LI-RADS categorization

MRI 63 Combination of quantitative ADC
histogram parameters and LI-RADS
categorization yielded the best pre-
diction accuracy for distinction of
HCC compared to ICC and combined
HCC-ICC

Wu et al.
[10]

To evaluate the feasibility of using radiomics with
precontrast MRI for classifying HCC and hepatic
haemangioma (HH)

MRI 369 Radiomics-based assessments could
be used to distinguish between HCC
and HH on precontrast images,
thereby allowing noninvasively ef-
ficient identification and minimizing
errors from visual inspection

Oyama
et al. [11]

To evaluate the accuracy for classification of hep-
atic tumours

MRI 37 HCCs,
23 metastatic
tumours, and
33 HHs

Using texture analysis or topological
data analysis allows for classification
of the three hepatic tumours with
considerable accuracy

Wu et al.
[12]

To predict histopathological grading for HCC
cases

MRI 170 A computed radiomics signature it-
self or combined with clinical factors
could help to classify the patients
into high-grade or low-grade HCC

The columns Aims and Conclusion are directly based on the original work as cited in the column Author (wording partly adapted).
CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, LI-RADS Liver Imaging Reporting and
Data System, MRI magnetic resonance imaging, MVI microvascular invasion

ing until today, with a special focus on relevant topics from
the field of radiation therapy. Firstly, it will summarize the
current indications for radiotherapy in the liver, before sum-
marizing the current literature covering radiomics for treat-
ment planning in the liver. A short section on radiomics for
monitoring and follow-up will then be followed by a sum-
mary of radiomics in the imaging of the post-treatment liver.
Finally, we will give a short overview about current limita-
tions in the field of radiomics.

Indications for radiotherapy

With the introduction of image guidance and conformal ra-
diotherapy techniques, the treatment of both primary and
secondary liver tumours has experienced significant im-
provement over the past few years, leading to increased
local control rates and decreased normal tissue toxicity
[14–19].

Recent clinical data indicate that additional local ther-
apy to each metastatic lesion can prolong the overall sur-
vival of oligometastatic patients [20–22]. Furthermore, im-
munotherapy enables new treatment options for several tu-
mour entities, especially in combination with radiotherapy
[23].

In patients with oligometastatic disease, especially hep-
atic metastases exhibit different treatment courses. Patients
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with up to five lesions are increasingly treated with ag-
gressive metastasis-directed treatment options, improving
survival in some patients, even in case of recurrent liver
metastases [24, 25]. In comparison to other locally ablative
treatment options, resection is anticipated for patients with
isolated liver metastases, although being characterized with
an increased post-procedure morbidity [24, 26].

Consequently, minimally invasive options like transar-
terial chemoembolization (TACE) and radiofrequency/
microwave ablation (RFA/MWA) have been evaluated,
demonstrating good high local control rates and safety
records [27–30]. SBRT as a completely non-invasive pro-
cedure is an evolving alternative, showing similar or even
better clinical outcomes [18, 31]. Unfortunately, to date,
prospective data about the different local ablative treatment
options are lacking. Nevertheless, ongoing technical im-
provements provide promising data, especially in the case
of SBRT of liver metastases, with median overall survival
rates of 31.5 months in colorectal cancer patients [32].

Primary liver cancers are generally intended to be re-
sected. However, in case of inoperability, prospective stud-
ies on SBRT and SBRT with optional TACE in primary
HCC showed promising 18-month and 3-year overall sur-
vival rates of 72% and up to 67%, respectively [33, 34].
SBRT is even feasible in patients with advanced-stage HCC,
with 3-year overall survival (OS) rates of 24.3% and 3-year
local control rates of 78.1% [35]. Furthermore, there is in-
creasing evidence that SBRT may even be superior to TACE
regarding survival and recurrence, and especially after prior
TAE/TACE treatment [36, 37]. In case of SBRT in cholan-
giocellular carcinoma (CCC) patients, 3-year OS rates are
about 21%, with increasing local control rates depending
on delivered dose (biological effective radiation dose [max]
>91Gy [α/β= 10Gy]) [38].

