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Investigating causal relationships 
between Body Mass Index and risk 
of atopic dermatitis: a Mendelian 
randomization analysis
Yik Weng Yew1,2*, Marie Loh2,3, Steven Tien Guan Thng1,4 & John C. Chambers2,3

Population studies suggest that atopic dermatitis (AD) is associated with an increased risk of obesity, 
however a causal relationship between these two conditions remains to be established. We therefore 
use Mendelian randomization (MR) to evaluate whether obesity and AD are causally interlinked. We 
used summary statistics extracted from genome wide association studies of Body Mass Index (BMI) 
and AD. MR analysis was performed in both directions to establish the direction of causality between 
BMI and AD. We find that genetically determined increase in adiposity is associated with increased 
risk of AD (odds ratio of AD 1.08 [95% CI 1.01 to 1.14; p = 0.015] per unit increase in BMI). Conversely, 
genetically determined increased risk of AD is not associated with a higher BMI (change in BMI 
attributable to AD based on genetic information: 0.00; 95% CI − 0.02 to 0.02; p = 0.862). There was no 
evidence for confounding of these genetic analyses by horizontal pleiotropy. Our results indicate that 
the association of AD with obesity is likely to reflect a causal role for adiposity in the development of 
AD. Our findings enhance understanding of the etiology of AD, and the basis for experimental studies 
to evaluate the mechanistic pathways by which adiposity promotes AD.

Atopic dermatitis (AD) is a common chronic inflammatory skin disease with significant patient and population 
burden. It currently affects 20% of children and 10% of adults in the developed world1. It is characterised by itch 
and skin inflammation2 reflecting the underlying epidermal barrier dysfunction3,4 and immune dysregulation 
of the skin5. Increasingly, it has been reported to be a systemic disease and observed to be associated with other 
chronic co-morbidities that have immunological basis, such as asthma and allergic rhinitis, as well as metabolic 
and psychological disturbances6.

AD has been reported to be associated with the presence of obesity in many observational epidemiological 
cohort studies. In a recent meta-analysis, it has been reported that patients who were obese had close to 1.5 times 
higher odds of having AD7. The rising global prevalence of AD, also closely parallels increasing global burden of 
obesity8,9. However, these predominantly cross sectional and observational studies may be limited by confounding 
factors such as adverse demographic or environmental exposures, and also cannot exclude reverse causation10,11. 
Whether BMI has a causal role in the development of AD therefore remains uncertain.

Causality between an exposure and outcome can be evaluated or estimated with a study design known as 
Mendelian randomization (MR)12,13. This approach investigates causal relationships by using inherited genetic 
variants as instrumental variables that influence exposure status. As these genetic variants are randomly allocated 
at point of conception, they are analogous to the randomization process in controlled trials and are less affected 
by problems of confounding factors and reverse causation. In this study, we therefore used genetic associations 
and concept of Mendelian randomization (MR) to evaluate the causal relationships between AD and obesity, as 
measured by Body Mass Index (BMI, a widely used measure of adiposity).
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Results
Our experimental design is summarized in Fig. 1. In brief, we carried out bi-directional MR analysis using 
genetic data from two recently published genome-wide association study (GWAS) datasets of BMI and AD in 
accordance to recent proposed guidelines for reporting MR analysis14–17.

Effect of BMI upon AD.  We identified genetic variants influencing BMI (BMI SNPs) for use as genetic 
instruments to evaluate the effect of adiposity on risk of AD in our MR experiment. (Supplementary Fig. S1a). 
We used the most recent published GWAS for BMI which comprises the meta-analysis between data from the 
GIANT consortium and the UK Biobank study (N = 681,275 participants). There were a total of 941 SNPs that 
were associated with BMI at P < 1 × 10–8(Supplementary Table S1). For the genetic effects on BMI, we used the 
results of the conditional and joint multiple SNP (COJO) analysis. We then evaluated the relationship between 
these BMI SNPs and AD using effect estimates from a recent GWAS of AD (N = 21,000 cases and 95,000 con-
trols). Results for MR analyses are summarized in Table 1. The MR estimate of BMI on AD using inverse variance 
weighted (IVW) analysis yielded an odds ratio of 1.08 (95% CI 1.01 to 1.14; p = 0.015) for having AD per unit 
increase in BMI (kg/m2). The maximum-likelihood MR estimate gave a similar odds ratio for AD of 1.08 (95% 
CI 1.01 to 1.14; p = 0.015) per unit increase of BMI (kg/m2). The weighted median based method and MR-Egger 
regression analysis yielded odd ratios of 1.07 (95% CI 0.97 to 1.18) and 1.06 (95% CI 0.96 to 1.16) respectively. 
However, neither reached statistical significance (p = 0.195 and p = 0.248 respectively). The MR-Egger regression 