Although RFA is regarded as the main alternative treat-
ment option in unresectable HCC, retrospective data indi-
cate the possible superiority of SBRT as compared to RFA
with regard to tumours >2cm [18]. With competing data
being published for the comparison of SBRT and RFA,
prospective trials are needed [39]. If transplantation is indi-
cated, a combination of neoadjuvant SBRT and TACE pro-
vides promising remission and reasonable overall survival
rates [40, 41].

Radiomics for treatment planning

Target volume definition: automatic segmentation
of target volumes and organs at risk

The functional capability of the liver to regenerate and pro-
liferate has been used for a long time in liver surgery [42].
When it comes to a healthy liver, 80% of the organ can

be removed. Although the whole liver exhibits a low ra-
diation tolerance, potentially leading to the serious condi-
tion of radiotherapy-induced liver disease (RILD) [43–49],
the regenerative potential and the parallel radiobiological
character of the liver allows for application of high doses
to a defined volume without compromising liver function
[50].

Patients with liver metastases usually have a function-
ally “healthy” liver. Previous oncological treatments like
chemotherapy or immunotherapy can influence liver func-
tion [51, 52]. How these previous therapies influence the in-
dividual radiation tolerance is still unknown and subject to
research. In contrast to liver metastases, most patients with
primary liver tumours have liver cirrhosis, which limits lo-
cal ablative and surgical treatments due to the subsequently
impaired liver function [53, 54]. Current understanding of
the radiation-induced impairment of liver function sees hep-
atic veno-occlusive disease as the pathological hallmark of
liver injury [55], while at the same time, the vulnerability
of (hepato)biliary structures has to be taken into account,
especially for centrally located liver cancer [56, 57].

Tolerance doses/dose constraints for therapy planning in
organs at risk have been investigated for decades, which
is why tolerance doses also rely on data being gained
with different radiotherapy techniques and—most impor-
tantly—with irradiated volumes significantly larger than
the volumes in modern radiotherapy techniques such as
SBRT [58]. Consequently, organs at risk (OAR) constraints
have to be re-evaluated in order to allow for more tailored
treatment concepts and monitoring during treatment on the
basis of clinical and multiparametric quantitative imaging
data. With SBRT being characterized by different biolog-
ical efficacy as compared to standard radiotherapy, dose
escalation may be performed under consideration of dose
constraints based on analyses on clinical toxicity [59–63].

Radiomic analysis and its use during treatment plan-
ning might further contribute to improved dose escalation
schemes and allow for future automation and increased ro-
bustness of target volume delineation. In addition, a more
reliable identification of high-risk regions with possible tu-
mour infiltration (clinical target volume [CTV]) might be
enabled by radiomics, since radiomics extends beyond the
visible tumour infiltration and provides quantitative data on
potential tumour extension [64, 65]. An exemplified work-
flow for the extraction of radiomic features is shown in
Fig. 1.

Radiomic features and clinical parameters have been
combined in a radiomics signature to preoperatively es-
timate early recurrence in patients with HCC [66, 67]. In
addition, several promising studies (Table 2) have been con-
ducted in liver tumours, where microscopic characteristics
could be identified based on radiomics, thus potentially en-
abling the detection of microscopic tumour infiltration of
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Fig. 1 Exemplary radiomics workflow for liver imaging. Schematic illustration of the entire patient journey including image acquisition, analysis
utilizing radiomics, and the derived patient-specific therapy and prognosis. Symptomatic patients undergo CT (computed tomography) or MR
(magnetic resonance) scans. After image segmentation, radiomic features are extracted. High-level statistical modelling involving machine learning
is applied for disease classification, patient clustering and individual risk stratification

healthy liver tissue with the inherent potential of more pre-
cise clinical target volume delineation in the future. Fur-
thermore, evidence has been provided about prediction of
microvascular invasion of HCC using radiomics on con-
trast-enhanced CT [68–70]. Using a radiomics approach
based on contrast-enhanced T1-weighted MRI in the hep-
atobiliary phase, T-cell infiltration in the tumour and peri-
tumoural margin could be quantified [71]. Ex-vivo investi-
gations in mice demonstrated the detection of microscopic
tumour infiltration locations by the radiomic histogram fea-
ture skewness in liver single-photon emission CT (SPECT)
imaging [72]. Thus, further specification of regions with
a high risk of liver tumour infiltration may be enabled by
radiomics in the future [70, 71].