Figure 1.   Schematic diagram of Mendelian randomization (MR) experiment of exposure upon outcome of 
interest. Known genetic instruments (SNPs) for exposure were used as instrumental variables to assess the 
causal effect of exposure upon outcomes. Β1exposure is the estimated coefficient from the regression of exposure 
on the genetic variant(s) using the exposure GWAS. Β2(Observed) is the observed coefficient of the relationship 
between the exposure and outcome of interest. Β3outcome is the regression coefficient of outcome on the 
corresponding genetic variant using the outcome GWAS. MR estimate is the wald ratio of Β3outcome/Β1exposure. 
Significant (P < 1 × 10−8) and near-independent BMI SNPs (based on an approximate conditional and joint 
multiple-SNP (COJO) analysis that takes into account LD (linkage disequilibrium) between SNPs at a given 
locus) from BMI GWAS were used as instrumental variables to assess the causal effect of BMI upon AD while 
significant (P < 5 × 10−8) and independent AD SNPs (at least 4 MB(mega base pairs) apart) from AD GWAS were 
used as instrumental variables to assess the causal effect of AD upon BMI.

Table 1.   Summary results of Mendelian randomization (MR) analysis using various methods. *Excluding 
possible pleiotropic genetic factors in analysis.

MR method Parameter Beta or OR (95% CI) P value

Risk of atopic dermatitis (AD) per unit (kg/m2) increase in BMI Based on MR

IVW (random effects) OR 1.08 (1.01 to 1.14) 0.015

IVW (random effects, modified*) OR 1.12 (1.04 to 1.21) 0.004

Maximum likelihood method OR 1.08 (1.01 to 1.14) 0.015

Weighted median method OR 1.07 (0.97 to 1.18) 0.195

MR Egger (random effect) OR 1.06 (0.96 to 1.16) 0.248

Unit (kg/m2) change in BMI among those who had AD compared to controls

IVW (random effects) β 0.00 (− 0.02 to 0.02) 0.862

IVW (random effects, modified*) β 0.00 (− 0.02 to 0.02) 0.982

Maximum likelihood method β 0.00 (− 0.03 to 0.02) 0.868

Weighted median method β  − 0.01 (− 0.03 to 0.01) 0.312

MR Egger (random effect) β 0.04 (− 0.02 to 0.11) 0.189
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analysis gave no significant evidence of horizontal pleiotropy, with the intercept being not significantly deviated 
from zero (intercept: 0.000; 95% CI − 0.002 to 0.003; p = 0.663).

As part of sensitivity analyses, we repeated the MR studies removing SNPs with pleiotropic effects that might 
confound the relationship between BMI and AD (see “Methods” section). This modified IVW analysis yielded a 
similar odds ratio for AD per unit increase in BMI (kg/m2) of 1.12 (95% CI 1.04 to 1.21). As SNPs identified by 
the COJO analysis could potentially include non-independent variants in high linkage disequilibrium (LD), as a 
further sensitivity analysis, we systematically excluded SNPs across a range of r2 thresholds (r2 > 0.1, 0.2 and 0.5) 
followed by distance pruning at < 500 kb as well as SNPs with r2 thresholds (r2 > 0.001 and > 0.01) within 1000 kb 
apart (Supplementary Table S2a). MR estimates obtained were statistically significant and consistent with results 
obtained when all 941 GWAS BMI SNPs were analysed (Supplementary Table S2b).

Effect of AD upon BMI.  We next identified genetic variants influencing AD (AD SNPs) for use as genetic 
instruments to assess whether AD has a causal effect on BMI. We identified 24 AD SNPs from the results of the 
EAGLE consortium dataset. (Supplementary Fig. S1b, Supplementary Table S3) MR results are summarized in 
Table 1. The MR estimate for the effect of AD on BMI using the IVW method yielded an effect estimate of 0.00 
unit change in BMI (kg/m2) among those who had AD compared to controls (95% CI − 0.02 to 0.02; p = 0.862). 
The maximum-likelihood MR estimate gave a similar effect estimate of 0.00 (95% CI − 0.03 to 0.02; p = 0.868). 
The weighted median based method and MR-Egger regression analysis yielded effect estimates of − 0.01 (95% 
CI − 0.03 to 0.01) and 0.04 (95% CI − 0.02 to 0.11) respectively. None reached statistical significance (p = 0.312 
and p = 0.189 respectively). The MR-Egger regression analysis gave no significant evidence of horizontal pleiot-
ropy, as the intercept was not significantly deviated from zero (Intercept: − 0.00; 95% CI − 0.01 to 0.00; p = 0.152). 
Modified IVW analysis after excluding potential horizontal pleiotropic SNPs, based upon published associations 
(see “Methods” section), yielded a similar effect estimate of 0.00 (95% CI − 0.02 to 0.02).

No measurement error [NOME] assumption.  To assess how measurement errors in SNP exposure 
estimates might affect our results, we estimated the attenuation of effect estimates in IVW and MR Egger MR 
methods using F statistics and I2

GX respectively (see “Methods” section). Both statistics range from 0 to 100%, 
with values close to 100% suggestive of minimal attenuation.

For the IVW analyses, we find almost no attenuation of effect estimates (FGX − 1/FGX− = 99.6% and 93.1% for 
the BMI to AD and AD to BMI MR analyses respectively). The I2

GX estimate for MR Egger analysis (BMI to AD) 
was 93.6%, suggesting that any measurement errors in the SNP BMI associations did not attenuate the effect 
estimates to a large degree. In contrast, the I2

GX estimate for AD to BMI was 4%, suggesting that MR estimate 
derived from MR-Egger may be attenuated by measurement errors in AD, and is therefore less robust in evaluat-
ing MR estimates.

Discussion
Using Mendelian randomization, we showed that a higher BMI was causally associated with an increased risk 
of AD. In contrast, there was no evidence for a causal relationship of AD with an increase in BMI. We demon-
strated that these findings are based upon valid primary MR assumptions and were also robust across different 
MR methods12,18,19.

Our results are consistent with the findings of prospective observational birth/infant cohort studies20,21. BMI 
at infancy or fat mass at birth is associated with an increased risk of a subsequent AD diagnosis, with other pro-
spective observational studies of children also reporting that presence of obesity was associated with subsequent 
development of AD22–25. Although cross-sectional studies in adults support a relationship between AD and 
obesity, the direction of causality is uncertain26. Mendelian randomization thus provides a unique opportunity 
to examine this directionality.

Our mendelian randomization study suggested that BMI may have a causal role in the development of 
AD. The underlying mechanisms for this phenomenon could be secondary to the pro-inflammatory state and 
impaired epidermal barrier status of obesity27–29. The body adipose tissue contributes to the persistent low-grade 
inflammation by production of inflammatory cytokines27,28,30,31. Adipokines such as leptin and adiponectin play 
a role in the production of further inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α) and 
interleukin (IL-) 6 from the adipose tissue30,31. Leptin further drives the T cell activation towards a Th1 phenotype 
with production of interferon γ28. These pro-inflammatory cytokines TNF, IL-6 and interferon γ in play a role 
in the inflammation of AD28,32. The adipose tissue is also the site for peripheral aromatization of androgens to 
oestrogen hormones such as oestrone and β-oestradiol30. The latter has been demonstrated to switch the initiating 
immune reaction from Th1 to Th2 type and also increase production of IL-4 and IL-13, characteristic of AD27. In 
addition to these inflammatory responses, obese individuals are observed to have an impaired epidermal barrier 
function as evidenced by an increased trans-epidermal water loss28.