Independently of current research on standardization of
dose prescription, target volume definition is increasingly
based on functional imaging, such as metabolic imaging
with positron-emission tomography (PET) and functional
sequences of MRI, including diffusion-weighted imaging
(DWI) [73, 74]. PET-imaging allows for quantitative eval-
uation of metabolic function in the liver tumour and normal
liver tissue, thus leading to the possibility of adapted tar-
get delineation and dose reduction in the normal liver tis-
sue [75]. In contrast to PET-based image-guided treatment
planning, contrast-enhanced MRI (including with liver-spe-
cific agents) is already part of daily clinical practice in treat-
ment planning for patients with liver cancer [76].

Contrast-enhanced T1-weighted sequences allow for
morphological target delineation, but functional imaging
sequences such as DWI provide additional information

about perfusion fractions by intravoxel incoherent motion
(IVIM), cellularity by the ADC and even tissue complexity
by kurtosis evaluation [77–84]. Consequently, research is
conducted on incorporation of functional MRI sequences
into the daily clinical practice of treatment planning of
upper abdominal tumours [85]. Besides this, Liu et al.
showed that synthetic CT datasets can be generated from
MRI to ensure accurate liver SBRT [86].

Adding to radiomics, the increasingly used deep learn-
ing methods are able to learn directly from the data, thus
circumventing the need for handcrafting of discriminative
imaging features representing the key concept behind ra-
diomics. Recently, automatic CTV segmentation has been
shown by using convolutional neural networks (CNN),
which appear to be especially useful for image segmenta-
tion tasks [87–89]. Deep learning-based auto-contouring of
the tumour volume has been shown to be at least as efficient
as manual contouring of the OAR for MRI-guided adaptive
radiotherapy [90, 91]. Further promising performance for
deep learning-based automatic segmentation approaches of
the macroscopic gross tumour volume can be found in the
ongoing “Liver Tumour Segmentation Challenge (LiTS)”
(https://competitions.codalab.org/competitions/17094).

Independent of the images to be integrated into treat-
ment planning, robust image registration (deformable or
rigid registration) has to be performed to adjust for dif-
ferences in image acquisition and organ movement, thus
allowing for topographically correct target delineation [92].
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Table 2 Auto-planning and predictive use of radiomics

Author Aims Imaging
modality

Number, (training
(T) and validation
(V) set, where
available)

Conclusion

Chen et al.
[71]

To develop a radiomics model based on
gadolinium-ethoxybenzyl-diethylenetriamine
(Gd-EOB-DTPA)-enhanced MRI for pretreatment
prediction of immunoscore in HCC

MRI 207
T: 150
V: 57

MRI-based combined radiomics
nomogram shows effectiveness in
predicting immunoscore in HCC

Shan et al.
[66]

To predict recurrence of HCC (hepatocellular
carcinoma) after curative treatment

CECT 156
T: 109
V: 47

A radiomics model effectively pre-
dicts early recurrence (ER) of HCC
and is more efficient than conven-
tional imaging features and models

Xu et al.
[68]

To predict microvascular invasion (MVI) and
clinical outcomes in patients with HCC

CECT 495
T: 350
V: 145

The computational approach demon-
strates good performance for predict-
ing MVI and clinical outcomes

Vivanti
et al. [88]

To automatically delineate liver tumours in longi-
tudinal CT studies

CECT 31 The system showed the ability to
predict failures and the ability to
correct them

Vorontsov
et al. [89]

To bring up a semi-automatic tumour segmenta-
tion method

CECT 40 The proposed method can deal with
highly variable data

Bakr et al.
[69]

To predict MVI CECT 28 RF (Radiomic features) com-
puted with single-phased or com-
bined-phased images were correlated
with MVI

Peng et al.
[70]

To develop and validate a radiomics nomogram
for the preoperative prediction of prognosis in pa-
tients with HCC undergoing partial hepatectomy

CECT 304
T: 184
V: 120

Radiomics nomogram showed excel-
lent performance for the individual-
ized and non-invasive estimation of
disease-free survival, which may help
clinicians better identify patients with
HBV-related HCC who can benefit
from the surgery

Zhou et al.
[67]

To predict ER of HCC CECT 215 Radiomics signature was a significant
predictor for ER in HCC

Liu et al.
[86]

To develop and validate a learning-based method
to derive electron density from routine anatomical
MRI for potential MRI-based SBRT treatment
planning; CT and MRI for CT synthesis

(co-regis-
tered)
CT and
MRI

21 Image similarity and dosimetric
agreement between synthetic CT
and original CT

Fu et al.
[90]

To expedite the contouring process for
MRI-guided adaptive radiotherapy (MR-IGART),
a convolutional neural network deep-learning
model is proposed to accurately segment the liver,
kidneys, stomach, bowel and duodenum in 3D
MR images

CEMRI 120
T: 100
V: 10
Test: 10

The proposed method can automat-
ically segment the liver, kidneys,
stomach, bowel, and duodenum in
3D MR images with good accuracy

Zhang et al.
[91]

To build a knowledge-based model of liver cancer
for auto-planning

CECT 70
T: 20

Auto-planning shows availability and
effectiveness

Li et al. [65] CT textural feature analysis for the stratification
of single large HCCs >5cm, and the subsequent
determination of patient suitability for liver resec-
tion (LR) or transcatheter arterial chemoemboliza-
tion (TACE)

CECT 130 Texture analysis demonstrated the
feasibility of using HCC patient strat-
ification for determining the suitabil-
ity of LR vs. TACE

The columns Aims and Conclusion directly based on the original work as cited in the column Author (wording partly adapted).
CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, MRI magnetic resonance imaging,MVI mi-
crovascular invasion
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Adaptive radiotherapy: dose painting

The idea of adaptive radiotherapy summarizes the goals
of patient-specific and tumour-tailored treatment concepts,
allowing for both adapted treatment planning with locally
volitional dose escalation in malignancies and reduction of
dose exposure in the surrounding normal tissue. This is al-
ready possible due to the highly conformal dose application
in modern treatment techniques such as image-guided ra-
diation therapy (IGRT) and SBRT. However, daily image
guidance with cone beam computed tomography (CBCT)
scans and consecutive plan adaptions request a high cost
in resources while only providing low-resolution CBCT
images. The latest introduction of hybrid MR-guided ra-
diotherapy gadgets might finally allow for online imaging
and plan adaption based on high-resolution images, espe-
cially with respect to the soft tissue of upper abdominal
organs [93]. Furthermore, this also allows for taking into
account tumour heterogeneity based on quantitative, func-
tional imaging data, exceeding the purely morphological
characteristics and potentially allowing for earlier evalua-
tion of tumour response and local control failure already at
the beginning of radiotherapy and in the meantime (Table 3;
[91, 94]).

Independent of general outcome analysis, the incorpo-
ration of radiomics into treatment planning may further
improve the analysis and prediction of normal tissue tox-

Table 3 Radiomics for predicting patient outcome

Author Aims Imaging modality Number, (train-
ing (T) and
validation (V)
set, where
available)

Conclusion

Cai et al.
[99]

To develop and validate a radiomics-based
nomogram for the preoperative prediction
of posthepatectomy liver failure (PHLF) in
patients with HCC

CECT 112
T: 80
V: 32

A nomogram based on the Radio-
mics-score, model for end-stage liver
disease (MELD), and performance
status (PS) can predict PHLF

Ibragimov
et al. [100]

To predict toxicity beyond the existing
dose/volume histograms

CECT 125 A framework offers clinically accu-
rate tools for hepatobiliary toxicity
prediction and automatic identifica-
tion of anatomical regions that are
critical to spare during stereotactic
body radiation therapy

Park et al.
[101]

To develop and validate a radiomics-based
model for staging liver fibrosis

Gadoxetic
acid-enhanced
hepatobiliary
phase MRI

436 Radiomics analysis of gadoxetic
acid-enhanced hepatobiliary phase
images allows for accurate diagnosis
of liver fibrosis

Dogan et al.
[94]

To determine the changes in image texture
features (delta-radiomics) measured on
daily low-field MRI and whether delta-ra-
diomics features could be used to assess
treatment response and predict patient out-
comes

MRI 10 Dogan et al. demonstrated that three
delta-radiomics texture features ex-
tracted from low-field MRI during
SBRT in liver were able to differenti-
ate between local disease control and
local control failure