The finding in our MR study that obesity has a causal relationship with AD is of great clinical importance as 
obesity could therefore be a modifiable risk factor for AD. Obesity itself has significant morbidity and mortality 
risks and therefore physicians should be cognizant of concomitant obesity and its related complications among 
AD patients. Although the importance of weight loss is widely appreciated by cardiovascular and metabolic 
medicine physicians, there is currently little appreciation of the importance of healthy weight in the manage-
ment of dermatological conditions. Our results therefore have the potential to change current management 
guidelines for example, incorporating advisory regarding weight control through lifestyle modifications as a 
potential measure to alleviate AD.

Strengths of our study include the use of the two largest GWAS datasets for AD and obesity consisting of 
participants with European descent to date, with a total sample size of about 700,000 individuals and 21,000 AD 
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cases and 95,000 controls respectively14,15. The genetic variants identified represent strong genetic instruments 
for evaluating causality. The correlation between genetic risk score based on the 941 SNPs and the BMI meas-
urement in an independent validation cohort were 0.2214. The variance explained in this cohort from the SNPs 
were 6.0%. The AD GWAS dataset explain about 12.3% and 2.6% of variance for the previously established and 
newly identified SNPs15. This provided evidence that the MR assumption of relevance was valid in our study33.

We also assessed and supported the validity of the remaining two key MR assumptions of independence and 
exclusion restriction33. Modified IVW MR analysis, excluding potential pleiotropic factors based on published 
associations yielded effect estimates similar to our main analysis. Our MR-Egger intercept analysis also showed 
no evidence of confounding by horizontal pleiotropy19.

Various other MR methods (maximum likelihood, MR-Egger and weighted median method), in addition 
to the IVW method, were also performed as part of sensitivity analysis17. Results were consistent and similar in 
its direction and magnitude. Estimates from the MR-Egger and weighted median methods were not statistically 
significant and tend to have less precise confidence intervals.

Limitations include the use of GWAS datasets of participants of only European ancestry, which limits potential 
generalization to other populations such as Asians. Meta-analysis of studies from Asia has reported a significant 
relationship between AD and obesity7. However, as GWAS datasets from Asian participants have a much smaller 
sample size (weak instruments), they were not utilised in our current analyses34,35.

Conclusions
In this study, taking a MR approach, we provide evidence to suggest that a higher BMI causally increases the risk 
of AD in individuals of European descent. There was no evidence that the reverse direction is true. Obesity can 
therefore act as a modifiable risk factor for AD, potentially changing our current clinical dermatological prac-
tice for management of patients with AD who are obese. In addition, our results open up new avenues to better 
understand the mechanistic pathways of BMI driving the risk of AD. This could in turn lead to the development 
of novel therapeutics to maintain skin health and prevent AD.

Methods
Two-sample MR analysis with multiple genetic variants as instrumental variables using summarized data was 
performed in our study to assess the causal relationship and its strength between BMI and AD36. The MR analysis 
was performed in both directions to establish the direction of causality between BMI and AD. The validity of the 
instrumental variables are important for the MR analysis and are defined by three key assumptions: (1) genetic 
variants are associated with the exposure factor of interest (Relevance assumption); (2) genetic variants are inde-
pendently associated with the outcome with no unmeasured confounders (Independence assumption); (3) genetic 
variants only affect the outcome through their effect on the exposure factors with no evidence of other horizontal 
pleiotropic factors (Exclusion restriction assumption)33. Data was extracted from the two largest GWAS reported 
to date on BMI and AD to fulfil the relevance assumption of MR. We carried out sensitivity analyses by exclud-
ing SNPs that have associations with possible confounders in the MR analyses, and performed an MR-Egger 
test of pleiotropy, to assess the validity of the independence and exclusion restriction assumptions respectively.

GWAS of BMI and AD.  The following GWAS for BMI and AD provided genetic risk variants information 
for the MR analysis. Genetic risk variants for BMI were determined using the combined analysis of the Genetic 
Investigation of ANthropometric Traits (GIANT) consortium and the UK biobank dataset of about 700,000 
individuals with European ancestry in total14. The GIANT consortium is a joint GWAS and metabochip meta-
analysis of 114 studies that measured BMI as its phenotype of interest. Details of included studies (assessment 
and definitions of phenotypes, genotyping and quality control process) in the BMI GWAS analysis and UK 
biobank are provided in Supplementary Table  S4. Meta-analysis of summary statistics from these two stud-
ies identified 941 near-independent single nucleotide polymorphisms (SNPs) associated with BMI at a revised 
genome-wide significance threshold of P < 1 × 10−8). These SNPs were identified using an approximate condi-
tional and joint multiple-SNP (COJO) analysis that takes into account LD (linkage disequilibrium) between 
SNPs at a given locus. As part of sensitivity analyses, we did a between-SNPs LD r2 analysis and excluded SNPs 
across a range of r2 thresholds (> 0.1, > 0.2, > 0.5) followed by distance pruning at < 500 kb as well as SNPs with r2 
thresholds (r2 > 0.001 and > 0.01) within 1000 kb apart (Supplementary Table S2a).

Similarly, genetic risk variants for atopic dermatitis were determined using the dataset of the EArly Genetics 
and Life course Epidemiology (EAGLE) Consortium15 of 21,000 cases and 95,000 controls. This GWAS meta-
analysis analyzed AD case–control status in 22 individual cohorts of European ancestry. Details of included 
studies in the AD GWAS analysis are provided in Supplementary Table S5. The study reported 24 SNPs reach-
ing genome wide significance (P < 5 × 10−8) for AD risk. These SNPs were independent with at least 4 Mb apart.

Statistical analysis.  The two-sample MR strategy was adopted in our analysis37. The SNP-exposure effects 
and the SNP-outcome effects were obtained from separate GWAS datasets. First, summary level SNPs-exposure 
associations were extracted from the first GWAS dataset on exposure as MR instruments. These instruments 
SNPs-outcome associations were then extracted with the second GWAS dataset on outcome. Any missing expo-
sure associated variants in the outcome GWAS dataset were replaced by linkage disequilibrium (LD) proxies 
of a minimum of 0.6. Only one SNP out of the 941 SNPs (rs11172702) in the BMI GWAS dataset had missing 
SNP-outcome effect measure in the outcome (AD) dataset that required a proxy SNP (rs11172644; LD: r2 = 1) 
for analysis. Comparatively, 10 out of the 24 SNPs (rs10199605, rs12730935, rs2227483, rs2592555, rs4809219, 
rs10791824, rs12188917, rs2212434, rs2918307 and rs6419573) had missing SNP-outcome effect measures in the 
BMI dataset and required proxy SNPs of LD r2 values between 0.67 to 1.00. Four missing SNPs (rs112111458, 
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rs4713555, rs145809981 and rs61813875) had no proxy SNPs with adequate LD r2 values of greater than 0.6 and 
were therefore excluded from the analysis.

The exposure and outcome effects were then harmonized. This involved identification of SNP variants of 
unmatched effect and alternate alleles between the two datasets and correction by switching the direction of their 
effect estimates and corresponding effect allele frequencies. We searched for palindromic SNPs that might have 
inverted the direction of effect in the BMI and AD GWAS datasets, and found no evidence for such inversion. 
There was therefore no need to realign any of the palindromic SNPs used. Individual SNP estimates were first 
calculated using the Wald ratio method. The Wald ratio refers to the ratio estimate of the effect of the variant-
outcome divided on the effect of variant-exposure. The standard error of the ratio estimate was approximated 
using the delta method38.

Inverse variance weighted MR.  An MR estimate using multiple SNPs was obtained by performing a 
random effects inverse variance weighted (IVW) meta-analysis of each Wald ratio of corresponding SNP18. The 
IVW method assumes that all SNPs are valid instruments or any underlying horizontal pleiotropy is balanced 
across the SNPs39. In order to examine the robustness of the estimates, we also estimated the causal effect esti-
mate of exposure on outcome using three other MR methods: maximum likelihood method, weighted median-
based method and MR-Egger regression analysis.

Maximum likelihood method.  The causal effect parameter was estimated from a model that assumed a 
linear relationship between exposure and outcome and a bivariate normal distribution for the genetic variants40. 
Standard errors for the maximum-likelihood estimates were obtained using the inverse Hessian matrix. This 
method made similar assumptions as the IVW approach but provides more reliable estimates in the presence of 
measurement error in SNP-exposure effects41.

Weighted median‑based method.  This approach examines the median effect of all available SNPs and 
only requires half the SNPs to be valid instruments for the effect estimate to be unbiased. 50% of the weights in 
the analysis will be from ratio estimates smaller or equal to the weighted median42.