The columns Aims and Conclusion are directly based on the original work as cited in the column Author (wording partly adapted).
CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, MRI magnetic resonance imaging,MVI mi-
crovascular invasion

icity, as proposed by the QUANTEC group (Quantitative
Analysis of Normal Tissue Effects in the Clinic) [95, 96].
There are already promising data with regard to toxicity
after radiotherapy of head and neck and lung cancers [97,
98]. However, regarding toxicity after treatment of liver
tumours, there is still little data available and future inves-
tigations are needed. Cai et al. demonstrated the prediction
of liver failure after hepatectomy in patients with HCC by
preoperative radiomics-based nomograms [99]. A predic-
tive nomogram and a CNN including imaging data with
high performance for toxicity prediction after liver SBRT
are already available [57, 100]. Generally, toxicity analysis
in healthy liver tissue should be improved even more, since
MRI enables accurate liver function analysis and radiomics
analysis allows for accurate staging of liver fibrosis and
may prevent and, vice versa, predict RILD [101–104].

Monitoring/follow-up

First promising results regarding the predictive potential of
radiomics for local response after radiotherapy and TACE
have recently been demonstrated [105–107] and are listed in
Table 4. Treatment response of liver metastases after TACE
has been determined using a radiomics-based analysis re-
sulting in area under the curve (AUC) in receiver operating
characteristics (ROC) of up to 0.83 [105]. Radiomic fea-
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Table 4 Radiomics for monitoring/follow-up

Author Aims Imaging
modality

Number, (training
(T) and validation
(V) set, where
available)

Conclusion

Reimer
et al. [105]

To determine whether post-treatment MRI-based
texture analysis of liver metastases may be suit-
able for predicting therapy response to transarte-
rial radioembolization (TARE) during follow-up

CEMRI 37 The model indicates the potential
of MRI-based texture analysis at
arterial- and venous-phase MRI for
the early prediction of progressive
disease after TARE

Cozzi et al.
[106]

To predict overall survival and local control Non-con-
trast CT

138 Survival could be predicted using
a radiomics signature made by a sin-
gle shape-based feature

Kim et al.
[107]

To predict survival (overall and progression-free
survival)

CECT 88 A combination of clinical and ra-
diomic features better predicted sur-
vival

Mokrane
et al. [108]

To enhance clinicians’ decision-making by di-
agnosing HCC in cirrhotic patients with indeter-
minate liver nodules using quantitative imaging
features

CECT 178
T: 142
V: 36

Radiomics can be used to non-in-
vasively diagnose HCC in cirrhotic
patients with indeterminate liver nod-
ules, which could be used to optimize
patient management

Donghui
et al. [13]

To identify aggressive behaviour and predict re-
currence of HCC after liver transplantation (LT)

CECT 133
T: 93
V: 40

Radiomics signature extracted from
CT images may be a potential imag-
ing biomarker for liver cancer inva-
sion and enable accurate prediction
of HCC recurrence after LT

Zhao et al.
[109]

To investigate the combined predictive per-
formance of qualitative and quantitative MRI
features and prognostic immunohistochemical
markers for the ER of intrahepatic mass-forming
cholangiocarcinoma (IMCC)

CEMRI 47 The combined model was the supe-
rior predictive model of ER

The columns Aims and Conclusion are directly based on the original work as cited in the column Author (wording partly adapted).
CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, MRI magnetic resonance imaging,MVI mi-
crovascular invasion

tures have been integrated into multivariate models predict-
ing local control and overall survival rates after radiother-
apy of HCC with an AUC of 0.80 [106]. Furthermore, by
combining radiomics features with clinical data, survival
prediction might even be improved in patients with HCC
[13, 107, 108]. Even in case of cholangiocarcinoma, pre-
operative MRI was able to predict early recurrence, espe-
cially in combination with immunohistochemical markers
[109].

Imaging of the post-treatment liver

In addition to a temporary/reversible decline in metabolic
function, liver tissue is characterized by distinct macro-
scopic, microscopic and CT/MR-morphological changes af-
ter radiotherapy; exemplary changes are given in Fig. 2. In
patients with sufficient baseline liver function prior to ra-
diotherapy, a compensatory hypertrophy of the untreated
liver may occur after radiotherapy [110]. Repetitive imag-
ing during and after radiotherapy demonstrated that changes
in metabolic liver function are also accompanied by distinct

changes in quantitative imaging data of the liver tumour and
the normal liver tissue [53, 111–114].