MR‑Egger regression analysis.  The MR-Egger regression analysis is an adaptation of the IVW analysis by 
allowing a non-zero intercept that is estimated as part of the analysis43. This relaxed the assumption of no hori-
zontal pleiotropy and allowed net horizontal pleiotropic effect across all SNPS to be unbalanced, or directional. 
However, any horizontal pleiotropic effect should not correlate with SNP-exposure effects. MR-Egger intercept 
test was also performed as part of the MR-Egger regression analysis to assess whether the genetic variants have 
directional horizontal pleiotropic effects on the outcome. It is a test of whether the intercept of the MR-Egger 
regression analysis significantly differs from zero.

Power calculation of MR analysis.  Calculations for statistical power for our MR analyses were per-
formed according to Brion et  al. using their web-based application44. Power calculations of the MR analysis 
of BMI upon AD were provided for a range of true odds ratio of AD per unit increase of BMI (Supplementary 
Fig. S2)44. Calculations were based on a sample size of 116,000 (21,000 AD cases and 95,000 controls) in the 
outcome dataset (i.e. AD GWAS study) and a type 1 error rate of 0.05. Proportion of variance explained for the 
association of the included SNPs (n = 941) with BMI (exposure variable) was 0.06. Our study had 80% power to 
detect an odds ratio for AD of 1.09 per unit (kg/m2) increase of BMI in the MR analysis.

Power calculations of the MR analysis of AD upon BMI were provided according to a range of values for the 
true underlying causal association between AD and BMI (Supplementary Fig. S2)44. These was based on a sample 
size of 681,275 in the outcome dataset (i.e. BMI GWAS study) and a regression coefficient of 0.10 kg/m2 for the 
observational association between AD and BMI according to a recent cohort study by Shalom et al.45 The vari-
ances for AD (exposure) and BMI (outcome) used were 0.148 and 16 kg2/m4 respectively based on AD and BMI 
GWAS datasets14,15. Proportion of variance explained for the association of the included SNPs (n = 20) with AD 
(exposure variable) was 0.026. Our study had 80% power to detect a 0.220 kg/m2 increase in BMI arising from 
the presence of AD at a type 1 error rate of 0.05.

Sensitivity analysis.  In order to improve the reliability of our MR results, we performed sensitivity analy-
ses by excluding potential pleiotropic variants in our MR analyses. The associations of the genetic variants used 
as genetic instruments with potential confounders of BMI and AD were annotated using the PhenoScanner 
V2 database46,47. (Supplementary Tables S6, S7). Potential confounders considered for the BMI SNPs included 
education, behavioural factors such as tobacco smoking, alcohol ingestion and physical activity, psychiatric 
diseases and psychological well-being (anxiety, depression)48–52. Potential confounders considered for the AD 
SNPs included education, alcohol ingestion psychiatric diseases and psychological well-being (anxiety, depres-
sion)48–52.

Given that there might be a certain degree of measurement error in the SNP exposure associations, result-
ing in departure of the no measurement error (NOME) assumption, we also estimated the attenuation of effect 
estimates in IVW and MR-Egger methods using F statistics and I2 respectively. Both range from 0 to 100%, with 
values close to 100% suggestive of minimal attenuation53,54.

The attenuation of the effect size as a result of departure of NOME assumption in the IVW method can be 
estimated by measuring the instrument strength (F statistics) for the genetic variant used53. F statistic for each 
variant is calculated as the ratio of its effect size estimate to the variance of its SNP-exposure association, a 
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weighted F statistic is then measured across all the SNPs used in the MR experiment. Degree of attenuation of 
effect estimates resulting from departure of NOME assumption is then estimated by:

In contrast, MR Egger estimates are not governed by F statistics and are better assessed using I2
GX estimate54. 

I2
GX represents the true variance of SNP-exposure associations divided by the variance of the SNP-exposure 

estimates.
TwoSampleMR (version 0.4.26) and Mendelian Randomization (version 0.4.1) packages in R statistical soft-

ware (RStudio version 1.2.1335) were used to perform data clumping of SNPs and two-sample Mendelian ran-
domization analysis respectively. The MR experiment is summarized in Fig. 1.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files.
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