Nevertheless, there are still few data about quantita-
tive imaging encompassing the whole treatment course of
liver tumours, especially with respect to normal tissue al-
terations. Multiparametric imaging might allow for both
specification in staging examinations and acceleration by
the use of quantitative imaging parameters, potentially re-
placing extensive amounts of qualitative imaging sequences
for visible, mainly qualitative evaluation of the tumour and
normal tissue. Sequences such as DWI with quantitative
ADC maps are characterized by these possibilities and al-
low for functional analysis of the tumour response after
SBRT [115].

As a consequence, integration of this quantitative data
might lead to an improvement of oncologic patient manage-
ment in future, especially with respect to the large amount
of radiological data in image-guided radiation oncology. In-
vestigations in this field emphasize the role of big data in
oncology. With regard to radiation oncology, the so-called
radiomics concept with computerized algorithm-based pa-
rameters may be successfully integrated into daily clini-
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Fig. 2 Longitudinal changes of a hepatic metastasis in the right liver lobe after stereotactic radiotherapy (SBRT). MRI sequences: diffu-
sion-weighted imaging (DWI) transverse (a–c), contrast-enhanced T1-weighted sequence (portal-venous phase) transverse (d–f) and coronal (g–i).
MRI prior to SBRT (a,d, g), 3 months after SBRT (b, e,h) and 12 months after SBRT (c, f, i). Morphological response of DWI restriction, T1-w
hypointensity after SBRT with longitudinal reduction of peritumoral changes of the normal tissue. White arrows highlight the region of interest
including the hepatic metastasis in the right liver lobe and the peritumoral changes after SBRT

cal practice, supporting decision-making and improving the
workflow of radiation therapy.

Current limitations of radiomics

As reviewed above, radiomics for radiotherapy of liver tu-
mours is highly promising, but we are still in need of further
data about its validity and optimal usage for a reliable trans-
lation to daily clinical practice. The correct and robust ap-
plication of radiomics analysis has to be investigated, since
the algorithm-based analysis of quantitative date is not stan-
dardized within different institutions, or even within single
institutions, and can easily be performed differently. In-
dependently of software- and hardware-induced variability
[116–121], texture analysis is also hindered by uncertainties
in patient immobilization and organ movements, especially
with regard to MRI examinations [122, 123]. On top of this,
its usage for treatment decisions and treatment planning has

to be investigated in prospective trials including ex-vivo,
in-vivo volunteer and in-vivo patient examinations allow-
ing for founded conclusions about its usage. Furthermore,
the analysis of radiomics necessitates sufficient informa-
tional technique (IT) infrastructure with high data storage
capacity and computational performance in image analysis,
which is why the introduction of radiomics analysis in ra-
diation oncology requests an IT structure similar to the one
in radiology institutions.

Independent of providing sufficient software and hard-
ware, incorporation of radiomics into radiation oncology
also necessitates interdisciplinary teams, including medical
doctors (clinical radiation oncologists, clinical radiologists),
medical physicists and most importantly, computer scien-
tists. The evaluation of radiomics on the basis of incorpo-
rating the imaging data together with clinical and histolog-
ical data into artificial intelligence techniques, such as deep
convolutional neural networks, is of utmost importance.
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Conclusion

Due to the introduction of modern radiation treatment tech-
niques such as SBRT and IGRT, radiotherapy is capable
of successfully treating both primary and secondary liver
tumours, with promising local control rates. With the pos-
sibilities of multiparametric, quantitative data, including the
deeper radiomics analysis, information exceeding qualita-
tive evaluation of visible changes may be included into
oncologic radiology and radiation oncology. Hybrid MR-
guided radiotherapy gadgets may summarize these tech-
niques and, together with further evaluations with artificial
intelligence, patient-specific and tumour-tailored radiation
treatment may become a reality.

As a consequence, prospective multi-institutional trials
for liver radiotherapy are needed, with standardized im-
age acquisition integrating radiomics quality scores to im-
prove the research quality and to increase the influence of
radiomics, further analysing radiomics’ impact in patients
with liver tumours and evaluating the true potential of the
predictive models.
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